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ABSTRACT

Web query classification (QC) aims to classify Web users’
queries, which are often short and ambiguous, into a set of
target categories. QC has many applications including page
ranking in Web search, targeted advertisement in response
to queries, and personalization. In this paper, we present a
novel approach for QC that outperforms the winning solu-
tion of the ACM KDDCUP 2005 competition, whose objec-
tive is to classify 800,000 real user queries. In our approach,
we first build a bridging classifier on an intermediate tax-
onomy in an offline mode. This classifier is then used in
an online mode to map user queries to the target categories
via the above intermediate taxonomy. A major innovation
is that by leveraging the similarity distribution over the in-
termediate taxonomy, we do not need to retrain a new clas-
sifier for each new set of target categories, and therefore
the bridging classifier needs to be trained only once. In
addition, we introduce category selection as a new method
for narrowing down the scope of the intermediate taxonomy
based on which we classify the queries. Category selection
can improve both efficiency and effectiveness of the online
classification. By combining our algorithm with the win-
ning solution of KDDCUP 2005, we made an improvement
by 9.7% and 3.8% in terms of precision and F1 respectively
compared with the best results of KDDCUP 2005.

Categories and Subject Descriptors

H.3.m [Information Storage and Retrieval]: Miscel-
laneous; I.5.2 [Pattern Recognition]: Design Methodol-
ogy—Classifier design and evaluation

General Terms

Algorithms, Experimentation

Keywords

Web Query Classification, Bridging Classifier, Category Se-
lection, KDDCUP 2005
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1. INTRODUCTION
With exponentially increasing information becoming avail-

able on the Internet, Web search has become an indispens-
able tool for Web users to gain desired information. Typi-
cally, Web users submit a short Web query consisting of a
few words to search engines. Because these queries are short
and ambiguous, how to interpret the queries in terms of a
set of target categories has become a major research issue.
In this paper, we call the problem of generating a ranked list
of target categories from user queries the query classification
problem, or QC for short.
The importance of QC is underscored by many services

provided by Web search. A direct application is to provide
better search result pages for users with interests of differ-
ent categories. For example, the users issuing a Web query
“apple” might expect to see Web pages related to the fruit
apple, or they may prefer to see products or news related to
the computer company. Online advertisement services can
rely on the QC results to promote different products more
accurately. Search result pages can be grouped according
to the categories predicted by a QC algorithm. However,
the computation of QC is non-trivial, since the queries are
usually short in length, ambiguous and noisy (e.g., wrong
spelling). Direct matching between queries and target cate-
gories often produces no result. In addition, the target cate-
gories can often change, depending on the new Web contents
as the Web evolves, and as the intended services change as
well.
KDDCUP 2005 ( http://www.acm.org/sigkdd/kddcup )

highlighted the interests in QC, where 800,000 real Web
queries are to be classified into 67 target categories. Each
query can belong to more than one target category. For this
task, there is no training data provided. As an example of
a QC task, given the query “apple”, it should be classified
into “Computers\Hardware; Living\Food&Cooking”.
The winning solution in the KDDCUP 2005 competition,

which won on all three evaluation metrics (precision, F1 and
creativity), relied on an innovative method to map queries
to target categories. By this method, an input query is
first mapped to an intermediate category, and then a second
mapping is applied to map the query from the intermediate
category to the target category. However, we note that this
method suffers from two potential problems. First, the clas-
sifier for the second mapping function needs to be trained
whenever the target category structure changes. Since in
real applications, the target categories can change depend-
ing on the needs of the service providers, as well as the
distribution of the Web contents, this solution is not flexible
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enough. What would be better is to train the classifiers once
and then use them in future QC tasks, even when the target
categories are different. Second, the winners used the Open
Directory Project (ODP) taxonomy as the intermediate tax-
onomy. Since the ODP contains more than 590,000 different
categories, it is costly to handle all mapping functions. It is
better to select a portion of the most relevant parts of the
intermediate categories.
In this paper, we introduce a novel QC algorithm that

solves the above two problems. In particular, we first build
a bridging classifier on an intermediate taxonomy in an of-
fline mode. This classifier is then used in online mode to map
users’ queries to the target categories via the above inter-
mediate taxonomy. Therefore, we do not have to build the
classifier each time the target categories change. In addition,
we propose a category-selection method to select the cate-
gories in the intermediate taxonomy so that the effectiveness
and efficiency of the online classification can be improved.
The KDDCUP 2005 winning solution included two kinds

