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1. Introduction. The following is a special case of Theorem 9.2, one of the
chief results of this paper.

Theorem. Suppose that M is a 3-manifold with boundary, S is a compact 2-mani-
fold with boundary in M such that S n Bd (Af) = Bd (ft) n Bd (M) = R either a
l-manifold with boundary or the empty set, and e>0.

There is a 8 > 0 such that iff0 andfx are homeomorphisms of S onto disjoint locally
tame surfaces S0 and ft ¡« M where fe(S) n Bd (M)=fe(R) and fe moves no point
of S by as much as 8 (e = 0, 1), then there is a homeomorphism g of Sx [0, 1] onto a
locally tame solid in M such that g(Sx [0, 1]) n Bd (M)=g(R x [0, 1]) and for each
point y of S, g(y, e)=fe(y) (e = 0, 1) and the diameter ofg(yx [0, 1]) is less than e.

This is the first of three papers (see also [13], [14]) where we investigate the
global relation between two nice embeddings of a polyhedron in a 3-manifold
with boundary where both embeddings approximate very closely a topological
embedding of the polyhedron. In [13] we establish the following result.

Theorem. Suppose that M is a pwl 3-manifold (with boundary), K is a finite
polyhedron with no local cut points, Ka is a subpolyhedron of K with no degenerate
components, f is a homeomorphism of K into M such that f(K) n Bd (M) =f(Ka),
and e > 0.

There is a 8 > 0 such that iff0 andf± are pwl homeomorphisms of K into M so that
fe(K) nBd(Af)=/(ft) and d(f,fe)<8 (e = 0, 1) where d measures the distance
between two maps of a space into a metric space, then there is a pwl e-isotopy
Ht (0^ t Sj 1) of M onto itself so that H0 is the identity and H1f0=f1.

In [14] we develop an analogous result involving regular neighborhoods for the
case of embeddings of polyhedra which have local cut points.

Both theorems which we stated are obtained by refining techniques used in [5].
We hope that the serious reader will acquaint himself with that paper especially
with the proof of Theorem 3.2 there. The reader should also be familiar with [12].
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The lemmas of §§2-6 form a foundation on which we build the proofs of Theorem
7.1 here and Theorem 5.1 of [13]. In many cases the full strength of a lemma is
needed only in [13].

In the remainder of this section we give several definitions. Many terms which
we use are defined in [2]-[9], [12], and [25]. In particular our use of such terms as
general position, normally situated, universal curve, I(X, D), and Property Q is
explained in [12, §§1 and 6].

We use pwl as an abbreviation for piecewise linear(ly). A Euclidean complex is a
rectilinear simplicial complex in some Euclidean space. A Euclidean polyhedron
is a set which is the sum of the Simplexes of a Euclidean complex. In general by
complex we mean geometric simplicial complex. This is a partitioning of a separable
metric space X into subsets with affine structures by means of a homeomorphism
/: | Ä'| -»- X where \K\ denotes the polyhedron underlying a Euclidean complex K.
The simplexes of a geometric complex are the images/(s) of the simplexes s of K.
A polyhedron is the sum of the simplexes of a geometric complex. Suppose X is a
polyhedron which receives its pwl structure by way of a homeomorphism/: P-»- X
where P is a Euclidean polyhedron. We say a subset Y of X is a polyhedron in X
or a subpolyhedron of X if /" 1( Y) is a Euclidean polyhedron. If X and Y are
polyhedra receiving their pwl structures by homeomorphisms /: P -> X and
g : Q -»- Y where P and Q are Euclidean polyhedra then a map « : X -»- Y is pwl if
g~1hf is a pwl map of P into Q.

Suppose X is a separable metric space. If X is not regarded as a polyhedron then
by a triangulation of X we mean a geometric complex whose underlying point set
is X. If X is a polyhedron receiving its pwl structure by way of a homeomorphism
/: P -»- X where P is a Euclidean polyhedron, then a triangulation of X is a geo-
metric complex defined by means of a homeomorphism g: \L\ —»- X such that
g-1/is a pwl homeomorphism.

A pwl n-cell (n-sphere) is a polyhedron which is pwl homeomorphic to an «-
simplex (the boundary of an «+1-simplex). A pwl n-manifold is a polyhedron such
that each point has a closed polyhedral neighborhood which is a pwl «-cell. Notice
that a pwl manifold can have a boundary.

Disjoint simplexes r and s in Euclidean space En (or of a complex L) are joinable
if there is a simplex t of En (resp. of A whose vertices consist of the vertices of r
and s. We call t the join of r and s and denote this join by rs. The empty simplex
is allowed here and every simplex is joinable to it. Complexes A and K2 in En (or
subcomplexes A and K2 of a complex L) are joinable if each simplex of A is
joinable to each simplex of K2 and the collection of joins of simplexes of A with
simplexes of K2 together with their faces forms a complex (resp. a subcomplex of
L). The complex just mentioned is called the 701« of A and K2 and is denoted by
KxK2. Notice that local finiteness of complexes implies that only finite complexes
can be joinable. Disjoint compact polyhedra A and K2 in En are joinable if A
and K2 possess rectilinear triangulations TKl and TK¡¡ which are joinable. In this

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] CARTESIAN PRODUCTS 393

case ftft denotes the join of ft and K2 by which is meant the polyhedron that
underlies 7ftft2.

If K and L are joinable polyhedra in Em and/and g are respectively maps of K
and L into En, then by the join of the maps/and g we mean the map « of KL
into £" which is given by h(ax+(l — a)y) = af(x) + (l — a)g(y) for xe K, y e ft and
O^a^ 1. We do not insist that /and g be pwl. If A and L are joinable polyhedra
in Em and / ->/ and g, ->g are sequences of maps of K and L into En which
converge to maps/and g, then the limit of the join of/ and g¡ is the join off and g.

If s is a simplex in a complex A then by st(s, K) we mean the polyhedron which
is the sum of the simplexes of A that have s as a face. Since we take simplexes to
be closed, st(s, A) is compact. If X is a set in a complex A then by N(X, K) we
mean the polyhedron which is the sum of all simplexes of A" that intersect X.

A subcomplex L of a complex A is full in K if for each simplex s of ft s belongs
to L if every proper face of s belongs to L. Afirst derived subdivision K' of a complex
Ais a subdivision of A which is isomorphic to the first barycentric subdivision of K
under an isomorphism that takes each simplex of A onto itself. An «th derived
subdivision of a complex is defined by iteration. If L is a subcomplex of a complex
ft and K' is a first derived subdivision of AT with induced subdivision L' of ft then
L is full in A'.

If AT is a finite polyhedron and L is a subpolyhedron such that K=L u Bn and
5n n L=5"-1cBd (Bn) where 5n and 5""1 are pwl «- and («- l)-cells, then we
say that there is an elementary collapse from K to L or that K collapses to L(K\ L)
by an elementary collapse. A polyhedron K collapses to a subpolyhedron L if there
is a finite sequence of elementary collapses A\ ft \ Aft • - \ Kn=L. We write
this A'N. L. If TK is a triangulation of A" in which each Cl (ft-ft+1) and each
Cl (Bd (Cl (ft-ft+i))-ft+i) is a simplex of ft, then K collapses simplicially to
L (in ft). A finite polyhedron is collapsible if it collapses to a point.

A finite polyhedron N in a pwl «-manifold M is a regular neighborhood of a
finite polyhedron AT in M if

1. A7 is a pwl n-manifold,
2. N contains a neighborhood of A" in M, and
3. TV collapses to K.

If a pwl manifold M is a finite polyhedron which collapses to a subpolyhedron ft
then M is a (intrinsic) regular neighborhood of A". If A is a finite polyhedron in a
pwl manifold M, if Tis a triangulation of a neighborhood of Ain which AT underlies
a full subcomplex, and if T is a first derived subdivision of ft then we call 7V(A, 7")
a derived neighborhood of A in Af.

In [24], [25] it is shown that if A is a finite polyhedron in a pwl manifold M then
(1) a derived neighborhood of A" in M is a regular neighborhood, (2) any two
regular neighborhoods of A in M are pwl homeomorphic under a homeomorphism
that is the identity on ft and (3) a regular neighborhood of A" is a pwl cell if A" is
collapsible.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



394 ROBERT CRAGGS [October

We use [a, b] to denote the closed interval aStúb and (a, b) to denote the open
interval a<t<b. Half open intervals are denoted by [a, b) and (a, b].

An isotopy Ht(a^t^b)oia space X into a space Fis a continuous one parameter
family of embeddings of X into Y. An ambient isotopy Ht (da t^b) of a space X
or an isotopy of a space X onto itself is a continuous family of homeomorphisms of
X onto itself. For such an isotopy we assume that Ha is the identity if a=0.
Associated with an isotopy H, (a^t^b) of a space X into a space F is a level
preserving homeomorphism H: Xx [a, b] -» Yx [a, b] which is given by the rule
H(x,t) = (Ht(x),t).

Two definitions of the term pwl isotopy appear in the literature. Bing and
Sanderson [5], [22] call an isotopy Ht(a^f¿b)oía polyhedron K into a polyhedron
L piecewise linear if for each value of t, Ht is a pwl homeomorphism of K into /.
We prefer to follow Gugenheim [16] and say that Ht is piecewise linear if the
associated homeomorphism H: Kx [a, b] -»- L x [a, b] is pwl. These two definitions
are not equivalent, and this inequivalence causes us some difficulty since we employ
isotopy results of [5], [22] involving isotopies that are not pwl in the Gugenheim
sense. We get around this difficulty by showing how to approximate certain
isotopies by pwl ones.

By the track of a set Z under an isotopy Ht(aS¡úb) is meant [J {Ht(Z) \ t e [a, b]}.
An isotopy Ht (a á t ̂  b) of a space X into a metric space Y is an e-isotopy if the
track under Ht of each point of X has diameter less than e.

A cylindrical sphere in E3 with axis L is the boundary of a 3-cell that is obtained
by taking the closure of the part of a solid cylinder with axis L that lies between
two planes perpendicular to L. The bases of the cylindrical sphere are the two 2-cells
which compose the intersection of the sphere with the two planes just mentioned.

We use p to denote the metric on a metric space and / to denote the identity
homeomorphism. If/and g are maps of a space Xinto a metric space F we denote
by d(f, g) the least upper bound over points x of X of the distances p(f(x), g(x)). We
will often be occupied with extending homeomorphisms defined on subpolyhedra
of polyhedra. In order to conserve on symbols we will usually denote an extension
of a homeomorphism with the same symbol used to denote the homeomorphism.

Consider a finite collection A» • • -, A> of subdisks of a disk D. We say the
collection has Property Z (in A) if (0tne interiors of the A's are mutually exclusive,
(ii) no two of the A's intersect in a disconnected set, and (iii) [J Dt = D. If the
collection has Property Z and in addition each A is normally situated in D (that
is, each A is either contained in Int (A) or intersects Bd (A) in an arc) then we say
the collection has Property Z'. We say the collection has Property Z(¿) or Property
Z'(e) where e > 0 if the collection has Property Z or Property Z' and in addition
each A has diameter less than e.

2. Some simple lemmas on isotopies and homeomorphisms. Most of the isotopies
and homeomorphisms which we construct in this paper and in [13] and which we
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claim are pwl can be shown to be pwl by the following proposition which is stated
here without proof. It can be proved by using the lemmas of [25, Chapter 1] to
imitate in higher dimensions proofs like those in [2, §1]. Recall that a polyhedron
can be infinite, that is noncompact.

Proposition 2.1. Suppose that « is a homeomorphism of a polyhedron K onto a
closed subset of a polyhedron L so that « is pwl on each element of a locally finite
collection of compact subpolyhedra whose union is K.

Then h is pwl.

Lemma 2.1. Suppose that B% and B% are (pwl) n-cells and « is a (pwl) homeo-
morphism of Bd (Bf) onto Bd (fig). Then there is an extension of h to a (pwl)
homeomorphism of B" onto B2.

Proof. See [25, Lemma 10] for a proof of the pwl version. The topological
version is proved similarly.

Lemma 2.2. Suppose that An is a n-simplex with barycenter b, and suppose that h
is a pwl homeomorphism of An onto itself such that «|Bd (An) = I.

Then there is a pwl isotopy Ht (0á t¿ 1) of A" onto itself such that 7ft |Bd (An) = 7
and Hi—h.

Proof. A proof of this lemma can be found in [25] ; however, we repeat the proof
in order to make several observations about the constructed isotopy.

There is no loss in assuming that A"cp=£"x0c£"xf:1=£n+1. Consider
the prism A" x [0, 1] in En + 1. Define a level preserving pwl homeomorphism 77 of
Anx[0, 1] onto itself as follows. First set 77|Bd (A")x [0, 1] = 7, H\AnxO=I,
H\Anxl = (h, 1), and H\bx\=I. Then define 77 on the rest of Anx [0, 1] by the
join of the two maps 77|Bd (An x [0, 1]) and H\bx\.

