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Building Complex and Site Categorization using Similarity to a Prototypical Site 

 

 

by 

Kim A. Wilson 

 

This project presents an assessment tool for classifying building complexes using site-

based relationships as calculated from ArcGIS 9.2 using model builder and Python 

scripting. Anthropogenic features extracted from imagery often form the foundation of 

spatial databases. These data are in turn used to inform situational awareness for relief, 

law enforcement, and military agencies among many others. Buildings and the complexes 

they form are critical features within the landscape. The categorization of complexes 

requires an understanding of the relationships of the buildings within the site. In this 

study, building complexes in California were assessed for similarity to a prototypical 

California high school defined with a training set of known high schools and compared to 

a set of uncategorized sites. Eighty-eight percent of the high schools were correctly 

classified as being highly similar to the control data set. 
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1. Project Introduction 

Humans tend to perceive objects within a view space, or simply view, collectively rather 

than discretely. For example, whether the focus is an object or set of objects, we 

intuitively assess the relationships of surrounding elements, which provide context for 

the object(s) under examination. Within the domain of image interpretation, a site is a 

subset of objects within a view space that has either a distinct purpose or identity. For 

example, the view may encompass a range of mountains, trees, roads, power lines, and 

buildings. Upon further examination, a subset of these buildings may be a residential 

neighborhood, a power generation plant, or a high school. Each of these collections of 

buildings has identifying, or signature, characteristics that make its designation 

recognizable. A formal site description defines essential elements or components of a 

prototypical site, utilizing these characteristics as a foundation. For example, a power 

generation plant must have cooling towers in close proximity to its generation buildings. 

The formal definition serves as a guide to assess similarity between different sites. 

Assisted target recognition (ATR) is a rapidly growing field with applicability 

across many disciplines.  Pattern recognition is a core element of ATR and a sub-

discipline of machine learning. Pattern recognition seeks to classify data based upon 

predefined criteria, or from statistical data derived from the relationships between 

features. ATR integrates machine-learning algorithms, such as neural networks and 

decision trees, to facilitate the extraction of object-specific geographic features from 

high-resolution panchromatic and multi-spectral imagery. It significantly reduces the 

costs associated with extracting vector data from imagery by reducing the amount of 

human interaction required for extraction, creation, and maintenance of geographic data.  

Extracted geographical features such as rivers, lakes, and shorelines, as well as 

anthropogenic features such as buildings, roads, power lines, industrial facilities, and 

power plants, are the foundation of spatial databases within geographic information 

systems (GIS) for both government and non-government organizations. This data enables 

military, law enforcement, and relief agencies to have clear understanding of critical 

geographic and anthropogenic features within their areas of responsibility, increasing 

situational awareness in crises. Features are typically categorized, for example, as a river, 

lake, or industrial facility. Full attribution of a given feature requires correlation to other 

sources, such as topographic maps, where this information is already included, or the use 

of a priori knowledge. This strategy may also work for a gross categorization of 

buildings, such as industrial or residential. However, it does not take into consideration 

the inter-relationships that can exist between the buildings. 

  Many facilities and installations, such as power generation plants, airports 

or airfields, and high schools, are composed of two or more buildings or components. 

Visually, these are obvious examples of multi-component facilities; each has at least one 

distinguishing feature that signifies possible classification, in addition to having at least 

two or more buildings or components. Airports and airfields have runways, power 

generation plants have distinctive cooling towers, and high schools have prominent 

athletic facilities such as football fields and running tracks. However, these signatures 

alone do not serve as positive identification; other factors, such as context and 

composition, also need to be considered.  
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Context is important for correct identification: power generation plants need to be 

close to a natural or anthropogenic water source; airports typically are in close proximity 

to major roads and away from residential neighborhoods; high schools are usually close 

to both residential areas and major roads. Composition is equally important as it can 

signify facility status or echelon. For example, an airport with multiple interconnected 

runways denotes a different capacity and use potential than an airport with a single, 

shorter runway. Schools with combined track and football fields usually signify a high 

school level rather than a middle or elementary school. 

1.1. Problem Statement 

The client has automated tools that extract and categorize vast amounts of feature data 

from imagery. However, relationships that exist between features within multi-

component facilities, or sites, are not considered in this process. Image analysts are easily 

able to ascertain these site-based relationships through manual analysis. However, they 

do not extract features in tandem with this activity, nor would it be feasible to do so due 

to the quantity of imagery the client works with daily. Development of an automated 

process that considers site-based relationships would enhance the client‘s capabilities. An 
automated process may assist monitoring of known facilities in addition to narrowing the 

search for facilities in unknown locations.  

By incorporating the ability to assess similarity to a prototypical facility or site, 

managers could feasibly use the process as an aid in the decision of where to allocate 

human and capital resources when searching in large unfamiliar areas. In order to conduct 

a search for a specific type of facility, the ideal composition of the characteristics of that 

facility need to be known. The first step in this process is to develop an understanding of 

the relationships that can exist between features within multi-component facilities and 

sites. 

1.2. Research Question 

The research question addressed by this project is: Do feature extracted data signatures 

sufficiently distinguish multi-component facilities? 

1.3. Project Objectives 

The objectives for this project were to develop an assessment tool for classifying sites 

using site-based relationships to include: 

 A formal site description including related subcomponents. 

 Creation of a geodatabase to organize and manage facility data, site description, 

and analysis. 

 Generation of a profile from training sites. 

 Mechanism to assess test data against the control data profile. 

 Capability to communicate results. 
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1.4. Site Similarity Assessment Methodology 

After consideration of many types of multi-component facilities, several California high 

schools were selected, due to the availability of data, a priori knowledge, and 

accessibility for field verification. A personal geodatabase was used within ArcCatalog to 

store and manage the feature extracted vector data that would be required for the proof-

of-concept due to the anticipated small size of the data. Raster catalogs were 

implemented to manage a total of eleven images acquired for six of the facilities. The 

profile was derived based on statistical analysis of the aggregation of components within 

the high schools. Calculations were originally conducted in Microsoft Excel, and then 

later programmed within ArcGIS. Model Builder and Python scripting within were used 

ArcGIS to automate the workflow process, and a toolbar was created to facilitate the 

workflow and to guide the user through the process. 
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2. Background and Literature Review                                                                                      

Careful deliberation and investigation of what constitutes a site and how to measure 

relationships between the different components directed research work into three 

categories: similarity assessments; qualitative spatial relations, and object-based image 

analysis. 

2.1. Similarity Assessments 

Point objects, the simplest form of spatial data, may be used to represent natural objects 

occurring at an absolute location, or be a summary, or central point, of a larger 

distribution. Points are described by their patterns in terms of density and separation 

(O‘Sullivan & Unwin, 2002). These patterns can be analyzed for relationships of 

occurrences and events (Longley, Goodchild, Maguire, & Rhind, 2005). Area objects, as 

with points, may be absolute representations of phenomena, such as buildings and lakes, 

or they may represent imposed areas, such as fire districts. Their shapes and areas are 

important analytical characteristics, though O‘Sullivan and Unwin (2002) believe shape 

to be a difficult geographic concept to analyze. 

Flewelling (1997) discusses spatial objects, classes, sets, and measures of 

similarity for sets. He explains that spatial objects can be discrete entities, such as a 

building, or aggregates (buildings, parking areas, athletic fields), as in the case of a 

school. Classes, on the other hand, provide a means to collectively describe and define 

objects, as well as their context. These class definitions ―provide structures upon which to 

organize the phenomena they observe and form the basis of the classification of spatial 

objects‖ (Flewelling, 1997). A spatial class furthers this concept by incorporating 

location. Thus, a class definition for a high school may be ‗has football field and running 
track combination‘, ‗has many educational buildings‘, ‗has multiple parking lots,‘ as well 
as a location component of being ‗near residential areas‘ and ‗may be bisected by road‘.  

Sets are groups of objects based on a common understanding and have a spatial 

ideal. For example, high schools are composed of educational and administrative 

buildings, athletic facilities, and parking components. A spatial ideal exists if all the 

elements within the set satisfy the class definition. Tversky (1977)  proposed that 

similarity is essentially the inverse of distance and used cluster analysis to support his 

position. Thus, objects are considered to be closer if they are more alike. This important 

body of work led to database indexing structures that laid the foundation for search 

engines such as Google. 