of base classifiers and two ensemble classifiers of them. By
comparing our new method with any base classifier in the
winner’s solution for the KDDCUP 2005 competition, we
found that our new method can improve the performance
by more than 10.4% and 7.1% in terms of precision and
F1 respectively, while our method does not require the ex-
tra resource such as WordNet [8]. The proposed method can
even achieve a similar performance to the winner’s ensemble
classifiers that achieved the best performance in the KDD-
CUP 2005 competition. Furthermore, by combining the our
method with the base classifiers in the winner’s solution,
we can improve the classification results by 9.7% in terms
of precision and 3.8% in terms of F1 as compared to the
winner’s results.
This rest of the paper is organized as follows. We de-

fine the query classification problem in Section 2. Section 3
presents the methods of enriching queries and target cate-
gories. In Section 4, we briefly introduce the previous meth-
ods and put forward a new method. In Section 5, we com-
pare the approaches empirically on the tasks of KDDCUP
2005 competition. We list some related works in Section 6.
Section 7 gives the conclusion of the paper and some possible
future research issues.

2. PROBLEM DEFINITION
The query classification problem is not as well-formed as

other classification problems such as text classification. The
difficulties include short and ambiguous queries and the lack
of training data. In this section, inspired by KDDCUP 2005,
we give a stringent definition of the QC problem.

Query Classification:

* The aim of query classification is to classify a user
query Qi into a ranked list of n categories Ci1, Ci2,
. . ., Cin, among a set of N categories {C1, C2, . . .,
CN}. Among the output, Ci1 is ranked higher than
Ci2, and Ci2 is higher than Ci3, and so on.

* The queries are collected from real search engines sub-
mitted by Web users. The meaning and intension of
the queries are subjective.

* The target categories are a tree with each node rep-
resenting a category. The semantic meaning of each

category is defined by the labels along the path from
the root to the corresponding node.

In addition, the training data must be found online be-
cause, in general, labeled training data for query classifica-
tion are very difficult to obtain.
Figure 1 illustrates the target taxonomy of the KDD-

CUP 2005 competition. Because there are no data pro-
vided to define the content and the semantics of a category,
as in conventional classification problems, a new solution
needs be found. As mentioned above, an added difficulty
is that the target taxonomy may change frequently. The
queries in this problem are from the MSN search engine
(http://search.msn.com). Several examples of the queries
are shown in Table 1. Since a query usually contains very
few words, the sparseness of queries becomes a serious prob-
lem as compared to other text classification problems.

Table 1: Examples of queries.

1967 shelby mustang

actress hildegarde

a & r management” property management Maryland

netconfig.exe

Softw are OtherTools & Hardware

LivingSportsComputers

Hardware

Figure 1: An Example of the Target Taxonomy.

3. QUERY AND CATEGORY ENRICHMENT
In this section, we discuss the approaches for enriching

queries and categories, which are critical for the query clas-
sification task.

3.1 Enrichment through Search Engines
Since queries and categories usually contain only a few

words in the QC problem, we need to expand them to obtain
richer representations. One straightforward method is to
submit them to search engines to get the related pages (for
categories, we can take their labels as the queries and submit
them to search engines, such as “Computers\Hardware” in
Figure 1). The returned Web pages from search engines
provide the context of the queries and the target categories,
which can help determine the meanings/semantics of the
queries and categories.
Given the search results for a query or category, we need

to decide what features should be extracted from the pages
to construct the representation. Three kinds of features are
considered in this paper: the title of a page, the snippet
generated by the search engines, and the full plain text of a
page. The snippet is in fact a short query-based summary
of a Web page in which the query words occur frequently.
The full plain text is all the text in a page with the html
tags removed. Since the title of a page is usually very short
(5.2 words on average for our data set), we combine it with
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other kinds of features together. These features are studied
in our experiments.
Besides the above textual features, we can also obtain the

category information of a Web page through the directory
information from search engines. For example, Google’s “Di-
rectory Search” can provide the labels of the returned Web
pages. Such labels will be leveraged to classify a query, as
stated in Section 4.1.