The isotopy Ht is defined so that H(y, t) = (Ht(y), t) (y eAn,te [0, 1]).    D

Corollary 2.2a. If K is a polyhedron (possibly empty) in Bd (An) such that
h\bK=I then Ht\bK=I.

Proof. If K is empty the problem reduces to showing that 77=7 on bx [0, 1].
But7/|6xBd([0, l]) = 7and H\bx\ = I so H\bx [0, l] = 7by the join construction.

Suppose K is not empty. Let y be a point of A. Now H= I on (by) x 1 and on the
part of (by) x [0, 1] not in the 2-simplex (b x i)((by) x 1). But 77|(¿? x \)((by) x 1) is
the join of two identity maps and so is the identity.    □

In a similar fashion one can show

Corollary 2.2b. If K is a polyhedron in Bd (A") such that « leaves each segment
by invariant where y is a point of K, then Ht leaves each segment by invariant.

Corollary 2.2c. If e > 0 there is a 8 > 0 such that d(h, I)<8 implies that Ht is an
e-isotopy.
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Proof. Suppose this were not true. Then there would be a positive number -n,
there would be a sequence of homeomorphisms «, of An onto itself such that
«¡|Bd(An)=/ and «,-»-/, and there would be a sequence of level preserving
homeomorphisms H* of Anx[0, 1] onto itself constructed from the «,'s by the
join construction such that each //' moved some point by more than r¡. But since
Anx[0, 1] is compact this would imply that Hi y> I which contradicts the fact
that the limit of the join of two maps is the join of the limits.    □

Lemma 2.3. Suppose that Bn is a (pwl) n-cell and h is a (pwl) homeomorphism of
Bn onto itself such that «|Bd (Bn) = I.

Then there is a (pwl) isotopy Ht (0^ rg 1) ofBn onto itself such that Ht\Bd (Bn)=I
and Hx = h.

Furthermore ifp e Int (Bn) andh(p)=p then Ht can be constructed so that Ht\p = I.

Proof. We prove the pwl version of the lemma. See [1] for a proof of the
topological version.

Define a pwl homeomorphism <f> of Bn onto an «-simplex An which takes p onto
the barycenter b of A". Now « induces h' = </>h(f>~1: A" -> An. Apply Lemma 2.2 to
find a pwl isotopy H¡ (O^r^l) of An onto itself such that A'|Bd(An) = / and
Hx=K. Set flt=^-1J3i'f

If h(p)=p then h'(b)=b so by Corollary 2.2a, H't\b=Iand thus Ht\p = I.    D
With the aid of Corollary 2.2C we obtain the following lemma by imitating the

previous construction. See also [17].

Lemma 2.4. Suppose that Bn is a (pwl) n-cell and e > 0.
There is a 8>0 such that if h is a (pwl) 8-homeomorphism ofBn onto itself so that

«|Bd (Bn) = I, then there is a (pwl) e-isotopy Ht (O^r^ 1) of Bn onto itself so that
Ht\Bd(Bn)=IandHx=h.

The next lemma shows that certain isotopies of pwl «-cells (n^3) can be
approximated by pwl isotopies.

Lemma 2.5. Suppose that Bn (n^3) is a pwl n-cell, Ht(0útúv) is an isotopy of
Bn onto itself such that Ht\Bd (Bn) = I and A is a pwl homeomorphism, and e>0.

Then there is a pwl isotopy H[ (0^ t g 1) ofBn onto itself such that H¡\Bd (Bn) = I,
H'x = Hx, and for each t, d(Ht, H't) < e.

Proof. Choose 3 from Lemma 2.4 for the substitution Bn -> Bn and e/3 -> e.
Let 0=t0<tx< ■ ■ ■ <tm = l be numbers such that for each i, Ht (i{^r^ri+1) is a
S/3-isotopy of Bn.

Use [2, Theorem 3] or a lower dimensional version of it to find for each i
(ISiúm—l) a pwl homeomorphism A, of Bn such that d(ht, Htl)<8[3 and
«,|Bd (Bn)=I. Set «o=/ and «m=A-

From the inequality ¿(A hi+1)^d(hi, Ht)+d(Hu, Hu+1) + d(Hti+1, «(+1) we find
that d(hi,hi+x) = d(hi+1hi~1,I)<8 for each /. Thus from Lemma 2.4 there is for
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each i (O^i^m-1) a pwl e/3-isotopy Hi (O^tS 1) of Bn onto itself such that
H}\Bd (Bn)=7 and H[=hi+& *.

Define 77/ by the rule 7ft = / and 7/í' = /7(it_íl)/(t, + 1_ti;77t'1 = /7(it_fl)/((f + 1_tl)«j
(r,^í^ri+1). From the triangle inequality we find that d(H¡,Ht)<E for each t.
The restriction 7ft|Bd (Bn)=I, and Hi=(hmh~í1)hm.1=hm=H1.    D

By employing Lemma 2.5 to appropriately alter the proofs of [22, Corollary 1
to Theorem 1], [5, Theorem 7.2] and making other small modifications we obtain
the following two lemmas.

Lemma 2.6. Suppose that D is a polyhedral disk in E3, E is a polyhedral subdisk
of D whose intersection with Bd (D) is an arc A, and O is an open polyhedron
containing (D-E)u (Bd (E) n Int (7J>)).

Then there is a pwl isotopy 77, (0 ̂  / g 1) of E3 onto itself which is the identity
except in O such that H1(D)—E.

Lemma 2.7. Suppose that S is a polyhedral 2-sphere in E3, D and E are polyhedral
disks which span S from inside and have a common boundary on S, and h is a pwl
homeomorphism of D onto E which is the identity on Bd (D) = Bd (E).

Then there is a pwl isotopy Ht (O^/^l) of E3 onto itself which is the identity
except in Int (S) such that H1\D=h.

Lemma 2.8. Suppose that S is a polyhedral 2-sphere in E3 and D and E are
polyhedral disks such that D c\S=Er\ S-A an arc on Bd (73) n Bd (E) and
(D-A)\J(E-A)^\nt(S).

Then if h is a pwl homeomorphism of D onto E such that h\A=I, there is a pwl
isotopy Ht (O^i^ 1) of E3 onto itself which is the identity except in Int (ft) so that
H1\D=h.

Proof. Let F be a polyhedral disk on S such that A <= Bd (F). Both D u F and
E u F are disks whose interiors contain Int (A). Use [12, Lemma 2.4] to find
polyhedral 3-cells C(D) and C(E) in £3 such that D U fcBd(C(D)), Eu F
cßd (C(E)), C(D)-Feint (ft), and C(E)-Feint (S). Let D' and E' denote the
respective polyhedral disks Bd (C(D))- Int (F) and Bd (C(£))-Int (F).

Extend A to a pwl homeomorphism of D' onto E' which is the identity on
Bd(D') = Bd(E'). Lemma 2.7 now provides a pwl isotopy Ht (O^I^l) of E3
onto itself which is the identity except on Int (S) so that H1\D'=h.   □

The next lemma is a mild extension of Theorems 7.3 and 7.5 of [5].

Lemma 2.9. Suppose that ft,..., ft,..., ft are mutually exclusive polyhedral
2-spheres in E3 whose diameters are less than e.

Suppose that ft,..., ft,..., Sm are mutually exclusive compact polyhedral
surfaces each of which is in general position with respect to every ft.

Suppose that in each ft—(U ft) there is a component ft that lies in f~) Ext (ft)
so that every component ofS¡— U] is a disk of diameter less than e which is normally
situated in ft.
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Suppose that X is a compact set in (f) Ext (A)) u (U Cl (U/)) each component of
which either intersects (J Cl (U/) or contains points whose distances from [J Rt
exceed 3e.

Then there is a pwl \3e-isotopy Ht (O^ig 1) of E3 onto itself which is the identity
o«IU(U Cl (A)) and except in a 3e-neighborhood of{J A such that for each S,
every component of HX(S¡ — Cl (U/)) is contained in some Int (A)-

Proof. We first consider a special case of the lemma.
No component of any Sj—U¡ intersects Bd (S¡). In this case a pwl 12e-isotopy

can be constructed in place of the promised 13£-isotopy. This construction is made
by simply imitating the steps in the proofs of [5, Theorems 7.3 and 7.5] and using
Lemma 2.5 to convert the isotopies promised by [5, Theorems 7.1 and 7.2] to pwl
isotopies at each place where one of these theorems is used in the proofs of [5,
Theorems 7.3 and 7.5]. The special assumptions we have made concerning the
nature of the U/s make it unecessary to assume as in [5] that the A's are 2-spheres.

To finish the proof of the lemma we reduce the general case to the special case
just mentioned. There is no loss in assuming that the A's have mutually exclusive
interiors since any A can be thrown out if it is contained in the interior of another
one. For each A let C¡ denote the polyhedral cube whose boundary is A. F°r each
A let Ai, • • • » F,k,... denote the components of S}— U¡ which intersect Bd (S/).

By repeated applications of Lemma 2.6 we construct a pwl e-isotopy A1 (0 S t ̂  1)
of E3 onto itself which is the identity on X u ((J (Sf — \J Ejk)) and except in an
£-neighborhood of IJ A so that for each Ejk, Hl(Ejk-(Ejk n Cl (U/))) is contained
in some Int (A)-

Carve away thin mutually exclusive regular neighborhoods of the H}(Ejkys in
the C¡'s to obtain sets whose closures are polyhedral 3-cells C[,..., C[,... where
the boundary R'¡ of each C[ contains (IJ (A — (U Fjk))) n A and is in general
position with respect to every H11(SJ).

For each j let Uj denote the subset U¡ u (ljfc Hl(E,k)) of the surface Sj = Hl(S¡).
Retain X, but replace each A, A» a°d A by ^i» Sj, and Uj in the statement of the
lemma. Now we have a situation which fits the special case so there is a pwl
12e-isotopy A2 (O^fál) of E3 which is the identity on X u (\J Cl (Uj)) and
except in a 3£-neighborhood of (J A' such that for each j every component of
A7(A'-C1 (U'i)) is contained in some Int (A).

The promised isotopy is given by Ht=H2t (0¿t^%) and Ht = H2iX_xmH\\2
(h = t^ !)• It is a pwl 13e-isotopy of E3. Since (J ACU U'j and a 3e-neighborhood
of IJ A is contained in a 3e-neighborhood of [J R¡, Ht is the identity on lu
(U Cl (Uj)) and except in a 3e-neighborhood of \J Rt. Each Int (A)cInt (A) so
every component of a Hx(S¡-Cl (U,)) is contained in some Int (A)-    D

3. Small isotopies of approximating disks into themselves.

Lemma 3.1. Suppose that D is a polyhedral disk, R is a polyhedron in Bd (AX
/ /s a homeomorphism of D into E3, and e > 0.
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There is a S>0 such that iff is a pwl homeomorphism of D into E3 where
d(f, /') < 8, « ¡s a pwl 8-homeomorphism off'(D) onto itself which is the identity on
f'(R), and L is a polyhedron in E3 whose intersection with f'(D) is contained in
f'(R), then there is a pwl e-isotopy Ht(0^t^l)ofE3 onto itself which is the identity
on L such that Hx\f'(D) = h.

Proof. First consider a special case.
The subpolyhedron A = Bd (D). In this case choose 8 so that 38 is subject to the

restrictions on S in Lemma 2.4 for the substitution /(D) -> Bn, e/6 -> e.
Let/' be a pwl homeomorphism of D into E3 such that d(f,f')<8, let A be a

pwl S-homeomorphism of f'(D) onto itself which is the identity on /'(Bd (7J>)),
and let L be a polyhedron in E3 which misses/'(Int (D)). Both/'/-1 and/(/')_1
are S-homeomorphisms so (/(/')_1)«(/'/~l) is a 38-homeomorphism of f(D) onto
itself which is the identity on /(Bd (D)).

From Lemma 2.4 there is an e/6-isotopy Ht° (O^t^l) of f(D) onto itself which
is the identity on /(Bd (D)) such that 7ft0 = (/(/') -1)«(/'/_1). Define an isotopy
HI (Ogf^l) off'(D) onto itself by H^tf'f-^Hffftf')-1). We have 77o1=7,
H\=h, and since the track of a point of/(D) under 77t°(/(/')"1) has diameter less
than e/6 the track of a point off'(D) under 7ft1 has diameter less than e/6+28 < e/3.

From [12, Lemma 2.4] there are polyhedral 3-cells C0 and Ci in E3 such that
C0 n C1 = Bd (C0) n Bd (C1)=f'(D) and (C0 u ft) n Z,c/'(Bd (ft)). From [10]
we find embeddings Ac: Bd (Ce) x [0, 1] -*■ Ce (e=0, 1) so that for each point y of
Bd (Ce), Xe(y, 0)=y. We assume that each Xe(y x [0, 1]) has diameter less than e/6.

