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Abstract

In this paper we study the problem of classifier learning
where the input data contains unjustified dependencies be-
tween some data attributes and the class label. Such cases
arise for example when the training data is collected from
different sources with different labeling criteria or when the
data is generated by a biased decision process. When a
classifier is trained directly on such data, these undesirable
dependencies will carry over to the classifier’s predictions.
In order to tackle this problem, we study the classification
with independency constraints problem: find an accurate
model for which the predictions are independent from a
given binary attribute. We propose two solutions for this
problem and present an empirical validation.

1. Introduction

Classifier construction is one of the most researched top-
ics within the data mining and machine learning communi-
ties. Literally thousands of algorithms have been proposed.
The quality of the learned models, however, depends criti-
cally on the quality of the training data. No matter which
classifier inducer is applied, if the training data is incor-
rect, poor models will result. In this paper we want to
study cases in which the input data contains dependencies
between some of its attributes and the class label that are
either incorrect, or undesirable. Such cases occur naturally
when the decision process leading to the labels was biased,
as illustrated by the next example. Throughout the years,
an employment bureau recorded various parameters of job
candidates. Based on these parameters, the company wants
to learn a model for partially automating the match-making
between a job and a job candidate. A match is labeled
as successful if the company hires the applicant. It turns
out, however, that the historical data is biased; for higher
board functions, Caucasian males are being favored sys-
tematically. A model learned directly on this data will learn
this discriminatory behavior and apply it for future predic-
tions. In this case it is desirable to have a mean to “tell”

the algorithm that its predictions should be independent of
the attributes sex and ethnicity. We want to integrate this
domain knowledge in the discovery process.

The original idea of requiring independent predictions
stems from [5] where it was introduced in the context of
discrimination. [7, 6] introduced similar concept but they
concentrated on identifying the discriminatory rules that
are present in a dataset rather than on learning a classifier
with independency constraint for future predictions. Here
we will concentrate on the case where a labeled dataset is
given, and one boolean attribute B which we do not want
the predictions to correlate with. The dependency of the
predictions of a classifier C on the attribute B is defined as

P
(
C(x) = + | x(B) = 1

)− P
(
C(x) = + | x(B) = 0

)

for unseen tuples x. A positive dependency will reflect that
a tuple for which B is 1 has a higher chance of being as-
signed the positive label by C than one where B equals 0.
The straightforward solution of the problem is removing the
attribute B from the training-set. In most cases, this solu-
tion does not solve the problem. For example, removing sex
and ethnicity for the job-matching example might not help,
as other attributes such as residential area may be corre-
lated with it. Blindly applying an out-of-the-box classifier
on the job-matching data without the ethnicity attribute will
in such a situation still lead to a model that discriminates in-
directly based on residential area. A parallel can be drawn
with the practice of redlining: denying inhabitants of certain
racially determined areas from services such as loans.

The problem of classification with independency con-
straints is in fact a multi-objective optimization problem; on
the one hand the more dependency we allow for, the higher
accuracy we can obtain and on the other hand, in general,
we can trade in accuracy in order to reduce the dependency.
In this paper we propose two methods for incorporating in-
dependency constraints into the classifier construction pro-
cess. The first method Massaging the dataset changes some
labels in the dataset in order to remove the dependency be-
tween the class labels and the attribute B. This method was
introduced in [5] and extended here. The second method
Reweighing assigns weights to tuples instead of changing
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the labels. These weights are used to balance the origi-
nal biased training dataset. On this balanced dataset the
dependency-free classifier is learned. An empirical study
is given in Section 4 which shows promising results.

2. Problem Statement

We formally introduce the notion of an independency
constraint.

We assume a set of attributes {A1, . . . , An} and their
respective domains dom(Ai), i = 1 . . . n have been
given. A tuple over the schema (A1, . . . , An) is an ele-
ment of dom(A1) × . . . × dom(An). A dataset over the
schema (A1, . . . , An) is a finite set of such tuples and a
labeled dataset is a finite set of tuples over the schema
(A1, . . . , An,Class). Throughout the paper we will assume
dom(Class) = {−,+}.

Let a labeled database D, an attribute B and a value
b ∈ dom(B) be given. The dependency between B = b
and Class in D, denoted by depB=b(D), is defined as the
difference of the probability of being in the positive class
between the tuples having B = b in D and those having
B �= b in D; that is:

depB=b(D) :=
|{x ∈ D | x(B) �= b, x(Class) = +}|

|{x ∈ D | x(B) �= b}|
− |{x ∈ D | x(B) = b, x(Class) = +}|

|{x ∈ D | x(B) = b}| .