3.2 Word Matching Between Categories
The query classification problem can be converted to a tra-

ditional text classification problem by finding some training
data online for each category in the target taxonomy. Our
method of collecting the training data is by finding doc-
uments in certain intermediate taxonomies that are found
online. To do so, we need to construct mapping functions
between the intermediate categories and the target cate-
gories. Given a certain category in an intermediate taxon-
omy, we say that it is directly mapped to a target category
if and only if the following condition is satisfied: one or
more terms in each node along the path in the target cat-
egory appear along the path corresponding to the matched
intermediate category. For example, the intermediate cate-
gory “Computers\Hardware \Storage” is directly mapped to
the target category “Computers\Hardware” since the words
“Computers” and “Hardware” both appear along the path
Computers → Hardware → Storage as shown in Figure 2.
We call this matching method direct matching.
After constructing the above mapping functions by ex-

act word matching, we may still miss a large number of
mappings. To obtain a more complete mapping function,
we expand the words in the labels of the target taxon-
omy through a thesaurus such as the WordNet [8]. For
example, the keyword “Hardware” is extended to “Hard-
ware & Devices & Equipments”. Then an intermediate cat-
egory such as “Computers\Devices” can now be mapped to
“Computers\Hardware”. This matching method is called
extended matching in this paper.

Computers

Storage

Hardware

(2) Target Taxonomy(1) Intermediate Taxonomy

Computers

Hardware

Figure 2: Illustration of the matching between tax-
onomies.

4. CLASSIFICATION APPROACHES
In this section, we first describe the state-of-the-art query

classification methods. Then we describe our new bridging
classifier to address the disadvantages of the existing meth-
ods.

4.1 Classification by Exact Matching
As described in Section 3.1, a query can be expanded

through search engines which results in a list of related Web
pages together with their categories from an intermediate

taxonomy. A straightforward approach to QC is to leverage
the categories by exact matching. We denote the categories
in the intermediate taxonomy and the target taxonomy as
CI and CT respectively. For each category in CI , we can de-
tect whether it is mapped to any category in CT according to
the matching approaches given in Section 3.2. After that,
the most frequent target categories to which the returned
intermediate categories have been successfully mapped are
regarded as the classification result. That is:

c∗ = argmax
CT

j

 
nX

i=1

I(CI(i) is mapped to CT
j )

!
(1)

In Equation (1), I(·) is the indicator function whose value
is 1 when its parameter is true and 0 otherwise. CI(i) is
the category in the intermediate taxonomy for the ith page
returned by the search engine. n result pages are used for
query classification and the parameter n is studied in our
experiments.
It is not hard to imagine that the exact matching ap-

proach tends to produce classification results with high pre-
cision but low recall. It produces high precision because this
approach relies on the Web pages which are associated with
the manually annotated category information. It produces
low recall because many search result pages have no inter-
mediate categories. Moreover, the exact matching approach
cannot find all the mappings from the existing intermediate
taxonomy to the target taxonomy which also results in low
recall.

4.2 Classification by SVM
To alleviate the low-recall problem of the exact matching

method, some statistical classifiers can be used for QC. In
the KDDCUP 2005 winning solution, Support Vector Ma-
chine (SVM) was used as a base classifier. Query classifica-
tion with SVM consists of the following steps: 1) construct
the training data for the target categories based on map-
ping functions between categories, as discussed in Section
3.2. If an intermediate category CI is mapped to a target
category CT , then the Web pages in CI are mapped into
CT ; 2) train SVM classifiers for the target categories; 3) for
each Web query to be classified, use search engines to get its
enriched features as discussed in Section 3.1 and classify the
query using the SVM classifiers. The advantage of this QC
method is that it can improve the recall of the classification
result. For example, assume two intermediate categories, CI

1

and CI
2 , are semantically related with a target category CT

1 .
CI

1 can be matched with CT
1 through word matching but CI

2

cannot. For a query to be classified, if a search engine only
returns pages of CI

2 , this query cannot be classified into the
target category if the exact matching classification method
is used. However, if the query is classified by a statistical
classifier, it can also be assigned the target category CT

1 , as
the classifier is trained using pages of CI

1 , which may also
contain terms of CI

2 because the two intermediate categories
are similar in topic.
Although statistical classifiers can help increase the recall

of the exact matching approach, they still need the exact
matching for collecting the training data. What is more, if
the target taxonomy changes, we need to collect the training
data by exact matching and train statistical classifiers again.
In the following sections, we develop a new method to solve
the above problems.
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4.3 Our New Method: Classifiers by Bridges