Set 7ft = 7 on Bd (C0) u Bd (CJ-f'Çlnt (£>)). Then define ft1 on C0 u Cx so
that it is the identity except on \J Ae(Bd (Ce) x [0, 1]) and is given by H}(K(y, s))
= (K(Htli-s)(y), s)) there. Now Hi is an e/3 + 2e/6-isotopy of C0 u d which is
the identity on Bd (C0 u ft). Unfortunately HI is not necessarily pwl.

From Lemma 2.4 and [2, Theorem 3] we find an e/3-isotopy 77t2 (O^I^l) of
C0 u Cj onto itself which is the identity on Bd (C0) u Bd (Cj) so that 77127711 is a
pwl homeomorphism of C0 u ft onto itself. Let 77¡3 denote the e-isotopy of
C0 u ft given by 7ft3 = 77^ (0^I^±) and 77í3 = 77|((_1/2) (i ig ral). Lemma 2.5
together with [15] provides a pwl e-isotopy 77( (O^i^l) of C0 u Cj onto itself
which is the identity on Bd (C0 u Ci) so that Tii = 773. Extend 77( to the rest of
7s3 by setting it equal to the identity outside C0 u C,. Since L fails to meet
Int (C0 u Cj) and since 771|/'(7)) = 7712|/'(Z>)=«, ft satisfies the conditions in the
conclusion of the special case of the lemma.

Now we prove the general case. Let 8' correspond to £>,/ and e/2 in the special
case. Let 8 be a positive number so small that a 3S-homeomorphism of/(Bd (D))
onto itself which is the identity on/(7?) is 8'/12-isotopic to the identity in/(Bd (£>))
keeping f(R) fixed.

Let/' be a pwl homeomorphism of D into E3 such that d(f,f')<8, let « be a
pwl 8-homeomorphism of f'(D) onto itself which is the identity on f'(R), and let
L be a polyhedron in E3 whose intersection with /'(D) is contained in/'(Ä).
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The homeomorphism (/(/')"^«f/'/-1) is a 38-homeomorphism of f(D) onto
itself which is the identity on f(R) so there is a 8712-isotopy a1 (O^r^l) of
/(Bd (A)) onto itself which is the identity on f(R) such that

m = (/(/') -wr^i/íBd (ad.
Define an isotopy A2 (O^/^l) of/'(Bd (D)) onto itself by the rule

A2 = (f-yww)-1).
It is a 8712+28 <S'/4-isotopy of/'(Bd(£)) onto itself which is the identity on
f'(R) such that H^=h\f'(Bà (D)).

By several applications of [12, Lemma 2.3] we enlarge f'(D) to a polyhedral
disk E in E3 such thatf'(R)<=Bd (E), E n L<=f'(R), and/'(Bd (D)-R)^\nt (E).
By using [10] to put a bicollar on f'(Bd(D)—R) in Int (A which has fibers of
diameter less than 8'/12 and which tapers out near f'(R), and then by imitating a
step in the special case we extend A2 (Out S 1) to a S74+2S'/12 = 58712-isotopy 0f
E onto itself which is the identity on Bd (E).

Let Co and Cx be polyhedral 3-cells such that C0 n Ct=Bd (C0) n Bd (C/)=E
and (C0 ud)-£ misses L. By collaring Bd (C0) and Bd (A) in C0 and A with
collars whose fibers have diameters less than 8712 and then repeating a step in the
special case we extend A2 (OnktikV) to a 78712-isotopy of C0 u d which is the
identity on Bd (C0 u C/). As before we use Lemma 2.4 and [2, Theorem 3] to find
a 8712-isotopy A3 (O^r^l) of C0u A onto itself which is the identity on
Bd (CQ u Cx) u/'(Bd (D)) such that A?#i2 is a pwl homeomorphism of C0 u A
onto itself and H13(f'(D))=f'(D).

Consider the 88712-isotopy A* (0^/< 1) of C0 u Cx onto itself which is given
by the rule A4 = A2 (O^t^i) and A4 = Aw-1/21 Ara oáral). It is the identity
on Bd (C0 u e/) and A* is a pwl homeomorphism. From Lemma 2.5 and the fact
[15] that C0 and A are pwl 3-cells there is a pwl 98712-isotopy A5 (O^r^ 1) of
C0 u d onto itself which is the identity on Bd (C0 u A) such that Hi = H*.
Extend A5 to all of E3 by setting it equal to the identity off C0 u Cx.

Since A5|/'(Bd (0)) = «|/'(Bd (A) and since «(A5)"1 is a 98712 + S< 8'-
homeomorphism oíf'(D) onto itself which is the identity on/'(Bd (D)) there is by
the special case^of the lemma a pwl e/2-isotopy A8 (O^/^l) of E3 onto itself
which is the identity on L so that H?\f'(D)=h(Hl)-1.

Set A=Al(0^r^i) and A=#26«-i/2JA/2 (iárál). It is a pwl S' + e/2
<e-isotopy  of   A  onto  itself which  is  the  identity  on L,  and  A|/'(A^
=mm\f'(D)=h. d

4. Stable graphs on disks. Bing [5] calls a connected planar graph stable if each
homeomorphism between two of its images in a 2-sphere can be extended to a
homeomorphism of the 2-sphere onto itself. In [5, §9] he establishes results con-
cerning stable graphs on spheres. With a few minor changes in the proofs of these
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theorems one can obtain the following lemmas. Recall that Property Z is defined
in the Introduction.

Lemma 4.1. Suppose that D is a disk and e>0.
There is a 8>0 such that ifG' is a finite graph in D which contains Bd (D) and is

such that each component of D — G' has diameter less than 8, then there is a subgraph
G of G' which also contains Bd (D) so that G=\J Bd (ft) where Du..., Dn is a
collection of subdisks of D with Property Z(e).

Lemma 4.2. Suppose that D is a disk and 7ft ..., Dn is a collection of subdisks
which has Property Z.

Then G = {JBd(Dt) is connected, G0 = C1 (G — Bd (D)) is connected, and no
Bd (ft) separates G.

Lemma 4.3. Suppose that D is a (polyhedral) disk and e>0.
There is a S>0 such that if Du..., Dnis a collection of (polyhedral) subdisks of

D with Property Z(8), and if G denotes the graph [J Bd (ft), then any (pwl) e-
homeomorphism h of G into D which takes Bd (D) onto Bd (ftO can be extended to a
(pwl) 3e-homeomorphism of D onto itself.

Lemma 4.4. A finite graph G on a disk D is stable if G=\J Bd (ft) where
7ft,..., Dn is a collection of disks with Property Z.

Furthermore every homeomorphism of such a graph G into D which takes Bd (D)
onto itself can be extended to a homeomorphism of D onto itself.

5. Some special general position intersections. Recall the definition of Property
Q which we gave in [12]. One has a 3-manifold M with triangulation T whose
/-skeleton is ft, a disk D in M, a tame Sierpinski curve X normally situated in D
(the closure of each component of D— X is a disk which either lies in Int (D) or
intersects Bd (D) in an arc), and a positive number -n such that each component
of D— X has diameter less than -n. A set I(X, D) is defined to be the points of X
which are not arcwise accessible from D — X. One supposes that D misses ft and
D n ft is a finite collection of points in I(X, D) where 1-simplexes of T pierce D.
The quadruple (D, X, T2,17) has Property Q if there is an Tj-homeomorphism g of D
onto a polyhedral disk E in M such that

(i) g is the identity on X,
(ii) E is in general position with respect to ft, and

(iii) E n ft = X n ft=I(X, D) n ft.
Our interest in systems which have Property Q centers on a graph G0 which is

defined by considering a particular ^-homeomorphism g of D onto a polyhedral
disk E which satisfies (i)—(iii). We define G0 to be the sum of the components of the
general position intersection EC\T2 which contain points of ft. In this section we
show that if D' is a polyhedral disk which is homeomorphically very close to D,
if D' is in general position with respect to ft, if the cardinality of D' n ft is the
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same as the cardinality of D n A, and if G'0 denotes the graph which is the sum of
the components of D' n T2 which contain points of A, then there is a homeo-
morphism « of G0 onto G'o such that for each simplex s of T, h(s n G0)=s r\ G'0.

Lemma 5.1. Suppose that D is a disk in E3, L is a straight line whose intersection
with D is a point p where L pierces D, and e > 0.

There is a 8>0 such that if g is a 8-homeomorphism of D onto a polyhedral disk
D' in E3, then there is a pwl isotopy Ht(0^t^l) ofE3 onto itself which is the identity
except in a e-neighborhood ofp so that Hx(D') n L is a point p' where a neighborhood
ofp' in Hx(D') lies in the plane through p' perpendicular to L. (There is a 8 > 0 such
that if g0 and gx are 8-homeomorphisms of D onto disjoint polyhedral disks D0 and
A in E3, then there is a pwl isotopy Ht (Oár^l) of E3 onto itself which is the
identity except in an e-neighborhood ofp so that A(A) n L (e = 0, 1) is a point pe
where a neighborhood ofpe in A( A) lies in the plane through pe perpendicular to L.)

Proof. We prove only the case where there are to be two homeomorphisms g0
and gx.

Let O be an open set of diameter less than e which contains p and whose closure
misses Bd (D). Choose subdisks A and D2 oí Din O and a polyhedral cylindrical
sphere C in O with axis L whose bases miss D so that p e Int (D2), D2 c Int (C),
AcInt (A), and C n D^Int (A).

Let 8 be a positive number less than the distance from D to the bases of C and
less than each of the numbers p(D—Dly C), p(D — D2, L), and p(D2, C). From [5,
§§5 and 6] we may also assume that 8 is so small that if g' is a 8-homeomorphism
of D onto a polyhedral disk D' in general position with respect to C and if U'
denotes the component oí D' — C which contains Bd (/)'), then exactly one com-
ponent of Cl (£/') n C separates the bases of C.

Let go and gx be 8-homeomorphisms of D onto disjoint polyhedral disks D0
and A in E3. Since D is compact there is a positive number 8' < 8 such that g0
and gx are S'-homeomorphisms of D.

Let A1 (0^ t^ 1) be a pwl (8- 8')-isotopy of E3 onto itself which is the identity
except in O so that Hl(D0 u A) is in general position with respect to C. Let
A (e = 0, 1) denote the component of Hl(De) — C which contains H\(ßd(De)).
Let Ai, • •-, A., • • • (e=0, 1) denote the disks which are the components of
Hl(De)—Ue. The boundary of exactly one Ai (e=0, 1), say Ai, separates the
bases of C.

From Lemma 2.9 there is a pwl isotopy H2 (O^t^l) of E3 which is the identity
on Cl (A u A) and except in O such that each A2(Int (Ai)) (e=0, 1) is contained
in Int (C). Each Bd (A0 = A2(Bd (Eel)) (e = 0, 1 ; /> 1) bounds a disk on C which
misses the bases of C. By repeated applications of [5, Theorem 7.1] (we use Lemma
2.5 to convert the isotopies promised by the theorem to pwl isotopies) we push
the successive A2(Ai)'s over to C— C c\L and then push them slightly outside C
and so construct a pwl isotopy Hf (O^r^l) of E3 which is the identity on
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U0 U ft u H?(E01 u fti) and except in O such that H¡H¡H¡(De)-Hf(Eel)
cExt (C) n (£3-L) (c=0, 1).

Let ft! and ftx denote the disjoint disks on C whose boundaries are respectively
Bd (ftu) and Bd (fti). Each of these disks contains a base of C. Two further
applications of [5, Theorem 7.1] like those in the last paragraph give us a pwl
isotopy 77t4 (0^ t^ 1) of E3 which is the identity on

mmm(Do u Dj-mont (e01 u £u»
and except in O so that 77147712(ft1) = ft'1 (e=0, 1).

Define 77t by the rule 770 = 7 and ff,«.flrí(l_(t.1)(Wír(l_m (láí^4; (i'-l)/4gí
^ i/4). This pwl isotopy is the identity except in the e-set O and Hx(De) nL(e=0,1)
is the point pe = ft't n Z,. Since each E'el contains a base of C a neighborhood of pe
(e=0, 1) is contained in the plane through pe perpendicular to L.    □

Lemma 5.2 is a simple extension of Lemma 5.1 and we omit the proof.

Lemma 5.2. Suppose that T is a rectilinear triangulation of E3 with i-skeleton ft,
D is a disk in E3 such that D n ft is a finite collection of points pu .. .,pk,...
where l-simplexes of Tpierce D, and e>0.

There is a S>0 such that if g is a 8-homeomorphism of D onto a polyhedral disk
D' in general position with respect to ft, then there is a pwl isotopy Ht (0á t^ 1) of
E3 onto itself which is the identity except in mutually exclusive e-neighborhoods
Cft,..., Ok,... of the pk s so that H^D') is in general position with respect to ft
and H^D') n ft is a finite collection of points p[,.. .,p'k,... where each p'k e eft.
(There is a 8 > 0 such that if g0 and gx are 8-homeomorphisms of D onto disjoint
polyhedral disks D0 and 7ft ¡« general position with respect to ft, then there is a
pwl isotopy Ht (0^1^ 1) of E3 onto itself which is the identity except in mutually
exclusive e-neighborhoods Ou ..., eft,... of the pks so that 771(7)o u 7ft) is in
general position with respect to ft and 771(ft) n ft (e = 0, 1) is a finite collection of
pointspel,...,pek,... where eachpek e eft.)