When clear from the context we will omit B = b from the
subscript in depB=b(D). A positive dependency means that
tuples with B = b are less likely to be in the positive class
than tuples with B �= b.

The problem we study in the paper is now as follows:
given a labeled dataset D, an attribute B, and a value b ∈
dom(B), learn a classifier C such that:

(a) the accuracy of C for future predictions is high; and

(b) the dependency between B = b and Class is low.

Clearly there will be a trade-off between the accuracy and
the dependency of the classifier. In general, lowering the
dependency will result in lowering the accuracy as well and
vice versa. In this paper we are making three strong as-
sumptions:

A1 The primary intention is learning the most accurate
classifier for which the dependency is 0.

A2 The learned classifier should not use the attribute B to
make its predictions.

A3 The total ratio of positive predictions of the learned
classifier should be equal to the ratio of positive labels
in the dataset D.

We do not claim that other settings where these assumptions
are violated are not of interest, but at the current stage our
work is restricted to this setting.

3. Solutions

In this section we propose two solutions to learn a clas-
sifier with independency constraint that does not use the at-
tribute B to make its predictions. Both solutions are based
on removing the dependency from the training dataset. On
this cleaned dataset a classifier can be learned. Our hypoth-
esis is that, since the classifier is trained on balanced data,
its predictions will be (more) balanced as well. The em-
pirical evaluation in Section 4 will confirm this statement.
The first approach we present, called Massaging the data,
is based upon changing the class labels in order to remove
the dependency between B = b and Class . A preliminary
version of this approach was presented in [5]. The second
approach is less intrusive as it does not change the class la-
bels. Instead, the dataset is re-sampled in such a way that
the dependency is removed. This approach will be called
Reweighing. In the experimental section we will also con-
sider a third, very straightforward option: instead of clean-
ing the training set, the attribute B and its most correlated
attributes are removed from the dataset. It will be shown,
however, that this method is almost always inferior to the
two methods proposed in this section.

3.1. Massaging

In Massaging, we want to remove the dependency be-
tween B and the class attribute from the dataset. In order
to do this, we will change the labels of some objects x with
x(B) = b from ‘−’ to ‘+’, and the same number of objects
with x(B) �= b is changed from ‘+’ to ‘−’. Our Massaging
approach has some similarity to [3] with respect to relabel-
ing the dataset. From the proof of Theorem 1 in [2] we
know that in this way we can reduce the dependency with
the minimal number of changes to the dataset while keep-
ing the overall positive class ratio constant. The set pr of
objects x with x(B) = b and x(Class) = − will be called
the promotion candidates and the set dem of objects x with
x(B) �= b and x(Class) = + will be called the demotion
candidates.

We will not randomly pick promotion and demotion can-
didates to relabel. Instead a ranker will be used to select the
best tuples as follows. On the training data, a ranker R for
ranking the objects according to their positive class prob-
ability is learned; i.e., the higher on the ranking an object
x is, the more probable it is that x(Class) = +. With
this ranker, the promotion candidates are sorted according
to descending rank by R and the demotion candidates ac-
cording to ascending rank. When selecting promotion and
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Sex Ethnicity
Highest
Degree

Job Type Cl. Prob

m native h. school board + 98%
m native univ. board + 89%
m native h. school board + 98%
m non-nat. h. school healthcare + 69%
m non-nat. univ. healthcare - 30%
f non-nat. univ. education - 2%
f native h. school education - 40%
f native none healthcare + 76%
f non-nat. univ. education - 2%
f native h. school board + 93%

Table 1. Sample job-application relation with
positive class probability.

demotion candidates, first the top elements will be chosen.
In this way, the objects closest to the decision border are
selected first to be relabeled, leading to a minimal effect on
the accuracy.

The modification of the training data is continued until
the dependency in it becomes zero. The number of modi-
fications M required to make the data dependency-free can
be calculated by using the following formula:

M =
(b× b ∧+)− (b× b ∧+)

b + b

where b and b represent respectively the number of objects
with B = b and B �= b while b ∧ + and b ∧ + are the
number of objects with label ‘+’ and B = b or B �= b
respectively. The formal description of the algorithm can
be found in [2, 5].