4.3.1 Taxonomy-Bridging Algorithm

We now describe our new QC approach called taxonomy-
bridging classifier, or bridging classifier in short, by which
we connect the target taxonomy and queries by taking an
intermediate taxonomy as a bridge. The idea is illustrated
in Figure 3, where two vertical lines separate the space into
three parts. The square in the left part denotes the queries
to be classified; the tree in the right part represents the
target taxonomy; the tree in the middle part is an existing
intermediate taxonomy. The thickness of the dotted lines
reflects the similarly relationship between two nodes. For
example, we can see that the relationship between CT

i and
CI

j is much stronger than that between CT
i and CI

k . Given

a category CT
i in the target taxonomy and a query to be

classified qk, we can judge the similarity between them by
the distributions of their relationship to the categories in
the intermediate taxonomy. By defining the relationship
and similarity under the probabilistic framework, the above
idea can be explained by Equation (2).

T

iC

kq I

jC

I

kC

TCICQ

Figure 3: Illustration of the Bridging Classifier.

p(CT
i |q) =

P
CI

j

p(CT
i , CI

j |q)

=
P
CI

j

p(CT
i |CI

j , q)p(CI
j |q)

≈
P
CI

j

p(CT
i |CI

j )p(C
I
j |q)

=
P
CI

j

p(CT
i |CI

j )
p(q|CI

j )p(CI
j )

p(q)

∝
P
CI

j

p(CT
i |CI

j )p(q|C
I
j )p(C

I
j )

(2)

In Equation (2), p(CT
i |q) denotes the conditional probabil-

ity of CT
i given q. Similarly, p(CT

i |CI
j ) and p(q|CI

j ) de-

notes the probability of CT
i and q given CI

j respectively.

p(CI
j ) is the prior probability of CI

j which can be estimated

from the Web pages in CI . If CT
i is represented by a set

of words (w1, w2, . . . , wn) where each word wk appears nk

times, p(CT
i |CI

j ) can be calculated through Equation (3)

p(CT
i |CI

j ) =
Yn

k=1
p(wk|C

I
j )

nk
(3)

where p(wk|C
I
j ) stands for the probability that the word wk

occurs in class CI
j , which can be estimated by the principle

of maximal likelihood. p(q|CI
j ) can be calculated in the same

way as p(CT
i |CI

j ).

A query q can be classified according to Equation (4):

c∗ = argmax
CT

i

p(CT
i |q) (4)

To make our bridging classifier easier to understand, we
can explain it in another way by rewriting Equation (2) as
Equation (5),

p(CT
i |q) =

P
CI

j

p(CT
i , CI

j |q)

=
P
CI

j

p(CT
i |CI

j , q)p(CI
j |q)

≈
P
CI

j

p(CT
i |CI

j )p(C
I
j |q)

=
P
CI

j

p(CI
j |CT

i )p(CT
i )

p(CI
j
)

p(CI
j |q)

= p(CT
i )
P
CI

j

p(CI
j |CT

i )p(CI
j |q)

p(CI
j
)

(5)

Let us consider the numerator on the right side of the
Equation (5). Given a query q and CT

i , p(CI
j |C

T
i ) and

p(CI
j |q) are fixed and

P
CI

j

p(CI
j |C

T
i ) = 1,

P
CI

j

p(CI
j |q) = 1.

p(CI
j |C

T
i ) and p(CI

j |q) represent the probability that CT
i

and q belong to CI
j . It is easy to prove that p(CT

i |q) tends

to be larger when q and CT
i tends to belong to the same cate-

gory in the intermediate taxonomy. The denominator p(CI
j )

reflects the size of category CI
j which acts as a weighting fac-

tor. It guarantees that the higher the probability that q and
CT

i belong to the smaller sized category (where size refers to
the number of nodes underneath the category in the tree)
in the intermediate taxonomy, the higher the probability
that q belongs to CI

i . Such an observation agrees with our
intuition, since a larger category tends to contain more sub-
topics while a smaller category contains fewer sub-topics.
Thus we can say with higher confidence that q and CI

i are
related to the same sub-topic when they belong to the same
smaller category.

4.3.2 Category Selection

The intermediate taxonomy may contain enormous cate-
gories and some of them are irrelevant to the query classi-
fication task corresponding with the predefined target tax-
onomy. Therefore, to reduce the computation complexity,
we should perform “Category Selection” in a similar sense
of “Feature Selection” in text classification [15]. Two ap-
proaches are employed in this paper to evaluate the goodness
of a category in the intermediate taxonomy. After sorting
the categories according to the scores calculated by the fol-
lowing two approaches, category selection can be fulfilled by
selecting the top n categories.