Lemma 5.3. Suppose that T is a rectilinear triangulation of E3 with i-skeleton ft,
D is a disk in E3, X is a tame Sierpinski curve normally situated in D, and r¡ is a
positive number such that (D, X, ft, 77) has Property Q.

Let (ft denote the finite graph in I(X, D) which consists of the components of
D n ft w«ic« intersect ft, and let G denote the graph G0 u Bd (D).

Suppose e > 0, and suppose G0 n Bd (D) contains at least two points.
There is a 8>0 such that if g is a 8-homeomorphism of D onto a polyhedral disk

D' in general position with respect to ft so that the cardinality of D' n ft is the same
as the cardinality of D n ft, then there is a homeomorphism it of G onto a finite
graph G' = G'0KJ Bd (D1) where G'0 is the sum of the components of D' n ft w«i'c«
intersect ft so that

1. for each point p of D n ft, tt(p) is a point of ft which is contained in an
e-neighborhood of p, and it takes no other points of G into ft,
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2. for each 2-simplex A of T and each component t of G0(~\ A, n(t) is an arc
component ofG'0CiA that lies in an e-neighborhood of t, and

3. for each arc s in Bd (D) which is the closure of a component of Bd (D) — G0,
n(s) is the closure of a component of Bd(D') — G'0 and it lies in an e-neighborhood
of s.

Proof. Choose ey < e so small that for each 2-simplex A of T, «^-neighborhoods
of the components of G0 n A are mutually exclusive sets which miss T0, for each
2-simplex A of T and each component t of G0 C\ A an ex-neighborhood of / inter-
sects T2 — Int (A) in at least as many components as there are endpoints of / on
Bd (A), and for each point q of G0 on Bd (A there is an arc s(q) on Bd (D) of
diameter less than e/2 which contains the intersection of Bd (D) with an ¿^-neigh-
borhood of q. By requiring ex to be very small we may assume that the s(q)'s are
mutually exclusive.

Since 1-simplexes of T pierce D at the points of D r\ Tx it follows that if 8 is
sufficiently small and g is a 8-homeomorphism of D onto a disk D' of the type
described in the hypothesis of the lemma there will have to be a point p' of
Int (/)') n A ¡n an ej-neighborhood of each point p of D n Tx. Hence we will be
able to define -n on D r\Txso that Condition 1 is satisfied.

Let A be a 2-simplex of T and let tx,..., tu ... denote the arcs which are the
components of G0 n A. We show what restrictions to place on 8 so that we will
be able to define tt on G0C\ A.

Let t be a 3-simplex of T which has A as a face, and let U be a connected open
set in E3 containing A so that U— Bd (t) has exactly two components, £/_ t and A-
For each arc /( let tai be an arc in U n G0 n Bd(T-) which contains a neighborhood
of r, in G0 n Bd(i-). We assume that the r0('s are mutually exclusive and are con-
tained in ¿^-neighborhoods of the ¡Vs. Each tai —1{ misses A. Let Ga denote the
graph (J tai-

Use [12, Lemma 3.1] and the fact that Ga<=I(X, D) to construct an embedding
<f>ofGax[-l, 1] into Un D so that

1. for each point y of Ga,<f>(y,0)=y,<p(yx[-l, l])cBd (D) n s(y) if ye Bd(D),
and <f>(y x [-1, 1]) misses Bd (D) if ye Int (D),

2. for each tai and each endpoint y of tai, </>(y x [— 1, 1]) misses A if y misses A
and f(y x [-1, 1 ]) misses T2 - Int (A) if y e Int (A),

3. each </>(tai x [-1, 1]) is contained in an ¿^-neighborhood of tt,
4. 9(Ga x [-1,1]) n (G0 n Bd (r)) = Ga,
5. 9(Gaxe)<=I(X, D)nUe(e=-1, 1).
Here are the restrictions on S which will enable us to define w on G.nA:

(1) S<p(¿(G0x[-l, \]),E3-U), (2) 8<p(9(Gaxe),E3-Ue) (e=-\, 1), (3) for
each tai and each endpoint v of tai, 8 < p(<f>(y x [ -1, 1 ]), T2 - Int (A)) if y e Int (A)
and 8<p(<p(yx [-1, 1]), A) if v£A, and (4) for each tai a 8-neighborhood of
9(taix [— 1, 1]) is contained in an ¿^-neighborhood of tai.
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We choose 8 subject to restrictions like those in the preceding paragraph for
each 2-simplex of T and subject to the restriction mentioned in the second paragraph
of the proof. Further we assume that 8 is sufficiently small so that for each arc s
with endpoints q1 and q2 where s is the closure of a component of Bd (D) — G0,
a S-neighborhood of s u s(q±) u s(q2) is contained in an e-neighborhood of s.

Let g be a S-homeomorphism of D onto a polyhedral disk D' in general position
with respect to ft so that the cardinality of D' n ft is the same as the cardinality
of D n ft, and let G'0 and G' be defined as indicated in the hypothesis of the lemma.

From the second paragraph of the proof n can be defined to take D n ft onto
D' n ft so that for each point/? of D n ft, tt(j>) is contained in an e-neighborhood
of p. Thus Condition 1 is satisfied in the conclusion of the lemma.

We show how to define tt on G0 n A.
Consider an arc t¡ and suppose that it has endpoints px(i) and p2(i) on Bd (A).

In this case tai has endpoints pai(i) and />a2(i) in Bd (t) — A. From Conditions 2, 3
and 4 on the choice of 8, Bd (t) separates g</>(tat x — 1) from g</>(tai x I) and there
is an arc ft in gfatai x [— 1, 1]) n Bd (t) which runs from a point p'al(i) of

^(7a0x[-l,l])n(Bd(T)-A)
to a point p'a2(i) of gt/>(pa2(i)x[-1, 1]) n (Bd (t)-A). The arc ft is contained in
an ei-neighborhood of tu and since an «^neighborhood of r¡ intersects Bd (t)
— Int (A) in at least two components tat must intersect A in a subarc t't whose
endpoints can only be p'i(i) = ir(p1(i)) and p'i(i)=/n(p2(i)). Define it on r, so that

Suppose an arc tt has just one endpoint p(i) on Bd (A). In this case tai has one
endpoint pa(i) in Bd (t) — A and one endpoint q(i) in Int (A). As before Bd (t)
separates g<f>(taix -1) from g<f>(taix 1) and there is an arc t'ai which runs from a
pointp'a(i) in g<p(pa(i) x [-1, 1]) n (Bd (r)- A) to a pointq'(i) in gfaq(i) x [-1, 1])
n Int (A). This arc is contained in an e-neighborhood of r¡ and it intersects
Bd (A) only in p'(i) = ^(p(i)) so it contains a subarc t{ in A which runs from p'(i)
to q'(i). Define n on r4 so that 7r(r() = ft

Since the arcs /¡' account for all the components of G'0 n A we have defined it
to take Cft n A onto eft n A. For each remaining 2-simplex of T define it in the
manner just described. Now n takes G0 onto Go so that Condition 2 is satisfied in
the conclusion of the lemma.

From Condition 1 on the construction of </> each v(q) e g(s(q)) where qeG0
n Bd (D). Since the s(^)'s are mutually exclusive we can define it on Bd (D) by
slightly adjusting g|Bd (D) so that it takes each q onto n(q). If s is the closure of a
component of Bd (D) - G0 with endpoints qx and q2 then tt(s) cg(j u s^) u s(q2))
which is contained in an e-neighborhood of s by the choice of 8. Thus Condition 3
is satisfied in the conclusion of the lemma.    □

6. A construction involving Property Q. We describe a construction which is
employed in the proofs of Theorem 7.1 here and Theorem 5.1 of [13]. Hypotheses
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are introduced before Lemmas 6.1, 6.4, 6.5, and 6.6. Once introduced a hypothesis
is to be kept for the remainder of §6. The same is to hold for the numbers t¡, S1; 8,
eu and e2 which appear at various places in §6.

Consider a polyhedral disk D, a homeomorphism f of D into E3, a positive
number r¡, and a rectilinear triangulation T of E3 with /-skeleton T{ and with mesh
less than r¡. Let A1}..., A¡,... denote the 2-simplexes of T. From [12, Theorem
6.1] there is a tame Sierpinski curve X normally situated in D, and there is an
7?-homeomorphism « of E3 onto itself which is the identity outside an 77-neighbor-
hood off(D) so that (hf(D), h(X), T2, t¡) has Property Q. Let GIV denote the finite
graph which consists of «/(Bd (D)) and the components ofh(X) n T2 that meet 2\.
SetGxlI=h-1(Glv).

From the definition of Property Q there is a homeomorphism </> of hf(D) onto a
polyhedral disk E in general position with respect to T2 so that <p\h(X)=I and
EnT2=h(X)nT2.

Lemma 6.1. Let 8j be a positive number.
There is a positive number 8 so that if «' is a homeomorphism of E3 for which

d(h, /¡')<81/2 and f is a homeomorphism of D into E3 for which d(f,f')<8 then
d(hf,hf')<8x.

Proof. Suppose the lemma were not true. Then there would be a homeomorphism
«' such that d(h, «') < Sj/2, and there would be a sequence of homeomorphisms
/1, • • • ,/n, • • • of D into E3 such that/, -»-/and for each «, d(hf, «'/„)^ Sj. But by
the continuity of «', h'fn -> «'/so there is an A^ such that d(h'fn, h'f) < 8x12 (n^ A^).
But then d(h'fn, hf) Z d(h'fn, h'f) + d(h'f hf) < 8x12 + 8a/2 = S2.    D

Lemma 6.2. Let ex be a positive number.
If 7] is sufficiently small then each component of hf(D) — Glv has diameter less

than ex.

Proof. Suppose r¡ is so small that each 377-subset off(D) lies in an ex/6-disk which
is normally situated in f(D).

Let x and v be a pair of points in hf(D) — GIV such that p(x, y) S: ex. We show that
GIV separates x from v. Denote by Z the sum of all 2-simplexes of T whose distances
from x u y exceed ex¡3. Since -q < ej/3, Z separates x from v in E3 so Z n hf(D)
separates x from y in «/( A- Let Zx be a subset of Z n «/( A which is irreducible
with respect to separating x from y. The unicoherence of hf(D) shows that Zx is
connected.

Either Zj fails to intersect Tx or it intersects A- In the first case it lies in some
2-simplex of Tand so has diameter less than r¡; thus h~\Zx) has diameter less than
377 so it is contained in an «i/6-disk that is normally situated in f(D). But then Z2
is contained in an ej/6 + 271- or ¿¡i/3-disk that is normally situated in hf(D). Such a
disk neither separates hf(D) nor intersects x u y since p(Z, x u j)>e1/3. We con-
clude that Zx intersects A- But then Zx intersects h(I(X,f(D)). Since «(/4(A/(A^))
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misses ft and separates h(f(D) - X) from h(I(X,f(D))), Z1eGIV so GIV separates
x from y.    □

Lemma 6.3. Let e2 be a positive number.
If et is sufficiently small then Gm contains a stable subgraph Gx containing

/(Bd (£>)) such that G1 = \J Bd (Dlm) where D\,..., Di,... isa collection of subdisks
off(D) which has Property Z'(e2).

Proof. Each component of f(D) - Gm is the preimage of a component of
hf(D) — GIV so it has diameter less than e1 + 2r¡<2e1.

Lemma 4.1 together with the fact that GIV arises from the general position
intersection of the polyhedral disk E with ft shows that the (Dm)'s can be found
provided 2ej is subject to the restrictions on 8 in Lemma 4.1 for the substitution
f(D) -> D and e2 -> e.    □

Set Gll=h(GI) and for each m, D"=«(7)J,). Each D„ has diameter less than
e2 + 2ri<2e2. For each D% let rm denote Cl (Bd (D%) n «/(Int (D))). If £>£<=
«/(Int (7))) then rm = Bd (7)£), and if D% intersects «/(Bd (D)) then rm is the arc in
Bd (D%) which spans «/(Bd ( Z))). Let Gï0 and GIIO denote the respective graphs
Cl (Gj n /(Int (£>))) and Cl (G„ n «/(Int (7)))). Lemma 4.2 shows that GIO and
GIIO are connected.

Let T be a subdivision of Tin which A(A') n ft and E=fahf(D) underlie full
subcomplexes, and let T" be a first derived subdivision of T'. For each rm define a
polyhedron 7L(rm) to be the sum of the components of the (N(rm, T") n A,)'s that
contain nondegenerate subsets of rm.

Lemma 6.4. Each L(rm) is a 2-manifold with boundary such that rm c Int (L(rm)).
If rm is an arc then L(rm) is a 2-cell, and if rm is a simple closed curve then L(rm) is
an annulus.