Example 1. We consider an example dataset given in Ta-
ble 1. This dataset contains the Sex, Ethnicity and High-
est Degree of 10 job applicants, the Job Type they applied
for and the Class defining the outcome of the selection pro-
cedure. In this dataset, the dependency between Sex and
Class will be depSex=f (D) := 4

5 − 2
5 = 40% . In other

words, a data object with Sex = f will have 40% less
chance of getting a job than one with Sex = m. We want
to learn a classifier to predict the class of objects for which
the predictions are independent of Sex = f . In this exam-
ple we rank the objects by their positive class probability
given by a Naive Bayesian classification model. In Table 1,
the positive class probabilities as given by this ranker are
added to the table (calculated by using NBS implementa-
tion of Weka).

In the second step, we arrange the data separately for
female applicant with class ‘−’ in descending order and
for male applicants with class ‘+’ in ascending order with

Sex Ethnicity
Highest
Degree

Job Type Cl. Prob

f native h. school education - 40%
f non-nat. univ. education - 2%
f non-nat. univ. education - 2%

Sex Ethnicity
Highest
Degree

Job Type Cl. Prob

m non-nat. h. school healthcare + 69%
m native univ. board + 89%
m native h. school board + 98%
m native h. school board + 98%

Table 2. Promotion candidates (negative ob-
jects with Sex = f in descending order) and
demotion candidates (positive objects with
Sex = m in ascending order)

respect to their positive class probability. The ordered pro-
motion and demotion candidates are given in Table 2.

The number M of labels of promotion and demotion can-
didates we need to change equals:

M =
(f × (m ∧+))− (m× (f ∧+))

f + m

=
(5× 4)− (5× 2)

5 + 5
= 1

So, 1 change from the promotion candidates list and one
from the demotion candidates list will be required to make
the data independent. We change the labels of the top pro-
motion and demotion candidates (rows highlighted with the
bold font in Table 1). After the labels for these instances
are changed, the dependency level will decrease from 40%
to 0%. So, the dataset (which will be used for future classi-
fier learning) becomes dependency-free. �

The Massaging approach is rather intrusive as it changes
the labels of the objects. Our second approach does not have
this disadvantage.

3.2. Reweighing

Instead of relabeling the objects, the Reweighing ap-
proach attaches different weights to them. For example, ob-
jects with B = b and Class = + will get higher weights
than objects with B = b and Class = − and objects with
B �= b and Class = + will get lower weights than objects
with B �= b and Class = −. According to these weights
the objects will be sampled (with replacement) leading to a
dataset without dependency. We will refer to this method as
Reweighing. Again we will assume that we want to reduce
the dependency to 0 while maintaining the overall positive
class probability.
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We discuss the idea of weight calculation by recalling
some basic notions of probability theory with respect to this
particular problem setting: If the dataset D is unbiased, in
the sense that B and Class are independent of each other,
the expected probability Pexp(b ∧+) would be:

Pexp(b ∧+) := b×+

where b is the fraction of objects having B = b and ‘+’ the
fraction of tuples having Class = +. In reality, however,
the actual probability

Pact(b ∧+) := b ∧+

might be different.
If the expected probability is higher than the actual prob-

ability value, it shows the bias towards class ‘−’ for B = b.
We will assign weights to b with respect to class ‘+’. The
weight will be

W (B = b | x(Class) = +) :=
Pexp(b ∧+)
Pact(b ∧+)

.

This weight of b for class ‘+’ will over-sample objects with
B = b for the class ‘+’. The weight of b for class ‘−’ will
be

W (B = b | x(Class) = −) :=
Pexp(b ∧ −)
Pact(b ∧ −)

and the weights of b for class ‘+’ and ‘−’ will also be cal-
culated in the similar way.

In this way we assign to every tuple a weight accord-
ing to its B- and Class-values. The balanced dataset is
then created by sampling the original training data, with re-
placement, according to the assigned weights. On this bal-
anced dataset the dependency-free classifier is learned. Our
Reweighing technique can be seen as an instance of cost-
sensitive learning [4] in which, e.g., an object of class ‘+’
with B = b gets a higher weight and hence an error for this
object becomes more expensive. The pseudocode of the al-
gorithm describing our Reweighing approach in detail can
be found in [2, 5].