Total Probability (TP): this method gives a score to each
category in the intermediate taxonomy according to its prob-
ability of generating the categories in the target taxonomy,
as shown in Equation (6).

Score(CI
j ) =
X
CT

i

P (CT
i |CI

j ) (6)

Mutual Information (MI): MI is a criterion commonly
used in statistical language modeling of word associations
and other related applications [15]. Given a word t and a
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category c, the mutual information between t and c is defined
as:

MI(t, c) = log
P (t ∧ c)

P (t)× P (c)
(7)

By considering the two-way contingency table for t and c,
where A is the number of times t and c co-occur, B is the
number of times that t occurs without c, C is number of
times c occurs without t and N is the total number of doc-
uments, then the mutual information between t and c can
be estimated using:

MI(t, c) ≈ log
A × N

(A + C)× (A + B)
(8)

Since the name of a category in the target taxonomy usually
contains more than one term, we define the “mutual infor-
mation” between a category in the intermediate taxonomy
CI

j and a category in the target taxonomy CT
i as:

MI(CT
i , CI

j ) =
1

|CT
i |

X
t∈CT

i

MI(t, CI
j ) (9)

where |CT
i | is the number of terms in the name of CT

i .
To measure the goodness of CI

j in a global category selec-

tion, we combine the category-specific scores of CI
j by:

MIavg(C
I
j ) =
X
CT

j

MI(CT
i , CI

j ) (10)

4.3.3 Discussions

As we can see, in the bridging classifier, we do not need
to train a classifier function between an intermediate taxon-
omy and the target taxonomy. We only need to build the
classifiers on the intermediate taxonomy once and it can be
applied to any target taxonomy. The framework can be ex-
tended in two directions. One is to include some training
data for each target category. With the training data, we
do not have to treat the labels of the target categories as
queries and retrieve related Web pages through search en-
gines to represent the categories. We can extract features
from the training data directly. The second extension is to
use other sophisticated models such as the n-gram model [9]
or SVM [10] for computing p(CT

i |CI
j ) and p(q|CI

j ).

5. EXPERIMENTS
In this section, we first introduce the data set and the

evaluation metrics. Then we present the experiment results
and give some discussions.

5.1 Data Set and Evaluation Metrics

5.1.1 Data sets

In this paper, we use the data sets from the KDDCUP
2005 competition which is available on the Web1 . One of the
data sets contains 111 sample queries together with the cat-
egory information. These samples are used to exemplify the
format of the queries by the organizer. However, since the
category information of these queries is truthful, they can
serve as the validation data. Another data set contains 800
queries with category information labeled by three human
labelers. In fact, the organizers provided 800,000 queries in

1http://www.acm.org/sigs/sigkdd/kdd2005/kddcup.html

total which are selected from the MSN search logs for test-
ing the submitted solutions. Since manually labeling all the
800,000 queries is too expensive and time consuming, the
organizers randomly selected 800 queries for evaluation.
We denote the three human query-labelers (and some-

times the dataset labeled by them if no confusion is caused)
as L1, L2 and L3, respectively. Each query has at most
five labels in ranked order. Table 2 shows the average pre-
cision and F1 score values of each labeler when evaluated
against the other two labelers. The average values among
the three labelers are around 0.50 which indicates that the
query classification problem is not an easy task even for hu-
man labelers. In this paper, all the experiments use only
the 800 queries, except in the ensemble classifiers, where we
use the 111 sample queries to tune the weight of each single
classifier.

Table 2: The Average Scores of Each Labeler When
Evaluated Against the Other Two Labelers

L1 L2 L3 Average

F1 0.538 0.477 0.512 0.509

Pre 0.501 0.613 0.463 0.526

The existing intermediate taxonomy used in the paper
is from Open Directory Project (ODP, http://dmoz.org/).
We crawled 1,546,441 Web pages from ODP which spanned
over 172,565 categories. The categories have a hierarchical
structure as shown in Figure 2(1). We can consider the
hierarchy at different levels. Table 3 shows the number of
categories on different levels. The first row counts all the
categories while the second row counts only the categories
containing more than 10 Web pages. Table 4 summarizes the
statistics of Web page numbers in the categories with more
than 10 documents on different levels. As we can see, when
we move down to the lower levels along the hierarchy, more
categories appear while each category contains fewer Web
pages. In order to remove noise, we consider the categories
with more than 10 pages in this paper.