How similarity is assessed between sets of objects depends on the data‘s scale of 
measurement (Stevens, 1946). Nominal data measures only permit a Boolean assessment. 

Nominal values seek to classify the data, with its categorical classification being 

―…inclusive and mutually exclusive‖ (O‘Sullivan & Unwin, 2002). If an object belongs 

to a particular category, it should not be capable of belonging to another category. 

Ranking or assessing distance between different categories is not possible.  

Equality between categories of objects exists if there is a one-to-one relationship 

between all the objects in those categories. Similarity between categories of objects, on 

the other hand, simply requires that the categories share attributes (Flewelling, 1997). For 
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example, two facilities may both have athletic categories containing different numbers of 

a variety of athletic objects, such as gymnasiums, running tracks, and football, soccer, 

and baseball fields. Therefore, their athletic facilities can be considered similar even 

though the objects may exist in both different type and numbers.  

Similarity can be assessed between categories holding the same classification as a 

function of distance where ―equality is distance 0 and inequality is as distant as possible‖ 
(Flewelling, 1997). Furthermore, ―we can count category members to form frequency 
distributions. If entities are spatially located, we may also map them and perform 

operations on their (x,y) locational coordinates‖ (O‘Sullivan & Unwin, 2002).  

Ordinal data expands upon measures of equivalence to include greater than or less 

than comparisons, and thus permit ordering operations. Both nominal and ordinal data are 

commonly referred to as categorical data (O‘Sullivan & Unwin, 2002). Interval data can 

include measures of differences or distances between categories in addition to ordering 

but does not have an inherent zero. Ratio data, on the other hand, is critical since it 

incorporates an inherent zero, thus absolute or relative magnitudes can be determined. 

Bruns and Egenhofer (1996) discuss several different ways to measure similarity: 

assessment of deviation from equivalence and gradual change deformation. Objects are 

considered equivalent if they are the same, thus any deviation can be measured with a 

distance value. Gradual change imposes order on sets of spatial relationships, such as 

topology, distance, and direction. The gradual change deformation concept was 

developed in a formal model that describes the ―…partial order over topological 
relationships and provides a measure to assess how far two relationships are apart from 

each other‖ (Egenhofer, Al-Taha, 1992). Thus, two spatial relations that require fewer 

deformation changes are more similar than those that require more changes. 

Bruns and Egenhofer (1996) used the gradual change deformation concept to 

evaluate spatial scenes. Their research focused on assessing the similarity of controlled 

scenes that were composed of a few objects having a constant geometry type (region-

region), shape, size, and with no rotation of the objects with a future work notation about 

the need to assess scenes that are more realistic. Egenhofer (1997) expanded on his 

previous work to assess which spatial constraints of a query could be relaxed while 

maximizing the return results in a similarity assessment. He determined that considering 

metrical refinements to the 9-intersection, such as length and area measurements, as well 

as cardinal directions, would facilitate a new paradigm in spatial queries wherein future 

queries would be based upon ―…spatial relations rather than location in space…‖ (M. J. 

Egenhofer, 1997). Metric refinements, grouped into the categories of splitting, closeness, 

and approximate alongness, of the 9-intersection were later found to be ―…critical to 
distinguish between … similar configurations‖ (Shariff, Egenhofer, & Mark, 1998). 

Earlier work by Sharma and Flewelling (1994) introduced their qualitative spatial 

reasoning concepts, as well as a prototype implementation designed to work with 

incomplete and imprecise data to address this issue. Sharma and Flewelling‘s concept 
builds upon earlier work introduced by Egenhofer and Franzosa (1991) of representing 

explicit spatial binary relations between two spatial objects, such as cardinal directions, 

approximate distances, and the topological relations. The prototype combined two 

approaches: explicitly storing spatial relations, and utilizing relation algebra to describe 
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the behavior of spatial relations that enabled qualitative inferences. Hong and Egenhofer 

(1995) followed this work and identified two possibilities for processing spatial queries 

by accessing explicitly stored qualitative spatial relations. 

No reasoning or calculations are required for relations already stored in a database 

thus, relations are immediately available in response to a query. On the other hand, for 

relations not already stored, a reasoning mechanism infers the relation from those that 

already exist.  They sought to translate quantitative location relations onto qualitative 

location relations between points and acknowledged that concepts of qualitative distances 

and directions often denote a range of valid values. Thus, the term ‗near‘ can equally be 
used to describe a cooling pond about 50 meters from a power generation plant, or refer 

to the plant itself being within several miles of a town. Similarly, the actual azimuth of a 

power plant that is ‗south-west‘ of the town may be different from the azimuth of a 
cooling pond that is considered ‗south-west‘ of the plant. Therefore, they suggested 
utilizing a sector-based methodology to consider both distance and direction. Thus, 

―Objects within the same sector share the same qualitative locational relation with respect 
to the origin of the system (Hong, Egenhofer, 1995, p.671).‖ A problem they found with 
the approach was that the potential number of possible answers to a query was very high, 

thus the process to infer the relations could be computationally inefficient.  

Other research into inferring direction relations started with a basic assumption 

that spatial databases would implicitly store direction relations of objects within a 

particular region, and algorithms would be used to infer the direction relations that were 

not stored between objects in different regions (Papadias, Egenhofer, & Sharma, 1996). 

They noted the need for a set of universally accepted formal definitions for direction 

relations (similar to those developed for topological relations), inferring relations, and 

relation composition in order to apply the algorithms correctly. Frank (1996) noted that 

while some precision is lost in the translation to qualitative directions from quantitative 

approaches, it ―…simplifies reasoning and allows deductions when precise information is 

not available‖ (p. 270). Frank‘s research focused on utilizing an algebraic approach and 
identified ‗inverse‘ and ‗composition‘ as two operations. 

2.2. Qualitative Spatial Relations 

Egenhofer (1989) discussed the need to develop a formal definition of spatial 

relationships in order to ―…clarify the users‘ diverse understanding of spatial 
relationships and to actually deduce relationships among spatial objects. Based upon such 

formalisms, spatial reasoning and inference will be possible (p. 457).‖ He suggested that 
a formalized mathematical theory of binary spatial relations with formal relation 

definitions was a requirement to spatial reasoning. Egenhofer introduced the concepts of 

topological relationships, corresponding formal definitions, and proofs based upon set 

theory.  

Egenhofer and Franzosa (1991) proposed extending the previously defined point-

set topological spatial relations between objects of equal, not equal, inside, outside, and 

intersects, to having relations be ―…defined in terms of the intersections of the 

boundaries and interiors of two sets‖ (p.161). Thus, four fundamental relationships 
(common boundary parts as the intersection of bounding faces, common interior parts, 

boundary as part of the interior, and interior as part of the boundary) are derived from the 
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comparison of the interior and bounding faces of two objects, the result of which can be 

either an empty or non-empty Boolean value. This body of work, referred to as the ―4-

intersection model for spatial relations,‖ provided the impetus for continued research and 

the subsequent extension to nine intersections. 

In the early 1990‘s, it was recognized that the then-available commercial database 

query languages were inadequate to support typical spatial queries, such as identifying 

‗all the bridges that cross the American River within 3 miles of downtown.‘ This led to 
the creation of several experimental spatial query languages, however, ―their diversity, 
semantics, completeness, and terminology, varied dramatically‖ (Egenhofer, Herring, 

1994). Egenhofer and Herring continued the effort to develop a single formalized binary 

topological relationship standard. They refined and extended the 4-intersection spatial 

relation model beyond the comparisons between the interiors and boundaries of two 

objects to include their exteriors as well. The ―9-intersection‖ model compares nine 

possible topological set intersections between the interiors, boundaries, and exteriors of 

two objects. This advance considered an objects‘ context within space and provided more 
detail than the 4-intersection spatial relationship model, its predecessor. 

 Egenhofer and Sharma (1993)  conducted a formal analytical comparison 

of the 4- and 9-intersection models in response to questions raised about the use of the 9-

intersection model in comparing line-line and line-region relations, as it carries more 

computational overhead than its predecessor. They showed that both models returned the 

same results when the objects compared were the same geometry type (i.e. points, lines, 

or regions). However, for comparisons between a line and region, a two-point line and a 

complex line, or a region and a convex region, the 9-intersection provides a finer 

resolution of the topological relationships that exist between these types of objects. 

Furthermore, it can make distinctions between relations that the 4-intersection would 

evaluate as being the same. This evaluation was important as it had a bearing on the 

implementation of spatial queries within current geographic information systems (GIS). 