Proof. The reader may verify that each L(rm) is a 2-manifold with boundary
which collapses to rm and which is such that rm <= Int (L(rm)).

lfrm is an arc then L(rm) is a 2-cell since a 2-cell is the only surface which collapses
to an arc. Suppose that rm is a simple closed curve. The disk (f>(D„) intersects L(rm)
in exactly rm, and it can be fattened up into a polyhedral 3-cell whose boundary
contains L(rm). But then L(rm) must be an annulus since an annulus is the only
planar surface which collapses to a simple closed curve.    □

Let T" be a first derived subdivision of T". Consider the regular neighborhoods
N(Gao, T") and for each m, N(rm, Tm). Since Gno is connected N(Guo, Tm) is a
cube-with-handles. Each N(Gll0, Tm) n L(rm) is a regular neighborhood of rm in
Int(L(rm)).

Lemma 6.5. Each L(rm) separates N(GII0, Tm) and every N(rm, Tm) into two com-
ponents. For each rm one of the components N0(rm, Tm) ofN(rm, Tm)-L(rm) contains
no point of Gn0 and is also a component of N(Gll0, Tm)-L(rm). Furthermore the
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N0(rm, Tmys are mutually exclusive and are in fact exactly the components of
N(Gx10,T")-(\JL(rm)).

Proof. Since E underlies a full subcomplex of T', N(E, T") is a regular neighbor-
hood of E in E3. Similarly each N(</>(D%), T") is a regular neighborhood of <p(D%)
inE3.

Each L(rm) is two sided so it separates the corresponding N(rm, T") into two
components. Since rm separates E into the two components <p(D%—rm) and
E-</>(D%), each of the two nonintersecting connected sets N(<f>(D%-rm), Tm)—L(rm)
and N(E-<p(D%), Tm)-L(rm) intersects just one of the components of N(rm, Tm)
—L(rm). Thus N(E, Tm)-L(rm) has two components—N0m(E, Tm) which contains
<p(D%-rm) and NVm(E, T") which contains E-<j>(D%). This shows that N(rm, T")
—L(rm) has exactly two components since it is a subset of ATA, T1") —L(rm) and
can have at most two components. Let these two components be denoted by
N0(rm, T")<=N0m(E, T~) and Nv(rn, T")^NUm(E, T"). Since G1IO-rm^(E-9(D%))
we see that N0(rm, T") is also a component of N(GIIO, Tm)—L(rm) and contains no
point of GII0-7-m.

No two of the N0m(F, Tm)'s intersect for if they did some rm would fail to separate
E. Thus the N0(rm, T~)'s are mutually exclusive, and since

N(GlI0, n = (U N0(rm, T)) u (IJ L(rm))

the N0(rm, Tm)'s are the components of AT(Gno, Tm)-((J L(rm)).   D
Let e3 be a positive number. Let/' be a pwl homeomorphism of D into E3 such

that/'(A is in general position with respect to T2, the cardinality off'(D) n A is
the same as the cardinality of hf(D) n A, and d(hf,f')<8x. Lemma 5.3 shows that
if 8x is sufficiently small there is a homeomorphism 7/ of GIV onto the graph G1V
that consists of /'(Bd (D)) together with the components of f'(D) n T2 that
intersect A- The homeomorphism 7/ takes hf(D) n Tx onto f'(D) n A and takes
each point p of hf(D) n A into an e3-neighborhood of itself. Further for each
2-simplex A of T and each arc component t of GIV n A that intersects A, "' takes
t onto a component r' of Gré <"> A that lies in an ¿^-neighborhood of t. Finally
for each arc s which is the closure of a component of «/(Bd (D))—GIV, 7/ takes s
onto an arc s' that lies in an ¿^-neighborhood of s and is the closure of a component
of/'(Bd (A)-Cl (Givn /'(Int (#)))•

Lemma 6.6. Leí et be a positive number.
If8x, e2, and e3 are sufficiently small then 7r'|Gn can be extended to an e^-homeo-

morphism -n of hf(D) onto f'(D) so that for each D%, Int (NQ(rm, Tm)) U 7r(rm)
contains a neighborhood ofTr(rm) in tt(D^) and so that each tt(D^) has diameter less
than e4.

Proof. Each D% has diameter less than 2e2 so by requiring that e2<eiß we
insure that each AÏ has diameter less than e4.
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For each Z)„ let eft be an open set in E3 of diameter less than e4 which contains
D\\. Require e3 to be so small that an e3-neighborhood of each rm is contained in eft
and does not intersect Bd (L(rm)).

For each rm use [12, Lemma 3.1] and the fact that I(h(X), hf(D))<=E to construct
a homeomorphism Am of rm x [— 1, 1] onto a set Am in hf(D) n Int (N(rm, T"J) so
that v.x-^WX -l)clnt (/Voir«, J")), rm>1 = Am(rmx l)clnt (7YD(r„, T")), and
for each point j of rm, ft(>>, 0)=j, Xm(y x [-1, l])^«/(Bd (7))) if j e «/(Bd (D)),
and A„(>>x[-1, l])c«/(lnt (£>)) if y e hf(Int (D)). We assume that the Am's are
such that each D£ u Am c eft, and for each Ay there is a point y of rm such that
K(y x [— 1, 1]) misses Ay.

Require 81 to be so small that for each D% a Si-neighborhood of Eft u Am is
contained in eft, a Sj-neighborhood of vft is contained in N(rm, Tm), a Sj-neighbor-
hood of rm, _! is contained in N0(rm, Tm), and a Si-neighborhood of rm>i is contained
in Nv(rm, Tm). Also require 8j to be so small that for each 2-simplex Ay of T and
each Am, a Sj-neighborhood of Ay does not contain a subset of Am which separates
rm,_! fromrm>1.

From the conditions on e3 and 8± and the fact that Gré contains all the components
off'(D) n ft that intersect ft, each r'm=tr'(rm)<=f'((hf)-\Am)) n Int (L(rm)) and
it separates AWfr-.-i»«** (N0(rm, T")) from

f'((hf)-Hrmyl)) c= int (Nv(rm, T"))

in f'((hf)-\Am)).
From the last condition on 8j no component of a/'((n/)_1(yim)) nftj other

than ft separates/'((«/)"X^..!)) from/'((«/)-\rm¡1)) in f'((hf)-\Am)). Consider
the disk 7ft in f'((hf)'1(D\\ u ^m)) whose boundary intersects/'(Int (£>)) in exactly
Int (ft). From the preceding remark ft, n (ft u Int (N0(rm, T1"))) contains a
neighborhood of ft in 7ft. Define it on D£ so that it extends Tr'|Bd (7)°) and sends
Dl onto 7ft.

The proof that tt is a homeomorphism is the same as the proof of Lemma 4.4
(see [5, Theorem 9.5]). Since each Er\\ u Fm<=0m, it is an e4-homeomorphism and
each tt(D\\) has diameter less than e4.   □

7. Building cartesian products of disks with [0, 1]. The theorem which follows
is a modification of a theorem of Bing's [5, Theorem 3.2]. His proof of that theorem
can be used as a rough model for the proof of Theorem 7.1 here. We prefer to use
pwl homeomorphisms where Bing used homeomorphisms and rectilinear triangula-
tions of is3 where Bing used fences.

Theorem 7.1. Suppose that D is a polyhedral 2-cell, fis a homeomorphism of D
into E3, and e > 0.

There is a 8 > 0 such that iff0 andf are pwl homeomorphisms of D onto disjoint
polyhedral disks D0 and T^ in E3 so that d(f,fe)<8 (e=0, 1), then there is a
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polyhedral stable graph G in D which contains Bd (D) and there is a pwl homeomor-
phism gofGx[0, 1 ] into E3 so that

1. each component of D — G has diameter less than e,
2. for each point y of G, g(y, e)=fe(y) (e = 0, 1) and the diameter of g(yx [0, 1])

is less than e, and
3. g(Gx[0, l])nDe=fe(G)(e=0, 1).

Proof. The proof is broken into five steps. We introduce at various places a
^i, 77, y, and several e's where the size of each of these numbers is provisional upon
the numbers introduced later. We employ the sequence of lemmas in §6, but we
do not attempt to make the indices of our e's conform to the indices of the e's
in §6.

Step 1. Locating the graph G. Let ex be a positive number. From §6 there is a
positive number r¡ < ex¡2, a tame Sierpinski curve X normally situated in f(D), a
rectilinear triangulation T of E3 with mesh less than r¡ and i-skeleton A and an
T;-homeomorphism « of E3 onto itself which is the identity outside an ^-neighbor-
hood of f(D) so that (hf(D), h(X), T2, r,) has Property Q. Furthermore if GIV
denotes the graph which consists of «/(Bd (D)) together with the components of
hf(D) n T2 that intersect A, and if Gni denotes «-1(^iv), then there is a finite
collection D\,..., Dlm,... of subdisks off(D) which have Property Z'(e/) so that
Gi = IJ Bd (Al) is a stable subgraph of Gm. For each Dlm let D% denote the
ex + 2-T] < 2ex-disk «(An), let Gn denote the graph h(G/), and let GIIO denote the
connected (Lemma 4.2) subgraph Cl (G„ n «/(Int (D))).

Let y be a positive number. Consider the graph f'1(G/). Let G be a polyhedral
graph in D which is so close to /" 1(GI) that there is a y-homeomorphism 8 of D
onto itself which is the identity on Bd (D) and which takes G onto/_1(Gi). Let G0
denote the connected graph Cl (G n Int (D)), and for each Dlm let An denote the
polyhedral disk d'if~1(Dïm). We assume that e± and y are sufficiently small so
that each An has diameter less than e. Now Condition 1 is satisfied in the conclusion
of the theorem.

Step 2. Converting pwl approximations to f into pwl approximations to hf. Here
we take pwl approximations/, and/ to/ convert them to pwl approximations to
«/, and adjust these new approximations slightly so that they carry D onto poly-
hedral disks which intersect T2 in a nice way.

Let 7", T", and Tm be subdivisions of T as indicated in §6. For each m let rm,
L(rm), and N0(rm, T") be defined as in §6. Let A1;..., A¡,... denote the 2-simplexes
of T, and let t1}..., tu ... denote the arc components of the (GTI0 n Ay)'s. Let
Px,...,Pk,--- denote the points of hf(D) n 7\.

Let 8x be a positive number. Use [4], [19] to find a pwl homeomorphism ha of
E3 onto itself such that d(ha, h) < 8J2 and d(ha, I)<r¡.

Now let/o and/ be pwl homeomorphisms of D onto disjoint polyhedral disks
D0 and A in E3 such that d(f,fe)<8 (e = 0, 1). Lemma 6.1 shows that if 8 is
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sufficiently small then d(hafe, hf) < 8X (e=0, 1). Let ft be a pwl S-homeomorphism
of E3 onto itself so that hbha(D0 u Dj) is in general position with respect to T2.

Let e2 be a positive number such that e2-neighborhoods of the pks are mutually
exclusive and miss ft. From Lemma 5.2 we can require 81 to be sufficiently small
so that there is a pwl e2-homeomorphism ft of E3 onto itself so that hchbha(D0 u D±)
is in general position with respect to ft and ftftft(ft) n ft (e=0, 1) consists of
points pke where each pke is contained in an e2-neighborhood of pk. Let Gfv (e=0, 1 )
denote the graph which consists of ftft«a(Bd (7)e)) together with the components
of hchbha(De) n ft that intersect ft.

Let e3 be a positive number such that e3-neighborhoods of the components of
the (h(X) n Ay)'s are mutually exclusive. Now ¿(ft/ioft/,, hf)<81 + 81 + s2 (e=0, 1).
From Lemma 5.3 we find that by requiring both 8± and e2 to be sufficiently small
there is a homeomorphism tt',, (e=0, I) of GIV onto Gfv which takes each/»,,, onto
pke, which takes each component / of a h(X) n Ay onto an arc in hchbha(De) n Ay
that lies in an e3-neighborhood of t, and which takes each component s of
«/(Bd (D))-Cl (GIV n «/(Int (£»))) onto a component of

ftftft(Bd (De))-Cl (G?v n ftftft(Int (De)))
that lies in an e3-neighborhood of s. For each i set tf=ir'e(t¡) and for each «i set
/m = 7re(''m).

Let e4 be a positive number. From Lemma 6.6 we find that 81; e1; e2, and e3
can be required to be sufficiently small so that Tr'e\Gn (e=0, 1) can be extended to
an e4-homeomorphism ne of hf(D) onto hchbha(De) where each 7re(Z)£) has diameter
less than e4, where each rmeL(rm) n Int (N(rm, Tm)), and where each

r»uInt(iV0(i-m,n)
contains a neighborhood of rm in 7re(7J^).

Step 3. A trial embedding ofG0 x [0, 1]. In this step we adjust hchbha(D0 U Dx)
slightly by a homeomorphism ft of E3 which keeps tt0(Go) u 7t1(G0) fixed, and
then we construct a trial embedding g': Gox[0, l]->£3 so that g'(Gox(0, 1))
misses hdhchbha(D0 <J £>i).