Table 3: Number of Categories on Different Levels

Top 2 Top 3 Top 4 Top 5 Top All

#doc > 0 435 5,300 24,315 56,228 172,565

#doc > 10 399 4,011 13,541 23,989 39,250

Table 4: Statistics of the Numbers of Documents in
the Categories on Different Levels

Top 2 Top 3 Top 4 Top 5 Top All

Largest 211,192 153,382 84,455 25,053 920

Smallest 11 11 11 11 11

Mean 4,044.0 400.8 115.6 61.6 29.1

5.1.2 Evaluation Measurements

In KDDCUP 2005, precision, performance and creativity
are the three measures to evaluate the submitted solutions.
“creativity” refers to the novelty of the solutions judged by
experts. The other two measures are defined according to
the standard measures to evaluate the performance of classi-
fication, that is, precision, recall and F1-measure [12]. Pre-
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cision (P) is the proportion of actual positive class members
returned by the system among all predicted positive class
members returned by the system. Recall (R) is the propor-
tion of predicted positive members among all actual positive
class members in the data. F1 is the harmonic mean of pre-
cision and recall as shown below:

F1 = 2× P × R/(P + R) (11)

“performance” adopted by KDDCUP 2005 is in fact F1.
Therefore, we denote it by F1 instead of “performance” for
simplicity.
As 3 labelers were asked to label the queries, the results

reported are averaged over the values evaluated on each of
them.

5.2 Results and Analysis

5.2.1 Performance of Exact matching and SVM

In this section, we study the performance of the two meth-
ods which tightly depend on word matching: exact match-
ing and SVM, as well as the effect of query and category
expansion. Table 5 shows the results of the category ex-
pansion through intermediate taxonomy by word matching,
that is the results of collecting training data for the target
taxonomy. Each element in the table represents the number
of documents collected for the target categories. The first
row contains the results by direct matching while the sec-
ond row contains the results after expanding the category
names through extended matching. We can see that after
extending the names of the target categories, the number
of documents collected for the target categories increases.
We expect that the expansion with the help of WordNet
should provide more documents to reflect the semantics of
the target categories which is verified by Table 6.

Table 5: Number of Pages Collected for Training
under Different Category Expansion Methods

Min Max Median Mean

Direct Matching 4 126,397 2,389 14,646

Extended Matching 22 227,690 6,815 21,295

Table 6 presents the result comparisons of the exact match-
ing method and SVM. We enrich the query by retrieving the
relevant pages through Google (http://www.google.com). The
top n returned pages are used to represent the query where
n varies from 20 to 80, with the step size of 20. Two
approaches are used to extract features from the returned
pages. One is to extract the snippet of the returned pages
and the other is to extract all the text in the Web pages ex-
cept the HTML tags. The Web pages’ titles will be added to
both of these two kinds of features. The column “0” means
that we use only the terms in the query without enrichment.
In our experiments, we expand the target categories through

the ODP taxonomy; that is, we collect the training data
for the target categories from ODP. When constructing the
mapping relationship as shown in Section 3.2, if we use direct
matching, we denote SVM and the exact matching method
with “SVM-D” and “Extact-D” respectively. Otherwise,if
we use the extended matching method, we denote SVM and
the exact matching method with “SVM-E” and “Extact-E”
respectively. The exact matching method needs the cate-
gory list of the retrieved Web pages for each query. The

Table 6: Performance of Exact Matching and SVM

(1)Measured by F1

n 0 20 40 60 80

Exact-D Null 0.251 0.249 0.247 0.246

Exact-E Null 0.385 0.396 0.386 0.384

SVM-D
snippet

0.205
0.288 0.292 0.291 0.289

full text 0.254 0.276 0.267 0.273

SVM-E
snippet

0.256
0.378 0.383 0.379 0.379

full text 0.316 0.340 0.327 0.336

(2) Measured by Precision

n 0 20 40 60 80

Exact-D Null 0.300 0.279 0.272 0.268

Exact-E Null 0.403 0.405 0.389 0.383

SVM-D
snippet

0.178
0.248 0.248 0.244 0.246

full text 0.227 0.234 0.242 0.240

SVM-E
snippet

0.212
0.335 0.321 0.312 0.311

full text 0.288 0.309 0.305 0.296

category information is obtained through Google’s “Direc-
tory Search” service (http://www.google.com/dirhp).
From Table 6 we can see that “Exact-E” is much better