Utilizing the 4-intersection rather than the 9-intersection when the objects evaluated are 

of the same type reduces computational requirements. 

According to Hornsby and Egenhofer (1998), effective modeling of objects in the 

real world needs to encompass structure, meaning, and behavior. They discussed the 

notion of formally modeling multi-part or composite objects that result from abstraction 

methods of association and aggregation. These abstraction methods provide an emphasis 

on the essence of a composite object, thereby removing the focus from less relevant 

details. Association creates a member-of relationship, while aggregation creates part-of 

relationships. For example, Andrews Air Force Base is a member of Air Force bases, 

while a runway or a control tower is part of an airfield. These methods of abstraction lead 

to an intuitive understanding that a relationship exists between composite objects and 

their components. Additionally, they propose that the identity of a composite object is 

based upon a distinguishing characteristic that sets it apart from other objects. They also 

suggest that this characteristic will exhibit some sort of purposeful pattern or structure 

between the components. For example, a single runway with no control tower, located in 

an agricultural area, versus an interlocking system of runways, coupled with hangers, 

large terminals, maintenance areas, and a control tower, distinguishes a simple 

agricultural or private airstrip from a heavily used passenger airport. This idea supports 
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the often-heard axiom that the whole is more than the sum of its parts. Finally, they 

conclude with the concept that object identity relationships, when applied to composite 

objects, are useful in determining the existence or non-existence of an object. 

2.3. Object Based Image Analysis 

Object-based image analysis (OBIA) is an emerging sub-discipline of geographic 

information science and remote sensing that has its origins in the field of biomedical 

imaging. Current multi-spectral imaging sensor technology has the ability to produce 

very high resolution products that are proving to be a challenge to the traditional pixel-

based image classifiers, because the pixels are smaller than many of the objects being 

imaged. As with traditional image processing, OBIA is composed of three components: 

feature extraction, classification, and product output. However, OBIA does not limit itself 

solely to the spectral characteristics of objects within an image; rather it considers the 

context, or surroundings, of an object as well. Further, it brings together multidisciplinary 

knowledge, and introduces spatial topology, to provide information particularly suited for 

analysis within a GIS.  

According to Dr. Maggi Kelly (2007), an expert in the OBIA field, there is 

currently only a single software package, Definiens, truly capable of this type of work. 

She stated that other software packages attempt to incorporate the same concepts, but are 

not as robust in addition to falling short of having equivalent functionality. One of these 

packages has a module that works within the ArcGIS environment; however, she stated 

that the issues cited above make it a distant second choice to Definiens. 

2.4. Summary 

There have been different bodies of research assessing the relationships between spatial 

objects, three of which were relevant to this project: similarity assessments; qualitative 

spatial relationships; and object based image analysis. The scene similarity work 

conducted by Blaser (2000) used controlled variations of a set of five objects of 

unalterable shapes to form a scene, and a single scene then formed the basis against 

which all other scenes were compared. He drew heavily on topological relationships. 

Similarity of objects based upon topological relationships measures the number of 

transformations that must occur between sets. Egenhofer, and others‘ topological 
relationships can be used to conduct very detailed relationship analysis, and consequently 

similarity assessments. The wide variation of size, shape, and number of components 

within high schools, however, may make this approach quite cumbersome.  

Object-based image analysis is a three-process methodology (extraction, 

classification, product output) that seems quite promising. License costs for the Definiens 

software is beyond the means of the University of Redlands. Furthermore, the 

introduction to OBIA from Dr. Kelly was well beyond the time when a change of course 

for this project would have been feasible consequently, OBIA was not incorporated into 

this project. In addition, OBIA incorporates AI principles and may be better suited for 

ATR applications. 

Because the data for this project use a nominal measurement scale, are categorical 

in nature, and compose sets of objects, aggregation and frequency methods of measures 

were used to conduct this research.  
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3. Data 

Data gathered for this project correlated to utilizing high schools as the test facility. An 

initial search for publicly available vector data of high schools was disappointing since 

the data available lacked sufficient building-level data. Data that included both buildings 

and ground-based features needed to be extracted from imagery. Requests for imagery 

that could be archived within ArcGIS from data providers proved to have associated legal 

issues. Projected AirPhoto, USA imagery for 2003 and 2004 (hereafter referred to as the 

core imagery) was acquired in tagged image file format (TIFF) that covered the existing 

six high schools in El Dorado County, California (hereafter referred to as the training 

set).   

Features extracted from imagery of these six public high schools served as the 

core for this project. In addition to having GIS ingestible imagery of these schools, a 

priori knowledge of their layout reduced the need for field verification. These six high 

schools are located in suburban or rural settings in northern California and are 

representative of west coast suburban and rural schools: each has parking, multiple 

buildings, and indoor and outdoor athletic facilities. Several of the schools are located 

with alternative-education high schools. The six school sites span an elevation range of 

200 to 5500 feet above mean sea level; therefore, noticeable differences exist due to 

typical winter weather conditions and terrain. Additional differences, such as architecture 

and number of portable buildings observed, are largely due to age. El Dorado County‘s 
original high school, El Dorado, was built in 1928 with an enrollment of 163 students and 

currently exceeds 1500 students. The newest high school, Union Mine, built in 2000, has 

no portable buildings associated with its main campus. However, there are portable 

classrooms for its alternative education high school. This range of elevation, terrain, age, 

and enrollment were important considerations in selecting facilities that would provide a 

comprehensive picture of a prototypical Californian suburban or rural high school. 

Three additional high schools in different parts of California were selected for this 

project, all three being suburban in nature. A priori knowledge of the layout of one of 

these schools, coupled with the other two located within a reasonable distance from the 

University of Redlands simplified field verification. In addition, three middle schools, 

and three elementary schools within El Dorado County were included for the feature 

extraction process. While high schools are the target facility, other facilities having a 

similar purpose (student education), but of a different echelon (elementary and middle 

schools) were also included. Having functionally similar facilities serves to test the 

efficacy of this methodology.  

The primary goal of this project was to develop an assessment of site similarity. 

Therefore, several non-school facilities with similar elements to high schools were 

included in the test feature data set. A horse racing facility was included since it contains 

high school-like elements, such as several oval tracks, many grouped buildings, and 

parking areas. A small county owned property that includes a quarter-mile dirt-track 

speedway, several baseball/softball fields, parking, and multiple buildings was also 

included. Finally, two professional major league baseball parks rounded out the data set. 

The inclusion of these four non-school facilities, two having elements of a high school 

and two having no correlation, also serve to test the efficacy of the methodology. 
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Imagery for all facilities outside of El Dorado County was obtained through a 

subscription, via the Redlands Institute, to the ESRI ArcGIS Image Server, housed at the 

University of Redlands. This imagery has a one-foot to two-meter resolution, with one-

foot resolution being found only in metropolitan areas.  A comparison of this imagery to 

that obtained for the facilities within El Dorado County revealed a two-foot resolution, 

the same as that of the core imagery data. This imagery was also consulted for the 

facilities within El Dorado County, as it was more current. The imagery obtained for the 

training set was archived within the project geodatabase and reflects the status of those 

facilities at a particular date. However, the imagery accessed via the ArcGIS Imager 

Server is not archived because the licensing agreement held by the Redlands Institute 

does not permit exporting the images into a geo-referenced format. Therefore, the 

imagery will change as the image server is updated. 

3.1. Database Design Consideration 

A personal geodatabase was selected for the management and administration of the data 

for this project. Domains and subtypes were included to enforce data attribution integrity. 

Domains constrain component categorization. In this case, a component is restricted to 

administrative, athletic, educational, parking, or unoccupied categories. Subtypes 

constrain the value choices of the component type. Facilities were manually extracted 

from imagery using heads-up digitizing in ArcGIS resulting in a feature data set. Raster 

catalogs provide links to the images of the training sites as a personal geodatabase does 

not have the capability of internally storing images. Although this poses a constraint, it 

was chosen over a server-based database system because there were only eleven images 

to manage. 

3.2. Source Data 

The datasets used in this project were derived from government sources and ESRI‘s 
ArcGIS Image Server. The feature-extracted data were projected in the same coordinate 

system as the core imagery (Appendix A). All data with the geodatabase were derived 

from the datasets listed in Table 3.1. 