For each Ay and each t¡ in «/(Int (ftO) n Ay that has both endpoints on Bd (Ay)
let ft denote the polyhedral disk in N(t¡, Tm) n Ay whose boundary consists of
It° u I,1 together with two arcs in 7V(r¡, Tm) n Bd (Ay). For each Ay and each I, in Ay
that has only one endpoint on Bd (Ay) let ft be a polyhedral disk in N(t¡, Tm) n Ay
whose boundary contains r,° u r,1, whose intersection with Bd (Ay) is the arc in
N(ti, Tm) n Bd (Ay) between z(° n Bd (Ay) and tl n Bd (Ay), and whose intersection
with hchbha(D0 u 7)j) is t° u i,1. See Figure 7.1. Since each i( underlies a subcomplex
of 7" the ft's associated with a given A¡ are mutually exclusive.

We wish to have each disk ft as the image of r, x [0, 1] under the trial embedding
g'. Thus for g' to have the properties indicated at the beginning of this step we need
to clear each ft—(77-0(1,) u tt^i,)) of points of hchbha(D0 u Z^). We do this in the
next two paragraphs.
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Figure 7.1

For each r¡ which has both endpoints on A let A-i and ^i.i be a pair of poly-
hedral disks missing T2 which lie to either side of Ft so that A_i u ^¡,i separates
in hchbha(De) (e=0, 1), 7re(Gno) from every point of hchbha(De) n Int (Ft). We
assume that the Ft/s are mutually exclusive. Fatten up the A's into mutually
exclusive polyhedral cubes missing T2 whose boundaries Rtj are 2-spheres in
general position with respect to hchbha(D0 u Ai)- Let Ue (e = 0, 1) denote the
component of hchbha(De) — (JtJ Rtj which contains the connected graph 7re(GIIO).
Since the Fy's separate in hchbha(De) (e = 0, 1), 7re(Gno) from the Int (A¡)'s no point
of A can lie in an Int (A). See Figure 7.2.

Each Rtj is contained in a 3-simplex of T and so has diameter less than r¡ < e4.
Each component of hchbha(De) — Ue (e=0, 1) lies in some rre(D%) and so has
diameter less thaae4. We apply Lemma 2.9 to find a pwl 13e4-homeomorphism hd
of E3 onto itself which is the identity on Cl ( U0 u A) and on all the As that
intersect hchbha(Bd (D0) u Bd (A)) so that each component of hdhchbha(De)
-Cl (A) (e=0, 1) lies in some Int (Rif). Each Int (F/) is free of points of

«A«A(#o u Dx).

Construct a pwl homeomorphism g' of G0 x [0, 1] into E3 as follows. Define g'
on Gox{0, 1} so that for each point y=(hß)~1(Pk), g'(y, e)=Pke=rre(Pk), and so
that g' takes each arc ((hf8)~1(ti))xe (e=0, 1) pwl onto tf. Define g' on each
(«/(?)-1(/»fc)x [0, 1] so that it takes this arc pwl onto the arc in N(pk, T") n Tx
between pk0 and pkl. For each endpoint q(i) of a r( that lies in Bd (D) define g' on
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Figure 7.2

((«/?) _1(?(i)))x [0, 1] so that it takes this arc pwl onto the part of Bd (ft)-ft
between Tr0(q(i)) and ^(^(i)). Now g' has been defined so that it takes each
Bd (((hf8)-\t,))x [0, 1]) pwl onto Bd (ft). Use Lemma 2.1 to define g' so that it
takes ((«/o)_1(í¡))x[0, 1] pwl onto ft. So defined g' takes Gox[0, 1] pwl onto
U ft and g'(G0 x (0, 1)) misses hdhchbha(DQ u A).

Step 4. Extending g' to a trial embedding of Gx [0, 1]. For each point y of G0,
g'(yx[0, 1]) has diameter less than -n since g'(j>x[0, 1]) is contained in some
2-simplex of T. Furthermore each hd(jTe(D\^)) (e = 0, 1) has diameter less than
e4 + 2(13e4) = 27e4. Thus each set

Em = hd(n0(Dl) u tt^DI)) u g'(((hfey\rm)) x [0, 1])

has diameter less than 2(27e4) + e4 = 55e4. Notice that Em is a disk if D\\ intersects
«/(Bd(7J)).

From the fact that the N0(rm, 7"")'s are mutually exclusive, the fact that each
7Te(rm) u lnt(N0(rm, T")) (e=0, 1) contains a neighborhood of 7re(rm) in 77,(7)")
(Lemmas 6.5 and 6.6), and the fact that ft is the identity on Cl (U0 u ft) we can
use [12, Lemma 2.4] to construct polyhedral cubes Cm of diameter less than 55e4
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for the (Aiï)'s that intersect «/(Bd (D)) so that each Bd (Cm) contains Em and so
that the (Cm—Em)'s are mutually exclusive sets which miss

A«A«a(A u Dx) u g'(G0 x [0, 1]).

Define g' on Bd (D)x{0, 1} so that it extends g'\(G0 n Bd (A))x{0, 1} and so
that it sends each (D°m n Bd (Z)))xe (e=0, 1) pwl onto h¿ne(D% n «/(Bd (D))).
For each ß° that meets Bd (D), g' takes Bd ((A^ n Bd (A)x [0, 1]) pwl onto
Bd (A)- Use Lemma 2.1 to define g' so that it takes each (D°m n Bd (A) x [0, 1]
pwl onto Bd (Cm) — Int (A)- From the construction of the Cm's we see that g' is
now a pwl homeomorphism of G x [0, 1] into E3 such that g'(Gx(0, 1)) misses
hahchbha(Do <J Dx) and for each point y of G the diameter of g'(yx [0, 1]) is less
than 55e4.

Step 5. The embedding g. Let A denote the homeomorphism hahchbha. It is an
7i + 81 + e2 + 13e4< 16e4-homeomorphism of E3 onto itself. Construct a pwl homeo-
morphism/' (e=0, 1) of D onto A(A) by defining /„' first on G so that for each
point v of G,f'e(y)=g'(y, e), and then using Lemma 2.1 to extend/' to all of D
so that eachf:(D0m)=hd7Te(D^).

We suppose now that the y in Step 1 is sufficiently small so that each «/( A^>) u L>m
has diameter less than e4. Since «,¡7re (e=0, 1) is a 14e4-homeomorphism each
hf(F>m) u haTTe(D\\) has diameter less than 29e4 so d(hf f'e) < 29e4. Then since « is
an e4-homeomorphism of E3 we see that </(/,/')< 30e4 (<?=0, 1) and thus

d(f, A"1/') < 30e4 + 16e4 = 46e4       (e = 0, 1).

This shows that d(I,fe(H1-1fé)-1)<46ei + 8 (e=0, 1).
From Lemma 3.1 we may require e4 and 8 to be so small that there is a pwl

e/2-homeomorphism Hi (e=0, 1) of E3 onto itself such that H2\De=fe(H1~1fé)~1
and H2 is the identity except on a finite polyhedron Ke containing De. There is no
loss in assuming that K0 does not intersect A- Define a pwl e/2-homeomorphism
H2 of E3 by setting H2 = H2 on Ke (e = 0, 1) and the identity elsewhere.

The promised embedding g is defined to be H2H1~1g'. If v is a point of G then
g(y,e) = H2Hx1g\y,e) = H2Hx1f'e(y)=fe(y) (e=0,\). The diameter of each
g(yx [0, 1]) is less than 55e4 + 2(16e4) + e/2 so by requiring e4 to be less than e/174
we cause Condition 2 to be satisfied in the conclusion of the theorem. That Con-
dition 3 is satisfied follows from the fact that g'(G x (0, 1)) misses Hx(D0 u A)-

This completes the proof of the theorem.    □

Theorem 7.2. Suppose that D is a polyhedral 2-cell, M is a pwl 3-manifold, f is a
homeomorphism of D into Int (M), and e > 0.

There is a S > 0 such that if fo andfx are pwl homeomorphisms of D onto disjoint
polyhedral disks D0 and Dx in M where d(f,fe)<8 (e = 0, 1), then there is a pwl
homeomorphism g of D x [0, 1 ] into Int (M) so that for each point y of D, g(y, e)
=fe(y) (e = 0, 1) and the diameter ofg(yx [0, 1]) is less than e.
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Proof. From [18],/(Z)) is contained in the interior of a polyhedral cube-with-
handles A. Since A can be pwl embedded in E3 under a uniformly continuous
homeomorphism we might as well restrict our proof to the case where M=E3.

Let e1 < e/4 be a positive number less than one tenth the diameter of f(D). Let
e2<t! be a positive number such that the image under/ of each e2-set in D has
diameter less than cj. Let S be subject to the restrictions on 8 in Theorem 7.1 for
the substitution D -*■ D, f^-f, and e2 -> e.

Let /, and f be pwl homeomorphisms of D onto disjoint polyhedral disks D0
and D1 and E3 such that d(f,fe)<8 (e = 0, 1). From Theorem 7.1 there is a finite
collection D°,..., Dm,... of polyhedral subdisks of D which has Property Z(e2)
so that G=(J Bd (Z)°) is a stable graph. Further there is a pwl homeomorphism g'
of Gx [0, 1] into E3 such that g'(Gx [0, 1]) n De=g'(Gxe) (e = 0, 1) and for each
point y in G, g'(y, e)=fe(y) (e = 0, 1) and the diameter of g'(y x [0, 1]) is less than e2.
Define g on 7)x{0, 1} so that for each point y of D, g(y, e)=fe(y) (e=0, 1). Set
g=g'on Gx [0,1].

For each disk Dm consider the polyhedral 2-sphere g(Bd (£>„ x [0, 1])). It bounds
[15] a pwl 3-cell Cm. Use Lemma 2.1 to extend g so that it takes 7)° x [0, 1] pwl
onto Cm.

No two of the Cm's share interior points for if some Int (ft) n Int (C¡) were
nonempty (i^j) there would be a point say of 7J0—/o(A°) in Int (ft). But since
D0 —fo(D?) is connected 7ft —fo(D?) would be contained in Int (ft) so D0 would be
contained in ft. This is impossible since the diameter of D0 exceeds 10e1-28>8e1
and the diameter of ft is less than ex + 28 + ej < 4et. Thus g is a pwl homeomorphism
of Dx[0, 1] into E3 such that for each point y of D, g(y,e)=fe(y) (e = 0, 1).
Since each Cm has diameter less than 4e1 < e each g(y x [0, 1 ]) has diameter less
than e.    □

By using two dimensional techniques analogous to those used in the proofs of
Theorem 7.1 and Theorem 7.2 we obtain the following two dimensional version of
Theorem 7.2.

Theorem 7.3. Suppose that A is a polygonal arc, M is a pwl 2-manifold, f is a
homeomorphism of A into Int (M), and e>0.

There is a S > 0 such that iff0 andf are pwl homeomorphisms of A onto disjoint
polygonal arcs A0 and A± in Int (M) where d(ffe) < 8 (e = 0, 1), then there is a pwl
homeomorphism g of Ax[0, 1] into Int (M) so that for each point y of D, g(y, e)
—fe(y) and the diameter ofg(y x [0, 1]) is less than e.

8. Piecing together cartesian products of disks with [0, 1], In this section we
introduce a pair of constructions which enable us to prove our general cartesian
product theorem by piecing together cartesian products of disks with [0, 1].

For the first construction consider a 2-simplex A = va where a is a 1-simplex with
vertices va and vb. Let <xa and ab be a pair of positive numbers less than 1/3, and let

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



416 ROBERT CRAGGS [October

<y(a) denote the line segment in A whose endpoints are aat>+(l — aa)va and abv+
(l — ab)vb. Let A(a) denote the 2-simplex vo(a), and let E(a) denote the disk
Cl (A — A(a)). For each point p of Int (<j) let rp(a) denote the line segment in A
with one endpoint at p and the other on Int (o(a)) which is perpendicular to a (if
such a segment exists). Let p(a) denote the point rp(a) n o(a). For each pair of
points qx and q2 in Int (ft let <r9l92 denote the part of a between q1 and q2, and if
the rfll(a)'s are defined let ftl92(a) denote the closure of the component of E(a)—
(rqi(a) u r„2(a)) between rqi(a) and rQ2(a). Let ct9i,2(oí) denote the arc EqiQ2(a) n a(a)
(if ftl92(a) is defined).

Let/be a homeomorphism of A into a pwl 3-manifold M such that/( A) n Bd (M)
=f(tr). Let e1 be a positive number. Suppose that/, and/j are pwl homeomorphisms
of A onto disjoint polyhedral disks D0 and D1 in M such that/e(A) n Bd (M)=fe(o)
and d(ffe)<e1 (e=0, 1). Suppose further that g is a pwl homeomorphism of
(A(a) u o) x [0, 1 ] into M such that g(A(a) x [0, 1 ]) <= Int (M), g(A(a) x (0, 1)) misses
D0 u Du g(ox [0, l])cßd (M), and for each point j> of A(a) u <r, g(j>, e)=fe(y)
(e=0, I) and the diameter of g(y x [0, 1]) is less than ex.