Example 2. Now we use the Reweighing scheme to remove
the dependency between Sex attribute and Class attribute
from the data of Table 1. We calculate a weight for each
data object according to its B - and Class-value. We ob-
serve that in this particular example where both B = Sex
and the Class attribute are binary attributes. Only four
combinations between the values of B and the Class at-
tribute are possible, i.e., B = f or B = m can have Class-
values ‘+’ or ‘−’. So weights of these four combinations
will be sufficient for the whole data. For instance, we cal-
culate the weight of a data object with B = f and Class

Sex Ethnicity
Highest
Degree

Job Type Cl. Weight

m native h. school board + 0.75
m native univ. board + 0.75
m native h. school board + 0.75
m non-nat. h. school healthcare + 0.75
m non-nat. univ. healthcare - 2
f non-nat. univ. education - 0.67
f native h. school education - 0.67
f native none healthcare + 1.5
f non-nat. univ. education - 0.67
f native h. school board + 1.5

Table 3. Sample job-application relation with
weights.

‘+’. We know that 50% objects have B = f and 60% ob-
jects have Class-value ‘+’, so the expected probability of
the object should be:

Pexp(Sex = f | x(Class) = +) = 0 .5 × 0 .6

but its actual probability is 20%. So the weight W will be:

W (Sex = f | x(Class) = =
0.5× 0.6

0.2
= 1.5 .

Similarly the weights for the other combinations are:

W (Sex = f | x(Class) = −) = 0.67
W (Sex = m | x(Class) = +) = 0.75
W (Sex = m | x(Class) = −) = 2 .

The weight of each individual data object of the Table 1 is
given in Table 3.

4. Experiments

In this section we present experiments that support the
following claims:

1. Due to the red-lining effect it is not enough to just re-
move the attribute B from the dataset in order to re-
move the dependency with the class attribute. Also re-
moving B and the attributes that correlate with it does
not have the desired effect, as either too much depen-
dency remains or the accuracy is lowered too much.

2. Both proposed solutions get better results in the sense
that they more optimally trade accuracy for indepen-
dency. Especially the Massaging approach, if initiated
with the right choice of ranker and base learner shows
potential.
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3. More concretely, when the goal is to reduce the de-
pendency to zero while maintaining a high accuracy,
a good ranker with a base learner that is sensitive
to small changes in the dataset seems to be the best
choice.

Experimental setup. In our experiments we used the
Census Income dataset and the German Credit datasets
which are both available in the UCI ML-repository [1]. As
the results and conclusions we can draw from them are very
similar for both datasets, we only present the figures for the
Census Income dataset. The results for the German Credit
dataset can be found in [5]. Census Income has 48842 in-
stances of which we used only a random sample of 1/3 for
reasons of efficiency. Census Income contains demographic
information about people and the associated prediction task
is to determine whether a person makes over 50K per year
or not, i.e., income class High or Low will be predicted.
We will denote income class High as ‘+’ and income class
Low as ‘−’. Each data object is described by 14 attributes
which include 8 categorical and 6 numerical attributes. We
excluded the attribute fnlwgt from our experiments (as sug-
gested in the documentation of the dataset). The other at-
tributes in the dataset include: age, type of work, educa-
tion, years of education, marital status, occupation, type of
relationship (husband, wife, not in family), sex, race, na-
tive country, capital gain, capital loss and weekly working
hours. We use Sex = f as dependent attribute. In our sam-
ple of the dataset, 5421 citizens have Sex = f and 10860
have Sex = m. This dependency between Sex = f and
Class is as high as 19.13%; i.e.,

P (x(Class) = + | x(Sex ) = m)
− P (x(Class) = + | x(Sex ) = f) = 19.13%

The goal is now to learn a classifier that has minimal de-
pendency between Sex = f and its predictions while main-
taining a high accuracy. All reported accuracy numbers in
the paper were obtained using 10-fold cross-validation and
reflect the accuracy; that is, on non-massaged test data.

4.1. Testing the Proposed Solutions

We conducted experiments to test our proposed solu-
tions. We compare three different types of algorithms:

1. Two baseline approaches: an out-of-the-box classifier
was learned on at the one hand the original data (la-
beled “No” in the graphs to reflect no Preprocessing
technique was applied) and on the other hand the orig-
inal data but with the attribute Sex removed (labeled
“No SA” (Sex Attribute) in the graphs).
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Figure 1. The results of 10-fold CV.