Table 3-1 – Table of Data 

Dataset Description Source and Date Data Model 

hs_pars Boundaries of  High 

Schools in El 

Dorado County, CA 

El Dorado County 

Surveyor‘s Office, 

April, 2007 

Polygon (vector) 

Parcels Parcels within El 

Dorado County, CA 

El Dorado County 

Surveyor‘s Office, 

May, 2005 

Polygon (vector) 

edcSchools03 Aerial Photography, 

2 foot resolution 

AirPhoto, USA, 

2003 (Via El 

Dorado County 

Raster Catalog 
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Dataset Description Source and Date Data Model 

Surveyor‘s Office) 

edcSchools04 Aerial Photography, 

2 foot resolution 

AirPhoto, USA, 

2004 (Via El 

Dorado County 

Surveyor‘s Office) 

Raster Catalog 

ESRI‘s ArcGIS 
Imager Server 

Aerial Photography ESRI  Image 

Service (accessed 

Via Redlands 

Institute) 

Varied dates 

Raster Image 

Service 

 

3.3. Geodatabase Architecture 

The database architecture for this project consists of a personal geodatabase in Microsoft 

Access that manages both input data and results. The database houses facility data, the 

facility description implemented with domains and subtypes, derived facility signatures 

in the form of K-Score feature classes, and two raster catalogs. Feature classes and 

database tables resulting from the similarity analyses round out the database contents. 

Metadata, accessible from ArcCatalog, provides information for each feature class 

including projection and coordinate system documentation.
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4. Methodology 

The site similarity assessment (SSA) methodology began with the creation of a facility 

description. The facility description served as a guide to the database design; domains 

and subtypes were implemented for facility component categorization, as well as to 

enforce data attribution integrity. Feature extraction, via heads-up digitizing within 

ArcGIS, provided the vector data of each component within the facilities. Three different 

facility occupancy measures were analyzed: 1) frequency of components by category; 2) 

percent of total component area by category; and 3) percent of total site area by category. 

The result is a methodology to assist locating potential instances of a particular facility 

type. 

4.1. Facility Description 

Multi-part facilities are composed of two or more components. The facility description 

defines and describes all known components, and establishes component classification 

categories. A formal description, based on an analysis of the facility components, serves 

as a guide for the corresponding spatial database design, both for creating domains and 

subtypes to enforce data integrity, and for categorization purposes. An analysis of the 

elements of high schools revealed repeatedly recognizable characteristics. The following 

categories are integral to classifying components of high schools: administration, 

athletics, education, parking, and unoccupied space. Criteria on which these categories 

are based are discussed in more detail below. 

  Campus-style high schools often encompass buildings of varying sizes and 

configurations. Additionally, there are distinct differences between buildings that are 

permanent structures and those that are portable or temporary. Permanent structures 

generally have considerably larger footprints, have a single roof with no gaps across the 

span of the roofline, often stand alone, and have multiple well-defined pathways 

providing access to several different portions of the structures. Modular buildings, on the 

other hand, occupy a significantly smaller footprint, and are usually found in groups of 

three or more. The groups are typically located at the periphery of the permanent 

buildings or parking lots, though are sometimes sandwiched between various athletic 

facilities. Furthermore, their pathways are usually less pronounced and fewer in number 

and typically only lead to the front of the group. The height difference between 

permanent and portable buildings is evident from the different lengths of shadows they 

cast. Figure 4-1 depicts these differences, with arrows denoting the different length 

shadows. Based on a priori knowledge of the training sites, coupled with campus maps 

obtained either from the school web sites or from administrative staff, buildings were 

found to serve several distinct purposes. 
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Figure 4-1 Differences Between Permanent and Portable Buildings 

(Image: Google Earth accessed 24 Oct 2007) 

 

Typically, portable buildings are used for various educational purposes, including 

traditional subjects and courses, and those taught by trade or regional occupation 

programs (ROP), or alternative education schools that are sometimes located with the 

high schools. Gymnasiums are located in large permanent structures, often with a larger 

central area flanked or adjoined by shorter buildings, which typically house separate male 

and female gyms and locker rooms.  

Administrative functions, such as the administration office, teachers‘ offices, and 
career, guidance, and counseling centers, are typically housed in permanent structures, 

are often housed within the same building, and located in close proximity to a parking lot 

or centralized drive-through area. Cafeterias are located in permanent structures, and in 

some locations, house a multiple purpose room that doubles as a gathering location for 

school assemblies.  

Components also include maintenance systems, such as centralized heating and 

air conditioning systems, or janitorial spaces. These are typically located in permanent 

structures, and often housed in an administration or educational building. They are often 

not distinguishable from other buildings, and their locations were identifiable only with 

the use of a campus map, or via a phone conversation with school staff. Due to the lack of 

a noticeable independent signature, these components are included in the administrative 

category for the purposes of this project.  

Building styles vary considerably, with the most noticeable differences due to the 

age of the school. Older schools tend to have rectangular buildings and more temporary 

classrooms. The newer schools have buildings with multiple angles and configurations, 

and have fewer temporary buildings (Figure 4-2).  

Based on analysis of the building utilization, it is evident that they serve three 

functions: administrative, educational, and athletic. Although there are noticeable 

physical distinctions between the permanent and portable buildings, they are not 

segregated into a separate category for this project. 
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Figure 4-2 Visual Difference in Schools Based on Age 

(Older School on Left, Newer School on Right ) 

(Image: ESRI‘s ArcGIS Image Server accessed 24 Oct 2007) 

 

Outdoor high school athletic facilities are easily recognizable. For example, 

softball and baseball fields have distinctly shaped infields with associated outfields; 

running tracks are oval, and typically have a football field inside their boundary. The 

quality of the infields and outfields typically varies between better-maintained varsity 

fields and junior varsity fields. Football fields are normally found within a running track, 

have permanent goal posts at either end, and during football season will have visible 

chalk lines on the grass (Figure 4-3). Soccer fields are large expanses of maintained 

grassy areas devoid of trees, bushes, or structures, and may have goal posts in place at 

either end of the field, or stacked off to a side. Tennis courts are recognizable by the 

muted red and green ground surface, coupled with distinctive white markings outlining 

the different portions of the court. Basketball courts tend to be located on asphalt or 

naturally colored concrete surfaces with white markings delineating the courts. Often, 

shadows of the poles and backboards are required to provide a count of the number of 

courts (Figure 4-4). 

 

 

Figure 4-3 Various Outdoor Athletic Components 

(Left to Right: Football/Track; Soccer Field with Goal Posts; Tennis Courts) 

(Image: ESRI‘s ArcGIS Image Server accessed 24 Oct 2007) 
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Figure 4-4 Using Shadows to Discern Basketball Courts 

Black Dots are Shadows of Backboards 

(Image: Google Earth accessed 24 Oct 2007) 

 

Outdoor athletic facilities located at elementary and middle schools are markedly 

different. They do not have combined football fields and running tracks or tennis courts, 

and may only have one baseball and softball field combination. However, they typically 

have large multi-purpose athletic fields used for soccer, flag football, and other activities. 

A number of recreational courts, including basketball, dodge ball, and foursquare, are 

typically located on asphalt surfaces. Additionally, there may be several distinct 

playground areas at each site (Figure 4-5). These lower echelon schools were assessed 

during the facility description phase. This enabled their components to be included as 

subtypes within the categories identified for high schools. 

 

 

Figure 4-5 Elementary School Athletic Field/Multi-Purpose Playground 

(Image: ESRI‘s ArcGIS Image Server accessed 02 Nov 2007) 

 

Parking lots are considered an additional element signifying echelon because 

public transportation, such as subways, city buses, or taxis, are not available to students 

or staff attending schools in suburban or rural areas.  Students must utilize either school 

buses or private transportation. Therefore, there must be a sufficient number of parking 
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lots to accommodate students, staff, and school buses (Figure 4 -6). 

 

Figure 4-6 Parking Components at Different Echelons of Schools 

Left to Right: High-, Middle-, and Elementary School 

(Image: ESRI‘s ArcGIS Image Server accessed 02 Nov 2007) 

 

Typically, there are separate lots for use by students and staff, and in some cases, 

school busses may not be located on-site due to space constraints. Unoccupied space 

encompasses all areas within the boundary of the facility that do not contain components.  