For each point p of a where rp(a) is defined let /p(a) denote the simple closed
curve (U/e('p(<*)))Ug(Bd(rp(a))x[0, 1]). Let B(a) denote the disk (U/e(£(«)))
u g(a(a) x [0, 1]) and A(a) the annulus 5(a) u g(ax [0, 1]). For each pair of points
qy and q2 in ct for which EqiQ2(a) is defined let ft1?2(a) denote the disk (\J fe(EqiQ2(a)))
u liff,i„(«) x [0, 1]) and y4îlîa(«) the annulus ftl92(a) u g(aW2 x [0, 1]).

Lemma 8.1. Let p be a point of Int (a) and e2 > 0.
There is anr¡>0 such that i/aa, ab, and ex are less than -n, then there is a polyhedral

disk ft(a) in M whose diameter is less than e2 so that Bd (Fp(a))=Jp(a) andInt (ft(a))
is contained in Int (M) and misses B(a) u g(A(a) x [0, 1]).

Proof. Let y^_ and y2 be points of Int (o) such that p e Int (ct^^), and let y3 and
y4 be points of Int (ctVi„2) such that p e Int (ctï3!/4). Let G denote the disk vay3Vi.
Let C be a pwl 3-cell which misses f(v) and contains a neighborhood of/(o-) in M.
Let e3<e2 be a positive number such that (1) 2e3-neighborhoods of /(ji), f(y2)
and /(G) are mutually exclusive, (2) a 2e3-neighborhood of /(/>) misses a 2e3-
neighborhood of/(Cl (A —G)), (3) a 2e3-neighborhood of/(<r) is contained in C,
and (4) a 2e3-neighborhood off(v) misses C.

First we show how to choose r¡ so that an e3-disk Fp(a) can be found whose
interior misses A(a) u Bd (M). Let Cx be a pwl 3-cell of diameter less than e3 such
that Cx n Bd (M) is a polyhedral disk ft whose interior contains f(p). Let qx and
q2 be points of a such that p e Int (oqiq2) and /(o-9l,2)<=Int (ft). Let C2 be a pwl
3-cell in Int (Cx) u Int (AJ such that C2 n Bd (M) is a disk K2 where/(/>) e Int (A"2)
and A^2 n/(a)c/(Int (ct,i52)). Choose C2 so that there is a polyhedral disk ft in
Bd (C2)—Int (AT2) such that ft fails to intersect f(<ypq2) and ft n Bd (A2) is an arc
whose interior contains f(tr„2P) n Bd (A"2).
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Choose 77 < e3 so that if aa and ab are less than 77 then (1) rp(a), rgi(a), and rQ2(a)
exist, (2) a 377-neighborhood off(rp(a)) is contained in C2, (3) a 377-neighborhood of
f(Eqi„2(a)) is contained in d, (4) a 377-neighborhood off(E(a)) is contained in C,
(5) a 3T>-neighborhood of /(Cl (E(a) - Eqi<l2(a))) fails to intersect C2, (6) a 3tj-
neighborhood of f(Epqi(a)) n (Bd (C2) - Int (A)) is contained in L2, and (7) a
377-neighborhood of f(EQ2P(a)) fails to intersect A-

Suppose now that aa, ah, and ex are less than r¡. From the conditions on 77
we find that /„(«)<= Int (C2) u Int (K2), Aqi„2(a) -= Int (A) u Int (A), ^(«) n C2
c Int L4ílí2(a)), i4Ml(a) n (Bd (C2) - Int (K2)) c Int (A) u Int (A n A), and ^M(«)
o /_2 is empty. By shifting C2 a small amount if necessary we can suppose that
Bd (C2) is in general position with respect to A(a).

From the preceding remarks the components of A(a) n L2 are simple closed
curves in Int (Apqi(a)), and one of these curves, call it /, is nontrivial in Apqi(a)
since A separates the boundary components of APQi(a). Now / bounds a polyhedral

Figure 8.1
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disk L in L2 and Int (L) n A(a) consists of finitely many mutually exclusive simple
closed curves in Int (BqiQ2(a)). Thus by repeated applications of [5, Theorem 7.1]
as in the proof of [5, Theorem 7.3] we find a pwl homeomorphism «j of A onto
itself which is the identity on Bd (Cx) and on / so that «i(Int (L)) misses A(a).
See Figure 8.1.

To obtain the promised disk we define a pwl homeomorphism «2 of hx(L) into Cx
which slides / onto Jp(a) and takes «j(Int (L)) into Int (A) - A(a). For Fp(a) we
take h2hx(L). Since it is contained in Cx it has diameter less than e3.

To insure that Int (Fp(a)) misses g(A(a) x [0, 1 ]) we require 77 to be so small that
polyhedral e3-disks FVi(a) and FV2(a) like Fp(a) can also be found. From the
conditions on 77 and e3 the three disks A(a), Fyi(a), and A2(a)are mutually exclusive,
and Ayiy2(a) u Fyi(a) u Fy2(a) is a polyhedral 2-sphere which bounds a polyhedral
cube C3 in C. Furthermore A(a) must span Bd (C3) from Int (C3) since otherwise
it could not attach onto /p(a) along g(p x [0, 1 ]).

Suppose that there were points of g(A(a) x [0, 1]) in Int (Fp(a)). From Condition 2
on e3 these points would have to belong to the connected set g((G—o-(a))x [0, 1]).
But by Condition 4 on e3, g(v x [0, 1 ]) misses C3 so there would have to be points
of g((G-<r(a)) x [0, 1]) in Int (A») u Int (A2(a)) which is ruled out by Condition
1 on e3.    □

The second construction which we employ is similar to the first one. Consider a
pair of 2-simplexes A0 = v0o and A1 = v1a where A0 n A1 = a and a is a 1-simplex
with vertices va and vb. Let aa and ab be a pair of positive numbers less than 1/3.
Define oqiQ2 as before and define a ¡(a), A;(a), rpj(a), p¡(a), A(°0, £«i,î2,/«), and
a«i.«2.i(a) (7=0, 1) to correspond to the objects without the subscripts j in the
preceding construction.

Let/be a homeomorphism of A0 u Aj into the interior of a pwl 3-manifold M.
Let ex be a positive number. Suppose that/ and/ are pwl homeomorphisms of
A0 u Ax onto disjoint polyhedral disks D0 and Dx in Int (M) such that i/(/,/)<e1
(e = 0, 1 ). Suppose further that g is a pwl homeomorphism of (A0(a) u Aj(a)) x [0,1 ]
into Int (M) such that g((A0(a) u Aj(a)) x (0, 1)) misses D0 u A and for each
point y of A0(a) u A^ot), g(y, e)=fe(y) (e=0, 1) and the diameter of g(yx [0, 1])
is less than e¿.

For each point p of Int (a) for which rp0(a) and rpl(a) are defined let /„(a) denote
the simple closed curve (\Je,¡fe(rVi(a))) u g((Po(a) u/>i(°0)x [0, 1]). Let ^(a)
denote the annulus (\Jejfe(Ej(a))) u ¿?((CTo(a) u ai(a))x [0, 1]). For each appro-
priate pair of points qx and «72 of ct, let AqiQ2(a) denote the closed annulus between
JQl(a) and JQ2(a).

Lemma 8.2. Let p be a point of Int (a) and e2 > 0.
There is a positive number r¡ < e2 such that if aa, ab, and ex are less than r¡, then

there is a polyhedral disk Fp(a) in Int (M) of diameter less than e2 so that Bd (Fp(a))
=Jp(a) and Int (Fp(a)) misses A(a) u g((A0(a) u Aj(a)) x [0, 1]).
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Proof. We only sketch the proof. Details are similar to details of the preceding
proof.

Find a small polyhedral 3-cell C whose interior contains f(oqp) where q is a
second point of Int (a) near p. Let x e Int (°QP), and let 5 be a very small polyhedral
2-sphere in Int (C) such that f(x) belongs to the interior of S in C and f(o) n S
is contained in/(Int (oqp)). By requiring -q to be very small we find that S separates
Jx(a) from Jp(a) and that 5" n .4(a) <= int (Aqp(a)). We can suppose that S has been
slightly adjusted so that it is in general position with respect to A(a). Now some
component of S n A(a) is a simple closed curve J which separates Jq(a) from Jp(a)
in ,4(a) and bounds a disk A in S such that each component of Int (K) n A(a) is a
trivial loop in Aqp(a). As in the proof of Lemma 8.1 we find a pwl homeomorphism
« of A into C so that h(J)=Jp(a) and «(Int (K)) fails to intersect ^(a). For ft(a)
we take «(A).    □

9. Building cartesian products of arbitrary surfaces with [0, 1].

Theorem 9.1. Suppose that M is a pwl 3-manifold, S is a pwl 2-manifold,
7î<=Bd (ft) is either a l-manifold with boundary or the empty set, and f is a homeo-
morphism of S onto a closed subset of M such thatf(S) C\ Bd (M)=f(R).

Suppose that p is a positive continuous function on S.
There is a positive continuous function v on S such that iff0 andf are pwl homeo-

morphisms of Sonto disjoint polyhedral surfaces ft and Sx in M where /(ft) n Bd (M)
=fe(R) (e=0, 1) and for each point y of S, p(f(y),fe(y))<v(y) (e=0, 1), then there
is a pwl homeomorphism g of Sx [0,1] into M so that g(Sx [0, 1]) n Bd (M)
=g(R x [0, 1]) and for each point y of S, g(y, e)=fe(y) (e=0, 1) and the diameter of
g(y x [0, 1 ]) is less than p(y).

Proof. It is sufficient to consider the case where S is connected. Further we may
assume that for each positive number t, p~\[t, oo)) is compact. If p does not have
this property it can be cut down in size to a continuous function which does have
the property.

Consider the two pwl 3-manifolds M and Bd (M) x [0, 1 ] where the pwl structure
of Bd (M) is inherited from M. By identifying each point y of Bd (M) with the
point (y, 0) of Bd (M) x [0, 1] we obtain a new pwl 3-manifold M' whose interior
contains M. Give M' a metric which extends the metric on M. At certain points in
this proof we find it convenient to regard/as a homeomorphism of S into M'.

Let T be a triangulation of S of sufficiently fine mesh so that for each simplex s
of T there is a pwl 3-cell C(s) in M whose diameter is less than one third the
minimum value of p on N(s, T) and which contains a neighborhood of f(N(s, T)).
We assume that T is such that (1) every component of R contains more than one
1-simplex of ft (2) for no vertex v of Tis N(v, T) = S, and (3) each 2-simplex of T
which intersects Bd (M) intersects it in a 1-simplex or a vertex. From Condition 3
we may assume that C(s) misses Bd (M) if s misses 7? and that C(s) intersects
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Bd (M) in exactly a 2-cell if s intersects R. Let A1;..., Af,... denote the 2-simplexes,
ox,...,o-j,... the 1-simplexes, and Vx,.. .,vk,... the vertices of T. Let T' denote
the first barycentric subdivision of T, and for each simplex s of T let b(s) denote
the barycenter of s.

For each A, let H(At) be a polyhedral 3-manifold with connected boundary such
that -r/(A¡) either misses Bd (M) or intersects it in a disk, a neighborhood of H(A¡)
is contained in C(Af), and a neighborhood of/(A¡) is contained in //(A,). Choose
the /f(At)'s so that each/(Cl (S-N(Ai, T'))) misses H(At) and H(A¡) misses H(A/)
if Aj misses A¡.

For each vk let H(vk) be a polyhedral 3-manifold with connected boundary such
that H(vk) either misses Bd (M) or intersects it in a disk, a neighborhood of H(vk)
is contained in C(vk), and a neighborhood of f(N(vk, T')) is contained in H(vk).
Choose the H(vk)'s so that each/(Cl (S—N(vk, T))) misses H(vk) and so that H(vk)
misses H(v¡) if t>fc and v, are not faces of a common simplex of T.

For each ay let H(b(o/)) be a polyhedral cube such that H(b(a/)) either misses
Bd (M) or intersects it in a disk, a neighborhood off(b(aj)) is contained in H(b(a,)),
and for each i>fc e af a neighborhood of H(b(a/)) is contained in i/(i;fc). Choose the
H(b(o-j))'s so that they are mutually exclusive and so that H(b(a/)) does not intersect
H(A/) or H(vk) unless a¡ is a face of A¡ or vk is a face of Oj.

From our assumption that H(s) either misses Bd (M) or intersects it in a disk,
that Bd (H(s)) is connected, and that H(s)<=C(s) it follows that any polyhedral
2-sphere in Int (H(s)) u Int (H(s) n Bd (M)) bounds a polyhedral 3-cell in /i(s)
and hence [15] a pwl 3-cell. Thus any pwl homeomorphism of the boundary of a
pwl 3-cell into Int (H(s)) u Int (H(s) n Bd (M)) can be extended to a pwl homeo-
morphism of the 3-cell into H(s) by Lemma 2.1.