than “Exact-D”, and “SVM-E” is much better than “SVM-
D”. This indicates that the extended matching with the
help of WordNet can achieve a more proper representation
of the target category. We can also observe that “Exact-
E” performs better than “SVM-E”. Another observation
is that the “snippet” representation outperforms “full text”
consistently. The reason is that the “snippet” provides a
more concise context of the query than the “full text” which
tends to introduce noise. We can also see that most of the
classifiers achieve the highest performance when the queries
are represented by the top 40 search result pages. Therefore,
in the later experiments, we use snippets of the top 40 pages
to represent queries.

5.2.2 Performance of the Bridging Classifier

As we can see in the above experiments, the thesaurus
WordNet plays an important role in both the exact match-
ing method and SVM since it can help expand the words in
the labels of the target categories, which can further improve
the mapping functions. However, the effect of a thesaurus
may be limited due to the following reasons: 1) there may
be no thesaurus in some fields; 2) it is hard to determine the
precise expansion of the words even with a high-quality the-
saurus, especially with the rapidly changing usage of words
on the Web. Therefore, we put forward the bridging classi-
fier which only relies on the intermediate taxonomies.
In order to expand a target category, we can treat its name

as a query and submit it to search engines. We use the snip-
pet of the top n returned pages to represent a category since
we learned from the query expansion that snippet performs
better than “full text”. The parameter n varies from 20 to
100. Table 7 shows the results when “top all” categories in
the ODP taxonomy are used for bridging the queries and the
target taxonomy. The effect of different levels of the interme-
diate taxonomy will be studied later. From Table 7, we can
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see that the bridging classifier achieves the best performance
when n equals 60. The best F1 and precision achieved by
the bridging classifier is higher than those achieved either by
the exact matching method or SVM. The relative improve-
ment is more than 10.4% and 7.1% in terms of precision
and F1 respectively. The main reason for the improvement
is that the bridging classifier can make thorough use of the
finer grained intermediate taxonomy in a probabilistic way.
While the previous methods including the exact matching
method and SVM exploit the intermediate taxonomy in a
hard way when constructing the mapping function as shown
in Section 3.2.

Table 7: Performances of the Bridging Classifier
with Different Representations of Target Categories

n 20 40 60 80 100

F1 0.414 0.420 0.424 0.421 0.416

Precision 0.437 0.443 0.447 0.444 0.439

Table 8: Performances of the Bridging Classifier
with Different Granularity

Top 2 Top 3 Top 4 Top 5 Top All

F1 0.267 0.285 0.312 0.352 0.424

Precision 0.270 0.291 0.339 0.368 0.447

Table 8 shows the performance of the bridging classifier
when we change the granularity of the categories in the in-
termediate taxonomy. To change the granularity of the cate-
gories, we use the categories on the top L level by varying L.
It is clear that the categories have larger granularity when
L is smaller. From Table 8, we can see that the performance
of the bridging classifier improves steadily by reducing the
granularity of categories. The reason is that categories with
large granularity may be a mixture of several target cate-
gories which prohibit distinguishing the target categories.
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0.45

0.50

4000 11000 18000 25000 32000 39250

MI-F1 MI-Pre TP-F1 TP-Pre

Figure 4: Effect of category selection.

However, reducing the granularity of categories in the in-
termediate taxonomy will certainly increase the number of
the intermediate categories which will thus increase the com-
putation cost. One way to solve this problem is to do cate-
gory selection. Figure 4 shows the performance of the bridg-
ing classifier when we select the categories from all the ODP

taxonomy through the two category selection approaches
proposed in Section 4.3.2. We can see that when the cate-
gory number is around 18,000, the performance of the bridg-
ing classifier is comparable to, if not better than, the previ-
ous approaches, including the exact matching method and
SVM. MI works better than TP in that MI can not only
measure the relevance between the categories in the target
taxonomy and those in the intermediate taxonomy, but also
favors the categories which are more powerful to distinguish
the categories in the target taxonomy. However, TP only
cares about the merit of relevance.