4.2. Feature Extraction 

Features can be extracted from imagery in several different ways. The most popular 

method is automated via image processing software.  Due to economies of scale, this 

allows a tremendous amount of data to be gathered at less cost. This type of process 

involves the creation of ‗training areas‘, wherein specific image pixels are identified as 

belonging to a particular type of feature. Typically, thousands of pixels representing 

different features of the same type are incorporated into the training set in order to 

provide a comprehensive knowledge base against which to compare other features during 

the extraction process. Once incorporated into the training set, pixels are classified 

according to feature type, such as, paved or dirt road, deciduous tree, conifer, building, 

etc. This process is repeated for each feature type targeted for extraction, and the training 

sets become part of the formal definition of the features they represent. Optimizing the 

results may require several refinements of the training sets.  

After the training sets are optimized, they are saved into a definition file to be 

used during future automated extraction sessions, and therefore can be reused as many 

times as desired. While this greatly reduces the time and costs involved with extracting 

features, it is not a perfect process. Therefore, post processing is required. Different 

phenomena, such as the angle at which the imaging sensor acquired the image and 

shadowing, can affect the visibility and distinction of portions of the targeted features. 

Post processing entails ensuring the features extracted are correctly classified and 

complete. No gaps in the lines representing linear features such as roads and rivers should 

exist. Similarly, features that represent areas such as buildings or lakes should result in 

polygons that have no gaps. Features that are broken with gaps require manual 

intervention for correction. Post processing can be a time intensive process. 

The second method of feature extraction is manual, wherein images are loaded 

into a GIS. The outlines of features are traced and the extracted features are classified. 

While this process is time consuming and redundant, creating training sets, and the 
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subsequent post processing, are not required. This methodology is typically used only 

when a few features need to be extracted from a small area.  

4.2.1. Feature Extraction Overview 

All facility data were manually extracted from project imagery using heads-up digitizing 

within ArcGIS. The decision to employ heads-up digitization to extract the components 

was two-fold. First, the expected learning curve to use available image processing 

software was deemed excessive. Second, the subsequent post processing required of the 

resultant data was determined to be significantly greater than that of the manual process, 

given the small number of facilities analyzed. 

The feature extraction process started with a determination of the boundaries of 

the facility properties, thereby ensuring that only components directly related to the high 

school would be extracted. In the case of the training set, property boundary polygons 

were obtained from the data provider. In a few cases, such as suburban El Dorado High 

School (Figure 4-7), the property boundaries (indicated by a blue outline on the image) 

are fairly evident. There is a clear indication of the extent of the facility grounds denoted 

by fencing, public roadways, and the presence of residential properties.  
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Figure 4-7 Easily Discernible Site Boundary in El Dorado County, CA 

El Dorado High School  

(Image: ESRI‘s ArcGIS Image Server accessed 24 Oct 2007) 

 

The other El Dorado County high schools included land well beyond observable 

school facilities with no clear indication (fencing, roads, or neighborhoods) of their 

boundaries, with some being very oddly shaped. Imagery of South Tahoe High School 

(Figure 4-8), demonstrates an extreme example of a school in a rural location. Without 
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the acquired parcel boundary, the extent of the school‘s property could not be 
determined.  

 

 
Figure 4-8 Indiscernible Site Boundary in El Dorado County, CA 

 South Tahoe High School  

(Image: ESRI‘s ArcGIS Image Server accessed 24 Oct 2007) 

 

Boundaries of the seven other facilities located within El Dorado County were 

derived from the same parcel layer. The boundaries of the remaining facilities (outside El 

Dorado County), were created through image analysis and heads-up digitizing. 

Ascertaining the boundaries of these facilities proved to be quite straightforward, as 

noted in the example imagery of William S. Hart High School located in Valencia, 

California (Figure 4-9) due to clear demarcation by roads and surrounding 

neighborhoods. 
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Figure 4-9  Easily Discernible Site Boundary Outside El Dorado County, CA 

William S. Hart High School 

(Image: ESRI‘s ArcGIS Image Server accessed 24 Oct 2007) 

4.2.2. Feature Extraction Process 

Polygons of the boundaries of each component were obtained by heads-up digitizing 

within ArcMap, and entailed starting an edit session and tracing polygon outlines over the 

features visible within the imagery. Components were deemed to be both structural, such 

as buildings, and ground-based, such as outdoor athletic and parking areas. Multiple 

portable buildings were digitized with a single boundary when located immediately 

adjacent to one another in distinct groups, as this type of grouping can be correlated to a 

single permanent building where multiple classrooms are contained within a single 

permanent building rather than within individual buildings for each classroom. Baseball 

fields are often located with softball fields — sharing an outfield but having separate in-

fields — separate polygons were digitized in order to accurately convey that they are 

distinct entities. Tennis courts were digitized separately to show the difference in quantity 

observed between schools, and because each court is easily discernible from the imagery 

used for extraction. Similarly, basketball courts were captured as individual entities with 

a single court consisting of two poles and backboards at either end of the court. Shadows 

aided in the identification of individual courts due to the degraded condition of the 
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painted court markings. Figure 4-10 depicts a high school with extracted components 

overlaid on the imagery. 

 

Figure 4-10 William S. Hart High School with Components Categorized 

(Image: ESRI‘s ArcGIS Image Server accessed 24 Oct 2007) 

In order to consistently portray potential space utilization throughout the different 

echelon of facilities, large maintained grassy areas that exhibited no clear indication of 

sport type were extracted and classified as athletic fields if the areas were not dominated 

by trees or surrounded by buildings, which would indicate non-athletic use. 

4.2.3. Assignment of Component Type and Category 

Assignment of facility component types is based primarily upon imagery analysis and a 

priori knowledge. In several cases, campus maps were obtained from school websites or 

administrators, though a few were of limited assistance as they were either incomplete or 

outdated. Component types are restricted to the values contained in the Associated 

Component Sub-Types (Table 4-1). Unoccupied space is the inverse of the occupied 

space within the boundary of a given facility. 

Non-school facility components are categorized as if they were schools. This is an 

important point, as the goal of this project was to create the ability to assess facilities of 
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an unknown type, or being suspected of being a particular type, against prototypical 

facility statistics to determine their probability of being the type of facility sought. An 

example in this project is the inclusion of Hollywood Park, a horse racing facility. 

Hollywood Park does not have educational buildings; however, it does have two large 

oval race tracks similar to the running tracks seen at high schools — one of which is also 

similar in size — several parking areas, and groups of similar sized and shaped buildings, 

which are actually barns. This facility‘s components are classified as if the features might 
be those found in a high school. Therefore, the barns are justifiably categorized as 

‗educational‘ and the racetracks as ‗athletics‘. Table 4-1 depicts the valid values for the 

‗Category‘ domain with associated subtypes. 

 

   Table 4-1 Category Domain with Associated Subtypes 

Component Category Associated Component Sub-types 

ADMIN Administration 

Maintenance 

Commercial Bldg 

Government Building 

ATHLETIC Athletic field  

Baseball/Softball Field 

Basketball Courts 

Football Field 

Gymnasium 

Multi-purpose 

Playground 

Race Track 

Running Track 

Soccer Field 

Speedway 

Stadium/Bleachers 

Swimming Pool 

Tennis Court 

EDUC Classroom 

Barns 

PRKG Parking: Staff 
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Component Category Associated Component Sub-types 

Parking: Student 

Parking: Bus 

UNOCCUP All areas within boundary not occupied by 

any component 

 

4.3. Measuring Similarity of Nominal (Categorical) Data 

Geographers commonly use quadrats to count occurrences of events. A quadrat is a 

measured area, usually square but may be of any shape that is used for sampling spatial 

phenomena. Quadrat counting can be conducted in one of two ways. The census 

approach encompasses the entire study area with quadrats that do not overlap and may 

not exceed the boundary of the study area. Conversely, quadrats may be replaced 

randomly, thus may overlap each other and the study area boundary and leave areas 

uncovered (O‘Sullivan & Unwin, 2002). Both methods provide an approach for counting 

occurrences of events within the study area. Figure 4-11 shows an example of using the 

census approach. The figure on the left shows locations of attempted street robberies 

within a city. The figure on the right shows a study area that has been tessellated into 

evenly sized quadrats. Each quadrat has a count of the number of robbery attempts found 

within its boundary.  