For each Oj let e(o/) be a positive number such that a 3e(cjy)-neighborhood of
f(b(o/)) is contained in H(b(o/)), for every A, containing ^ a 3e(a3)-neighborhood
of /(A¡) is contained in H(At), and for every vk e <jj a 3e(<Ty)-neighborhood of
f(N(vk, T')) is contained in H(vk). Suppose that o¡<^R and is a face of Ailfí=vwfíai.
In this case let -q(a¡) <^ be subject to the restrictions on 77 in Lemma 8.1 when
Ai(fl, /| AiU), M, b(o¡), and b(o¡) are substituted for the appropriate items. If at is a
face of two 2-simplexes, A,o0)=í;fco(í)<T/ and Ail0) = t>fcl0)o-y, let -q(oj)<% be subject to
the restrictions on 77 in Lemma 8.2 when f\ A¡oü) u A(lü), M', b(a¡), and e(aj) are
substituted for the appropriate items. If o-^Bd (S) but o-jtR set -r¡(a/) = l.

Let ax,..., ak,... be positive numbers such that each ak<-n(o/) if vk e a¡. For
each o-j let vkaU) and vkMy denote the endpoints of o¡. For a 2-simplex A, = vkWCj
which has Oj as a face define a line segment atj in A( as follows. If tr^cBd (S) but
Oj<+~R set aii=tjj. Otherwise let atl be the line segment in Af from akM)vW) +
0 -ak«u)K.ü> to afcllo)»fcü)+(l -«ict.oiKt.ü). For each A¡ let A¡(«) denote the closure
of the component of A(—\J¡ atj which contains b(Af).

For each a} that either lies in R or is not contained in Bd (S) let r} denote the
polyhedral arc such that for every A, that has a¡ as a face r¡ n A, is the Une segment
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in A, from b(a¡) to cr¡y which is perpendicular to o¡. For each vk let Dk denote the
polyhedral 2-cell which is the closure of the component of

M^r)-((UA,(a))u(Ury))
that contains vk. See Figure 9.1. We assume that the afc's are so small that for each
a i and each vk e at a 2e(ejy)-neighborhood of f(Dk) is contained in H(vk), and for
each rt a 2e(ft)-neighborhood of /(ry) is contained in H(b(oj)).

Figure 9.1

For each A, let e(A,) be a positive number such that (1) c(At) < Tjift) for every a¡
that is a face of A¡, (2) a 2e(A¡)-neighborhood of/(A¡(a)) is contained in Int (M)
and fails to intersect a 2e(Ay)-neighborhood of/(Ay) (yV i), (3) for every try that is
not a face of A¡ a 2e(A¡)-neighborhood of /(A¡) fails to intersect H(b(a¡)), (4) if
DyEAj and t^ty a 2e(A()-neighborhood of f(vt) misses Z/(ft), (5) if Ai = ufc(y)CTy
where o^Ra 2e(A()-neighborhood off(vkU)a(j) is contained in Int (M), and (6) if
a ay is the face of 2-simplexes AitM = v^Maj and Ailo)=»fc1(fl^/ then a 2e(Aio(y))-
neighborhood off(vkoWaioWJ) misses a 2e(Ail(y))-neighborhood off(vklU)ahU)J).

For each A, that has a face o-y in Tí let 8(Aj) > 0 be subject to the restrictions on 8
in Theorem 7.2 when Af, M',f\At, and e(Aj) are substituted for the appropriate
items, and let 8(A() also be subject to the limitations on 8 in Theorem 7.3 when
<7y, Bd (M), f\o¡, and e(A¡) are substituted for the appropriate items. For each
remaining A, use Theorem 7.2 to find 8(Aj) by substituting A¡, M',f\ A,, and e(A,).

Let v be a positive continuous function on S whose maximum value on each At
is less than 8(A().

Suppose now that /0 and f are pwl homeomorphisms of S into M such that
f.(S) n Bd(M)=/e(7?) 0=0,1) and for each point y of ft P(f(y),My))<v(y)
(e=0, I).
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For each A¡ there is from Theorem 7.2 a pwl homeomorphism g¡ of A¡x [0, 1]
into M' such that for every pointy of A¡, g¡(y, e)=fe(y) (e=0, 1) and the diameter
of gi(y x [0, 1]) is less than e(A¡). For each a¡ in R there is from Theorem 7.3 a pwl
homeomorphism g'¡ of a¡x [0, 1] into Bd (M) such that for every point y of ct„
g'j(y> e)=fe(y) (e=0, 1) and the diameter of gy(>>x [0, 1]) is less than e(A¡) if a¡ is
a face of A¡. Condition 2 on the e(A()'s shows that thegf(A((a) x [0, l])'s are mutually
exclusive and are contained in Int (M) and that the gi(Aj(a) x (0, l))'s miss ft u ft.
Define g on S x {0, 1} so that for each point y of ft g(>>, e) —My) (e = 0, 1). Define g
on each A¡(a) x [0, 1] to be g¡. For each cry in R define g on b(o,) x [0, 1] to be g].

Conditions 1, 5, and 6 on the e(A¡)'s enable us to apply Lemmas 8.1 and 8.2 and
so find for each a¡ where an r¡ is defined a polyhedral disk ft of diameter less than
e(cTy) such that Bd(ft)=g(Bd(i-yx[0, 1])) and Int (ft) <=■ Int (Aft and misses each
g(A¡ x {0, 1} u Aä(a) x [0, 1]) where A¡ has o¡ as a face. From our assumptions about
the sizes of the afc's a neighborhood of each ft is contained in H(b(oj)) so the ft's
are mutually exclusive. From Condition 3 on the e(A¡)'s the Int(ft)'s miss all
g(A,(a) x [0, l])'s. Use Lemma 2.1 to define g on each r¡ x [0, 1] so that g takes it
pwl onto ft.

From our assumptions about the smallness of the afc's and from Condition 1 on
the e(A,)'s we find that for each vk e Int (7?),

g(Bd ((Dk nR)x [0, 1])) cz Int (H(vk) n Bd (M)).

Use Lemma 2.1 to define g on (Dkr\R)x[0, 1] so that g takes it pwl into
Int (H(vk) n Bd (Aft). Similarly for each vk e Bd (R),

g((Dk n 7?) x {0, 1} u (Bd (Dk n R) n Int (7?)) x [0, 1])

is contained in Int (H(vk) n Bd (A/)) and we can define g to take the rest of
(Dk n R)x [0, 1] pwl into lnt(H(vk) n Bd (A/)) as in Step 3 of the proof of
Theorem 7.1 so that g(vkx(0, 1)) misses g(Ax{0, 1}). Condition 1 among the
assumptions about the triangulation T of S insures that g(vk x [0, 1 ]) n g(vj x [0, 1 ])
is empty if vk and vt are distinct points of Bd (R). Since the 77(ftay))'s are mutually
exclusive g|Ax [0, 1] fails to be a homeomorphism only if some

g(Int ((Dkl nR)x [0, 1 ])) n g(Int ((Dk2 n R) x [0, 1 ]))       (ft, * k2)

is nonempty. But that implies that g(vkl x [0, 1]) intersects g(Int ((Dk2 n R)x [0,1]))
which is impossible by Condition 4 on the e(A¡)'s.

For each vk that does not lie in Cl (Bd (S)-R), g takes Bd (Dk x [0, 1]) pwl into
Int (H(vk)) u Int (H(vk) n Bd (M)) so by our previous remarks we can extend g to
take 7ft x [0, 1] pwl into H(vk). Let K denote the polyhedron

R u Cl (S-(J {Dk | vk e Cl (Bd (ft)-R)}).

For the same reason that g|7?x[0, 1] is a homeomorphism, g|A"x[0, 1] is a
homeomorphism, and by construction g(Kx [0, 1]) n Bd (M)=g(Rx [0, 1]).
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By using [12, Lemma 2.4] as in the proof of Lemma 2.8 and as in Step 4 of the
proof of Theorem 7.1 we find a collection of mutually exclusive polyhedral 3-cells
A for the vks in Cl (Bd (S)-R) so that each Bk^H(vk), each

Bkn(S0uSxVg(Kx[0, 1]))

is contained in Bd (Bk) and is in fact the disk g((Dk x {0, 1}) u ((Dk r>K)x [0, 1])),
and each Bk-Bkr\ g(Rx [0, l])cint (M). For those vks we use Lemma 2.1 and
[15] to extend g so that it takes each Ax [0, 1] pwl onto Bk.

Now g is a homeomorphism of Sx [0, 1] into M such thatif(Sx [0, 1]) n Bd (M)
=g(R x [0, 1]) and for each point v of S, g(y, e)=fe(y) (e=0, 1). Since for each A„
g(Aix[0,l])^C(Ai)u((J{C(vk)\vkeAi}), and since these C's have diameters
less than one third of the minimum value of p. on A¡, each g(y x [0, 1]) has diameter
less than p.(y). From the assumption on p. that each p.~H[t, <x>)) (/>0) is compact
g(Sx [0, 1]) is a closed subset of M so g is a pwl homeomorphism by Proposition
2.1. This completes the proof of the theorem.    Q

Here is a topological version of Theorem 9.1.

Theorem 9.2. Suppose that M is a 3-manifold with boundary, S is a surface in M
such that S n Bd (M) = Bd (S) n Bd (M) = R either a l-manifold with boundary or
the empty set, and p. is a positive continuous function on S.

There is a positive continuous function v on S such that iff0 and / are homeo-
morphisms of S onto disjoint locally tame surfaces in M such that fe(S) n Bd (M)
=fe(R) (e=0, 1) and for each point y of S, p(y,fe(y))<v(y) (e=0, 1), then there is
a homeomorphism g of Sx [0, 1] onto a locally tame solid in M so that g(Sx [0, 1])
n Bd (M) =g(R x [0, 1 ]) and for each point y of S, g(y, e) =fe(y) (e=0, 1) and the
diameter of g(yx [0, 1]) is less than p(y).

Proof. Since an open subset of M can always be found which contains S as a
closed subset it is sufficient to consider the case where S is a closed connected
subset of M. From [2], [4], M can be triangulated so we may assume that it is a
pwl 3-manifold. Similarly since surfaces can be triangulated there is a pwl 2-mani-
fold 2 and a homeomorphism / of S onto S. Set R' =/" 1(P).

Let v be a positive continuous function on S which is subject to the restrictions
on v in Theorem 9.1 when M, 2, P',/and (pf)ß are substituted for the appropriate
items. From the proof of Theorem 9.1 we know that for each positive number t,
(/)-1([r, oo)) is compact. Define v to be \v'f~x.

Let A be a nonnegative continuous function on M which is positive on S and
which is so small that for each point y of S, p-(y)/6 is greater than the maximum
value of A over all points of M whose distances from v do not exceed 2/3p.(y).

Suppose now that/, and/ are homeomorphisms of S into M such that fe(S) n
Bd (M)=fe(R) (e=0, 1) and for each point y of S, P(y, fe(y))<v(y) (e=0, 1).
Let/' (e=0, 1) denote the homeomorphism// For each point y of S we have
p(f(y)J'e(y))<¥(y)-
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Use [2], [20] to find a homeomorphism H of M onto itself such that H(S0 u ft)
is locally polyhedral and for each point y of M, p(y, H~1(y))<X(y). We assume
that H moves points so little that for each point y of ft p(f(y), Hfé(y)) < v'(y)
(e=0, 1). From [15, §9] we may assume that 77ft (e=0, 1) takes 2 pwl onto 77(ft).
From the fact that each (v')~x([t, oo)) (/>0) is compact H(Se) (e=0, 1) is a closed
subset of M and thus Hf'e is a pwl homeomorphism of 2 into M.

Theorem 9.1 provides a pwl homeomorphism g' of S x [0, 1] into M such that
g'(S x [0, 1]) n Bd (M)=g'(R x [0, 1]) and for each point y of S, g'(y, e) = Hfé(y)
(e=0, 1) and the diameter of g'(yx [0, 1]) is less than (pf(y))/3.

Define g by the rule g(y, t) = H~1g'(f~1(y), t). It is a homeomorphism of
Sx [0, 1] into M such that g(Sx [0, 1]) n Bd (M)=g(Rx [0, 1]). For each point y
of S we have g(y, e)~H-lg'{f-\y), e) = H-1Hf(f-1(y))=fe(y) (e=0, 1). The
diameter of each g'(f~1(y) x [0, 1]) is less than p(y)/3 so since ¿(f-^y)) is certainly
less than p(y)¡3, g'(f~1(y) x [0, 1]) is contained in a 2/3/u(j')-neighborhood of/(j).
From the conditions on A, 77"1 moves no point of g'(f~ 1(y) x [0, 1]) by as much
as p(y)/6 so g(yx [0, l]) = H~1(g'(f~1(y)x [0, 1])) has diameter less than

2/3p(y)+2/6p(y) =p(y).    D
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