5.2.3 Ensemble of Classifiers

The winner of the KDDCUP 2005 competition found that
the best result was achieved by combining the exact match-
ing method and SVM. In the winning solution, besides the
exact matching method on Google’s directory search, two
other exact matching methods are developed using LookS-
mart (http://www.looksmart.com) and a search engine based
on Lemur (http://www.lemurproject.org) and their crawled
Web pages from ODP [11]. Two classifier-combination strate-
gies are used, with one aiming at higher precision (denoted
by EV, where 111 samples are used as the validation data to
tune the weight of each base classifier) and the other aim-
ing at higher F1 (denoted by EN in which the validation
data set is ignored). EV assigns a weight to a classifier pro-
portional to the classifier’s precision while EN gives equal
weights to all classifiers. We follow the same strategy to
combine our new method with the winner’s methods, which
is denoted as “Exact-E”+“SVM-E”+Bridging as shown in
Table 9. The numbers in the parentheses are the relative im-
provement. Note that the bridging classifier alone achieves
similar F1 measurement as the KDDCU 2005 winning solu-
tion (“Exact-E”+“SVM-E” with the EV combination strat-
egy) but improves the precision by 5.4%. From Table 9 we
can also find that the combination of the bridging classifier
and the KDDCUP 2005 winning solution can improve the
performance by 9.7% and 3.8% in terms of precision and
F1, respectively, when compared with the winning solution.
This indicates that the bridging classifier works in a differ-
ent way as the exact matching method and SVM, and they
are complimentary to each other.

Table 9: Performances of Ensemble Classifiers
“Exact-E” “Exact-E” + “SVM-E”

+ “SVM-E” +Bridging

EV
F1 0.426 0.429(+0.007)

Precision 0.424 0.465(+0.097)

EN
F1 0.444 0.461(+0.038)

Precision 0.414 0.430(+0.039)

6. RELATED WORK
Though not much work has been done on topical query

classification, some work has been conducted on other kinds
of query classification problems. Gravano et al. classified
the Web queries by geographical locality [3] while Kang et
al. proposed to classify queries according to their functional
types [4].
Beitzel et al. studied the same problem in [2] as we pur-

sued in this paper, with the goal to classify the queries ac-
cording to their topic(s). They used two primary data sets
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containing the queries from the AOL web search service.
These queries were manually classified into a set of 18 cate-
gories. The main difference between our problem and that
of [2] is that we did not have training data as given input. In
fact, it is a very difficult and time consuming task to provide
enough training examples, especially when the target tax-
onomy is complicated. Another potential problem related
to the training data, as pointed out in [2], is caused by the
ongoing changes in the query stream, which makes it hard to
systematically cover the space of queries. In this paper, we
just rely on the structure and category names of the target
taxonomy without training data, which is consistent with
the task of KDDCUP 2005.
KDDCUP 2005 provides a test bed for the Web query

classification problem. There are a total of 37 solutions
from 32 teams attending the competition. As summarized
by the organizers [6], most solutions expanded the queries
through search engines or WordNet and expanded the cate-
gory by mapping between some pre-defined/existing taxon-
omy to the target taxonomy. Some solutions require human
intervention in the mapping process [5, 13].
Besides classifying the queries into target taxonomy, we

can also cluster the queries to discover some hidden tax-
onomies through unsupervised methods. Both Beeferman
[1] and Wen [14] used search engines’ clickthrough data to
cluster the queries. The former makes no use of the ac-
tual content of the queries and URLs, but only how they
co-occur within the clickthrough data, while the latter ex-
ploits the usage of the content. Although the work in [1]
and [14] proved the effectiveness of the clickthrough data
for query clustering, we did not utilize them in our solution
due to the following two reasons: 1) the clickthorugh data
can be quite noisy and is search engine dependent; 2) it is
difficult to obtain the clickthrough data due to privacy and
legal issues.

7. CONCLUSION AND FUTURE WORK
This paper presented a novel solution for classifying Web

queries into a set of target categories, where the queries are
very short and there are no training data. In our solution,
an intermediate taxonomy is used to train classifiers bridg-
ing the queries and target categories so that there is no need
to collect the training data. Experiments on the KDDCUP
2005 data set show that the bridging classifier approach is
promising. By combining the bridging classifier with the
winning solution of KDDCUP 2005, we made a further im-
provement by 9.7% and 3.8% in terms of precision and F1
respectively compared with the best results of KDDCUP
2005. In the future, we plan to extend the bridging classi-
fier idea to other types of query processing tasks, including
query clustering. We will also conduct research on how to
leverage a group of intermediate taxonomies for query clas-
sification.
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