   

Figure 4-11Quadrats: Census Approach 
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Quadrats are discrete, independent entities and are not referred to by a numbering 

system or in terms of their proximity to each other. They are simply containers that 

provide the means to count the events that are contained within them. In effect, they take 

spatial data that has location as part of its attributes and reduce it to an aspatial count of 

occurrences within each quadrat. The categories used in this project are thus analogous to 

quadrats. They are used for the sole purpose of counting the occurrences of objects that 

fall within their boundaries. Data is reduced at this point to a nominal, categorical scale 

as it either falls within a category or does not.  

Nominal (categorical) data cannot be ordered, although ―…it is possible to 
distinguish observation memberships in the categories…‖ (Wong & Lee, 2005). 

Therefore, it is possible to assess the similarity of nominal data values of a known ideal 

against observed values. Similarity can be measured by evaluating the frequency of each 

categorical value in both the expected and observed sets.  

Flewelling (1997) used this approach in his doctoral thesis and developed a 

derivation of the statistical formula traditionally used in the quadrat method of counting 

occurrences. ―The K-score sums the differences between the frequencies of nominal 

values (fo) in a set with the expected frequencies (fe) (Equation 4.1). The result is 

normalized by the maximum difference that could occur by substituting the number 

occurrence (N) for (fo) in the category with the lowest expected frequency (fe) and zero is 

substituted for all other observed frequencies‖ (Equation 4.2) (Flewelling, 1997).  

K-Score = max

0

K

ff e

      (4-1) 

  K max = minmin
20 eee fNffN

n              (4-2) 

  

The normalized form enables comparisons of different size data sets. The K-Score 

relies on a set of expected theoretical frequencies and can only be used where the 

expected set is known. However, it is possible to derive expected values by evaluating a 

training set (a group of facilities whose median coalescence will represent the ideal). 

Multi-part facilities of a similar type (i.e. high schools, power generation plants, 

or airfields) may consistently be composed of components that can be classified into a 

known set of categories. For example, high schools are composed of components 

categorized as administrative, athletic, education, and parking, yet the number of 

components within each category, or the percentage of total occupation by category, can 

vary. As this variance precludes the existence of a universal ideal, an estimation of this 

ideal can be derived by gathering statistical data from a known group of different high 

schools, in order to develop a representative ideal. The resultant data can then be used as 

the ideal, or expected, values against which other facilities may be compared. Six high 

schools were used as the training data to establish the universal ideal for this project.  

Statistical distance, the difference between observations that share a group of 

attributes (O‘Sullivan & Unwin, 2002), is the inverse of similarity. Conventionally, 

similarity is calibrated with a value of zero representing complete dissimilarity, and a 
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value of one meaning no measurable distance. Conversely, when considering distance 

between a target set and another dataset, a value of zero reflects high similarity, while 

distance values approaching one are very dissimilar (Flewelling, 1997). This project 

relied on the latter, wherein the derived universal ideal was the control dataset, or 

benchmark, to which test datasets were compared. 

4.3.1. Training Data Process 

In order to conduct a database search of vector features for a specific type of facility, the 

ideal composition of the characteristics of that facility need to be known. If the facility 

type is of a very strict nature, in that there is absolutely no variance between facilities in 

different locations, then a single facility can be used as the ideal. However, if the facility 

type can exhibit a wide variance, then averaging a representative sample group of 

facilities derives the ideal. This was the methodology employed for obtaining the 

prototypical high school.  

The term training data is borrowed from artificial intelligence (AI) applications 

and involves the use of neural networks and complex computational models. However, 

since training data serves as a control set against which to compare other data, the term is 

used in this project when referring to the creation and comparison of the control dataset. 

4.3.1.1. Creating Training Data 

High schools were chosen as the target facility for this project, in part due to the 

general perception that they are quite similar in composition. They all have educational 

and administrative buildings, indoor and outdoor sports components, and several parking 

areas. However, this perception was altered after their components were extracted from 

imagery. Beyond the base composition, their appearances proved to be extremely varied 

(Figure 4 -12).  

 

Figure 4-12 Variance in High School Appearance 

 

Building size, shape, and quantity vary with location and construction age. 

Administrative buildings are not always centralized or closest to drive-through parking 

areas. Blocks of portable structures often augment permanent educational buildings. 
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Sports facilities exhibit similar differences in the numbers of gymnasiums, tennis and 

basketball courts, and baseball and softball fields. These variances preclude the existence 

of an individual organic universal ideal. A group of high schools was therefore selected 

in order to establish a universal ideal against which to compare other facilities. The 

training sites were chosen as they provide a well-rounded variety of style and 

composition. The creation of training data is facilitated within the site similarity user 

interface discussed within the next few sections. 

4.3.2. Site Similarity Assessment User Interface 

The custom Site Similarity Assessment toolbar shown in Figure 4-13 was programmed 

with Model Builder, as well as Python and Visual Basic for Applications (VBA) 

scripting, to guide users through the assessment and reporting processes. Model Builder 

was initially used to implement the functionality behind the Conduct Analysis button. 

This approach enabled tools available within ArcToolbox to be easily combined and 

customized to meet the needs of this project. Python scripting was used to replace and 

streamline the model processes. The scripting consolidated several forms in to one K-

Score form, thus simplifying user interaction. The Python script calls on several ArcGIS 

system tools in addition to incorporating the K max and K-Score statistical equations 

discussed later in this chapter. The Reporting button was created using VBA and 

ArcObjects to access a reporting capability within ArcGIS. 

 

Figure 4-13 Site Similarity Assessment Toolbar 

 

Selecting Conduct Analysis on the toolbar opens the K-Score form (Figure 4-14), 

facilitating user input for selecting training facilities, and conducting three different site 

similarity analyses.  
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Figure 4-14 K-Score Form 

 

This form provides the means for the user to select the input feature class 

containing multi-component facilities, to identify the facility and category fields, to select 

the facilities that will comprise the training set, and to identify the output location and the 

layer names for the feature layers resulting from the process. This process required that 

the training facilities and test facilities be within the same feature layer.  

4.3.3. Site Similarity Assessment Algorithm 

The SSA methodology enables users to select one or more facilities to create a universal 

ideal, or prototypical, high school. The process starts by selecting participating facilities 

by name. Dissolving the attributes of the facility components then results in a table 

totaling the area each component category occupies within each facility. Next, the Python 

script conducts the K-Score statistical equations (Equations 4.1 – 4.3) that summarizes 

each component category by facility, and provides the frequency and area of the 
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components found within each category. The resultant tables from the dissolve and 

frequency functions then become the input data for the calculation of the K max and K-

Score calculations. The final results creates a new feature layer containing the facility 

name, K max, K-Scores, and normalized K-Scores for both frequency and area are saved 

as feature layers within the geodatabase.  

The raw K-Score calculated utilizing equation 4-1 is normalized against the K-

Score of the training data set by the formula in equation 4-3. Normalization has the effect 

of establishing the training set K-Score as absolute zero against which all other scores are 

calibrated. 

 Normalized K-Score =
fe

fefo

1
 (4-3) 

The algorithm shown in (Figure 4-15) is used to extract facility training data, 

compute the K max and K-Scores, and the resultant K-Score feature layers.  

 

 

Figure 4-15 Site Similarity Assessment Algorithm 

 

4.3.4. Frequency of Components by Category 

The first approach to assessing similarities of nominal data was to analyze categorical 

frequency distributions, by calculating the observed versus expected categorical 

frequencies. Frequency statistics derived from the training data (the expected set) are 

compared against the observed frequencies from the test data. This process begins with 

selecting the Conduct Analysis button  on the SSA toolbar that 

opens the K-Score form (Figure 4-14). The user identifies the desired facilities layer from 

a drop-down list of feature layers within the ArcMap project table of contents, which in 

turn automatically fills in the ‗Facility‘ and ‗Category‘ fields. Secondly, the user creates 
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an SQL expression to select the facilities that will compose the training data (Figure 4-

16).  Finally, the output location is set for the resultant K-Score feature layers created as 

part of the analysis process. The analysis begins when the user selects ‗OK‘  

at the bottom of the form. 

 

 

Figure 4-16 K-Score Field Parameters 

The frequency distribution statistical analysis begins by dissolving (aggregating) 

the features within each facility by category, creating a new database table, adding a 

Count numerical attribute column, and providing a count sum. For example, a facility 

having twenty educational building polygons and corresponding records in a database 

table will be reduced to a single record within a new table with the Count column reading 

‘20‘. This process is repeated for each category within every facility.  