2. The Massaging approach with different combinations
of base learner and ranker. We consider four differ-
ent rankers: one based on a Naı̈ve Bayesian classifier
(M NBS), and three based on nearest neighbors with
respectively 1, 3 and 7 neighbors (M IBk1, M IBk3,
and M IBk7). For the base classifiers that are learned
on the massaged data, a Naı̈ve Bayes Classifier (NBS)
was used, two nearest neighbor classifiers with respec-
tively 1 and 7 neighbors (IBk1 and IBk7), and a de-
cision tree learner: the Weka implementation of the
C4.5 classifier (J48). Many more combinations have
been tested (including Adaboost and all possible com-
binations) but we will restrict to these choices as they
present a good overview of the obtained results. An
overview of all results can be found in [2].

3. The Reweighing approach with different base classi-
fiers (labeled “Reweighing” in the graphs).

In Figures 1(a) and 1(b), respectively the dependency
and accuracy results for all algorithms under comparison
are given. The X-axis shows the names of the data prepro-
cessing techniques which have been applied to the training
dataset to remove undesirable dependencies between Sex
and Income class attribute. The dependency of the resul-
tant classifiers learned on this data has been given on the
Y-axis of Figure 1(a) and their accuracy on the Y-axis of
Figure 1(b). We observe that the classification models with
independency constraint produce less dependent results as
compared to the baseline algorithms; in Figure 1(a) we see
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Figure 2. Accuracy-dependency trade-off.
Outer and inner symbol of each data point shows the
corresponding base learner and preprocessing tech-
nique respectively.

that IBk1 classifies the future data objects with a depen-
dency level of 16.76% which is lowered only slightly if the
Sex attribute is removed. If Massaging is applied, however,
the dependency level goes down to 4.98%. The dependency
level always goes down when we apply our classifiers with
independency constraint. Clearly, the choice of base learner
and ranker (for Massaging) plays a very important role in
dependency free classification. The accuracy drops to some
extent because our test set contains these undesirable de-
pendencies.

Figure 2 offers a good overview that allows us to quickly
assess which of the combinations are dependency-accuracy-
optimal in the class of the classifiers learned in our exper-
iments. Each pictogram in this figure represents a partic-
ular combination of a classification algorithm (shown by
outer symbol) and corresponding preprocessing technique
(shown by inner shape of the data point). For Massaging,
the inner symbol will represent the corresponding ranker.
On the X-axis we see the dependency and on the Y-axis, the
accuracy. Thus, we can see the trade-off between accuracy
and dependency for each combination. The closer we are
to the the top left corner the higher accuracy and the lower
dependency we obtain. We observe that the top left area in
the figure is occupied with the points corresponding to the
performance of Massaging approach. Reweighing approach
falls behind Massaging but also shows reasonable perfor-
mance. From Figure 2 we can see that our both approaches
compare favorably to the baseline and the simplistic solu-
tions: the three lines in the figure represent three classifiers
(J48, NBS and IBk3 from the top to bottom) learned on
the original dataset (the most top-right point in each line,

denoted with With SA symbol), the original dataset with
the Sex attribute removed (denoted with No SA symbol),
the original dataset with the Sex attribute and the one (two,
three, and so on) most correlated attribute(s) removed (that
typically correspond to the further decrease in both accu-
racy and dependency). We see that this simplistic solution
is dominated by our classification with independency con-
straints approaches.

Overall, we hypothesize that Massaging has more impact
on a noise-sensitive classifier, e.g., J48 than noise-tolerant
classifiers, e.g., NBS. When we remove dependencies from
training data, this effect is transferred to future classifica-
tion in case of noise-sensitive classifiers and both the de-
pendency level and the accuracy goes down more than for
a noise-tolerant classifier. So, if the minimal dependency is
the first priority, a noise-sensitive classifier is the better op-
tion and if the high accuracy is the main concern, a noise-
tolerant classifier might be more suitable.

5. Conclusion and Discussion

In this paper we presented the classification with inde-
pendency constraints problem. Two approaches towards
the problem were proposed: Massaging and Reweighing the
dataset. Both approaches remove the dependency from the
training data and the claim is that a classifier learned on
this unbiased data will be less biased itself. Experimental
evaluation shows that indeed this approach allows for re-
moving dependency from the dataset more effectively than
simple methods such as, e.g., removing the dependent at-
tribute from the training data. All methods have in common
that to some extent accuracy must be traded-off for lowering
the dependency.

To conclude, we believe that classification with indepen-
dency constraints is a new and exciting area of research ad-
dressing a societally relevant problem.
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