The second step calculates the mean observed values within each category of the 

training facilities identified by the user in the SQL statement. These mean values become 

the expected (fe) values against which all observed values (fo) within all the facilities are 

compared, resulting in the K max score (Equation 4-1). The K-Score is then calculated 

per Equation 4-2 and normalized by Equation 4-3, resulting in a new feature layer 

containing each facility and the resultant K-Score. Finally, the user selects Reporting 

  on the SSA toolbar to obtain a report itemizing each facility sorted in 

ascending order by K-Score. 

4.3.5. Percent of Total Component Area by Category  

The second approach to assessing similarity was to evaluate the percentage of categorical 

component occupation across the facility, exclusive of all unoccupied space. This 

approach takes into consideration that a facility boundary may be unknown, and the 

possibility that the site extent may be unimportant.  This approach excludes the 

unoccupied category. As depicted in Figure 4-17, the boundary of a facility may not be 

intuitive. Therefore, without ancillary information, such as a parcel layer or a priori 

knowledge, the extent of the site cannot be accurately determined. An assessment 
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exclusive of a boundary then seeks to determine similarity solely on the utilization of 

occupied space. This analysis assesses only the total categorical occupation of all the site 

elements exclusive of all unoccupied space. 

 

 
Figure 4-17 Indiscernible Site Boundary in El Dorado County, CA 

(Image: ESRI‘s ArcGIS Image Server accessed 24 Oct 2007) 

 

The total categorical occupation analysis process is quite similar to that of the 

frequency analysis. In the first step, all the categories are aggregated for each facility, 

resulting in a new feature layer with one row per category per facility. This process sums 

the total square footage of component occupation per category per facility. For example, 

a site having 20 educational buildings each occupying 4,000 square feet, is recorded as a 

single record having an area occupation of 80,000 square feet. The second step utilizes 

the same algorithms, equations, and processes as discussed in section 4.3.4. However, the 

K-Scores in this instance describe the percentage of total component area by category. 

Finally, the user selects Reporting   on the SSA toolbar to obtain a report 

itemizing each facility sorted in ascending order by K-Score. 

4.3.6. Percent of Total Site Area by Category  

The approach used for this analysis considers unoccupied space within the site and seeks 

to determine whether total area is an important element. The methodology employed for 

this analysis is the same as described in sections 4.3.4 and 4.3.5, the only difference being 

the inclusion of the ‗unoccupied‘ category. Since unoccupied space within a facility is the 
inverse of the occupied space, this area was derived by erasing all occupied areas from 

the boundary polygons. Finally, the user selects Reporting   on the SSA 

toolbar to obtain a report itemizing each facility sorted in ascending order by K-Score. 



 32 

4.4. Methodology Summary 

The SSA methodology utilizes vector data to allow the user to select one or more 

facilities to compose a training data set, against which test facilities are assessed for 

similarity. Three different similarity assessments are measured with this proof-of-concept 

prototype. First, component categorical frequencies measure the categorical distribution 

within and among the facilities. Second, only the occupied space within a site is analyzed 

with the percent categorical component occupation, exclusive of boundary method. 

Third, percent categorical component occupation, inclusive of boundary, expands upon 

the previous analysis to consider all unoccupied space within a sites‘ known extent. 
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5. Results 

The methodology developed in this project assists in classifying target facilities based on 

a site definition derived from a training data set. The project data consisted of nineteen 

facilities: nine high schools, three elementary schools, three middle schools, and four 

professional sports facilities. From these nineteen, six sites were selected as training sites. 

The training sites represented a range of suburban and rural high schools. The goal for 

this project was to develop a methodology to assist in the identification of target 

facilities, which was accomplished.   

 Three measures of the attribute site occupation by components were 

developed: 1) frequency of components by category; 2) percent of total component area 

by category; and 3) percent of total site area by category. In each case, the relative 

similarity of the site in question to the training sties was measured using the k-score 

statistic (Equation 4-1) (Flewelling, 1997). This compares the observed frequency (fo) for 

a component to its expected frequency (fe) summed over all of the categories. The sum of 

the differences is normalized by the maximum possible difference (K max) (Equation 4-

2). A score of zero implies no difference (100% similarity) and a score of 1.0 implies a 

maximum difference.  

5.1. Derived Signatures 

Three signatures were derived from the training set of facilities, one for each measure of 

categorical occupation (Table 5-1). These formed the basis against which facility 

similarity was assessed in the test dataset.   

 

Table 5-1 Derived Signatures 

Category 

Frequency of 

Components 

by Category 

Percent Total 

Component 

Area 

Percent 

Total Site 

Area 

Admin 3.6667 0.0269 0.0101 

Athletics 19.3333 0.6333 0.2753 

Education 19.5000 0.1427 0.0623 

Parking 4.3333 0.1971 0.0800 

Unoccupied NA NA 0.5359 

 

5.2. Frequency of Components by Category 

Initially, total component area occupation showed significance in assessing similarity. 

However, frequency of component categories ultimately proved to be the strongest 

similarity indicator for this project. The preliminary analysis focused on establishing a 

training set of six representative high school facilities. All nine high schools were then 

evaluated against the ideal for each of the three methodological approaches. These 

preliminary results revealed percent total component area occupation to be most 

significant. The introduction of lower echelon schools and non-school facilities into the 
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test set rendered this an insignificant measure of similarity. The frequency at which the 

categorical components were observed became a strong indicator of similarity between 

sites with heterogeneous functions and echelons.  

Initially, the extracted feature data sets were constructed inconsistently. A review 

of the feature extraction methodology revealed a difference in extraction method used for 

different types of athletic facilities. For example, the boundary of an entire set of tennis 

courts was extracted as a single feature. This resulted in a school with ten courts having 

the same count (one) as a school having three courts. The utilization of similar 

methodology when extracting basketball courts perpetuated the problem. In some 

instances, individual basketball courts were very difficult to count because court 

markings were faded, image resolution made it difficult to discern markings, or exposure 

and shadowing impeded identification. However, by consulting multiple project image 

sources, as well as Google Earth, an accurate count was finally determined. These 

changes resulted in a consistent extraction methodology that enables an objective 

analysis. Table 5-2 shows the resultant frequency of components by category. 

 

Table 5-2 Frequency of Components by Category 

Facility  Admin Athletics Education Parking 

SIGNATURE (expected) 3.6667 19.3333 19.5000 4.3333 

Anaheim Angels Stadium 0 1 0 1 

Candlestick Park 0 1 0 1 

El Dorado High School 2 18 20 5 

Golden Sierra High School 2 12 18 6 

Gold Trail Middle School 3 3 8 3 

Herbert Green Middle School 3 4 13 1 

Highland High School 3 36 16 4 

Hangtown Speedway 7 5 3 2 

Hollywood Park 1 4 18 3 

Indian Creek Elementary School 2 3 8 2 

Louisiana Schnell Elementary 

School 1 2 12 1 

Markum Middle School 2 3 12 1 

Oak Ridge High School 4 23 20 4 

Ponderosa High School 5 25 29 3 

Redlands High School 4 25 32 3 

Sutter's Mill Elementary School 1 3 10 3 

South Tahoe High School 4 16 9 4 

Union Mine High School 5 22 21 4 

William S. Hart High School  2 20 29 4 
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Selecting the Reporting button on the SSA toolbar brings up the Report 

Properties dialog box (Figure 5-1) that guides the user through selecting the desired 

information to include in the results report. Figure 5-2 shows the resultant final report 

sorted in ascending K-Score order. Full facility names are listed at the beginning of the 

document in the List of Acronyms and Abbreviations. 

 

 

Figure 5-1 Report Properties Dialog Box 
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Figure 5-2 K-Scores: Frequency of Components by Category Report 

 

Table 5-3 and the corresponding chart (Figure 5-3) depict the final analysis 

results. Facilities within the table are sorted in ascending order by K-Score and grouped 

into three sections: A, B, and C, based on the delta of K-Scores between facilities, with 

significant deltas forming the sections. Different colors within the chart distinguish 

facility type, with sections A – C corresponding to the table. Similarity values range from 

0.0041 (highly similar) to 0.5100 (dissimilar). 
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Table 5-3 K-Scores: Frequency of Components by Category 

  Facility K-Score 

A 

EDHS 0.0041 

PHS 0.0041 

ORHS 0.0136 

UMHS 0.0253 

RHS 0.0384 

WSHHS 0.0697 

GSHS 0.0832 

STHS 0.1072 

B 

HHS 0.1689 

ICE 0.1866 

GTMS 0.2136 

SME 0.2359 

HGMS 0.2490 

MMS 0.2673 

HWPK 0.2853 

C 

LSE 0.3252 

HNGTWN 0.3539 

AAS 0.5100 

CSP 0.5100 

 

 

 
Figure 5-3 K-Scores: Frequency of Components by Category 
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In section A, eight of the nine (88%) high schools within the test data — and 

100% in this section — were evaluated as being highly similar to the training data. South 

Tahoe High School (STHS), evaluated at the upper level of this section due to its low 

number of educational buildings. This school is located in a rural area, at an elevation 

exceeding 5,000 feet, and has an enrollment of 1,588 students. The buildings are multi-

storied and designed to minimize the need for students to be exposed to snow and frigid 

temperatures during the winter. 

Six of the seven facilities within Section B are schools, including one high school, 

in addition to one professional sports facility. The dissimilarity of Highland High School 

(HHS) to the training set is based on the presence of 36 athletic components compared to 

an expected 19.3. Upon further inspection, the high school has 13 basketball courts 

compared to four and eight for all the other high schools. Conversely, Hollywood Park, 

evaluated into the top of this section based on its low number of athletic components 

(four) compared to the expected 19. Two middle and three elementary schools round out 

this section. 

Section C contains four facilities (one elementary, three professional sports) with 

the greatest dissimilarity to the training data. The dissimilarity of Louisiana Schnell 

Elementary (LSE) is based on having only two (2) athletic facilities compared to the 

prototypical 19. The lack of educational components at all three professional sports 

facilities result in their high dissimilarity assessments. Furthermore, all the facilities in 

this category have a single parking component compared to the four expected. 

These scores accurately reflect what can be seen when looking at different 

facilities in imagery (Figure 5-4). There is a high degree of similarity between the 

number and types of components within high schools, with athletic facilities being quite 

prominent. Lower echelon schools have fewer components and different types of athletic 

facilities. Furthermore, the professional sport facilities exhibit extremely different 

patterns than do the schools.  

 

Figure 5-4 Facility Type Visual Differences 

(Left to Right: High School, Middle School, and Professional Baseball Park) 

(Image: ESRI‘s ArcGIS Image Server accessed 18 Nov 2007) 
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5.3. Raw Total Site and Component Area 

The type of facility (high schools) selected for this project have a significant set of 

regulations and practices that constrain the number of students per class, student-to-

teacher ratios, and the total number of students within the school itself. These criteria 

have an effect on the ultimate total area needed for different echelons of schools. 

 A simple study of site square footage shows a strong demarcation between 

elementary or middle schools (ES, MS) and high schools (HS). Elementary and middle 

schools require less area than do high schools, which in turn require less area than do 

professional sports facilities (OTHR). The only outlier HNGTWN – OTHR is primarily a 

county run fairgrounds, however it does host professional sprint car races on its quarter-

mile dirt track. Total site and component square footage for all the facilities are shown in 

Figure 5-5 with the shading drawing attention to the fact that high schools require more 

area than do lower echelon schools but less than professional sports facilities. 

 

Figure 5-5 Total Site and Component Area 

 

5.4. Percent of Total Component Area by Category  

Data extraction methodology also proved crucial when examining component area. 

Athletic facilities, such as baseball and softball fields, and tennis courts, were originally 

digitized as multi-part features. This was so that they would visually represent their 

associated features. For example, baseball and softball field boundaries were digitized as 

one part and the infields were digitized separately. The resulting polygons depicted the 

outline of the entire field with a discernible infield. While this was useful for visual 
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recognition, it had the effect of cutting out the infield from the entire ball field, reducing 

the total area for these components. In a similar way, tennis court boundaries were 

captured as one part of the polygon, while the actual courts, delineated by different 

surface color and court markings, were captured as additional parts of the polygon, 

having the effect of misrepresenting the actual total area as well. 

The significance was not discovered until lower echelon schools were added to 

the test set. It became evident when the totals of areas represented by athletic facilities 

were questionably close between echelons. Elementary and middle schools typically have 

multi-purpose playgrounds and athletic fields without strongly delineated regulation 

sports fields and were therefore collected as a single component. When they were 

analyzed against high school facility K-Scores, the results showed no significant 

difference between the facility types. In order to determine if this was indeed an accurate 

result, each category was assessed individually. This analysis determined that the 

problem lay within the ‗athletic‘ category. At this point, the extraction methodology was 
reviewed, and it became apparent that the discrepancy between the extraction 

methodology for high schools and the other schools was skewing the results. All the 

multi-part features within the high schools were then recollected as single-part features. 

Table 5-4, Figure 5-6, and Figure 5-7 depict the final results. The table is sorted in 

ascending order by K-Score, per facility and has been grouped into three sections: A, B, 

and C. These groups are based on the delta of K-Scores between facilities, with 

significant deltas forming the sections. Each facility type is identified by a different color 

within the chart for visual clarity, with sections A – C corresponding to the table.  
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Figure 5-6 K-Score Percent Total Component Area by Category Report 
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Table 5-4 K-Scores: Percent of Total Component Area by Category 

  Facility K-Score 

A 

ORHS 0.0043 

STHS 0.0043 

HHS 0.0134 

GTMS 0.0179 

ICE 0.0252 

EDHS 0.0276 

GSHS 0.0320 

UMHS 0.0360 

RHS 0.0377 

WSHHS 0.0394 

HGMS 0.0416 

PHS 0.0434 

SME 0.0473 

MMS 0.0666 

B 
HNGTWN 0.1164 

LSE 0.1919 

C 
HWPK 0.4446 

CSP 0.6281 

  AAS 0.7197 

 

 

 

Figure 5-7 K-Scores: Percent of Total Component Area by Category 
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All fourteen of the facilities within section A are schools, therefore it might be 

concluded that schools generally tend to utilize occupied space in a similar manner, 

regardless of echelon.  

Reasoning that the total enrollment might correlate to echelon, the enrollment for 

each school was compared. Enrollment varies for these 14 facilities between 213 

(elementary school) to 3,452 (high school) students. The only outlier in this group is 

Louisiana Schnell elementary school (LSE), which has an unusually high percentage of 

its occupied space (30%) devoted to educational buildings compared with the mean 

(14%). The architecture of educational buildings within this site is substantially different 

from the other schools, especially within the lower echelon facilities. Figure 5-8 depicts 

these differences, with LSE having considerably larger buildings (all images have a 

nominal scale of 1:2000). LSE has 393 students enrolled, falling between the 213 

enrolled at Indian Creek Elementary School (ICE) and 481 enrolled at Sutter‘s Mill 
Elementary School (SME), therefore its Charter School designation may be a 

contributing factor to its difference from its peers.  

 

Figure 5-8 Elementary School Architectural Differences  

(Left – Right: LSE, ICE, and SME) 

(Image: ESRI‘s ArcGIS Image Server accessed 08 Nov 2007) 

 

Section B contains one professional sports facility (Hangtown Speedway, 

HNGTWN) and one elementary school (LSE). The dissimilarity of Hangtown Speedway 

is due to 34% (15% excess) of its component area being dedicated to parking rather than 

the 20% expected. Conversely, Louisiana Schnell‘s dissimilarity is based on a deficit 
within the athletic category of 23%, having only 40% dedicated to athletics rather than 

the expected 63%. 

Section C is composed of three non-high school facilities. Hollywood Park‘s 
dissimilarity is based on having 34% component allocation for parking, exceeding the 

expected 20% by 15%. Both Candlestick Park and Anaheim Angels Stadium, 

professional baseball facilities, as expected are the most dissimilar in this evaluation due 

largely to having no educational facilities (100% deficit). 
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5.5. Percent of Total Site Area by Category  

This assessment builds upon the previous categorical area assessment by considering the 

total site area. This was accomplished by adding the unoccupied, thus uncategorized, land 

on a site as a categorical component. The corresponding report is shown in Figure 5-9.  

 
Figure 5-9 K-Scores: Percent of Total Site Area by Category Report 

 

 

Analyzing the effects of including all unoccupied space within the site boundary 

again proved to be insignificant in measuring high school similarity (Table 5-5 and 

Figure 5-10). 
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Table 5-5 K-Scores: Percent of Total Site Area by Category 

  Facility KScore 

A 

GSHS 0.0056 

ORHS 0.0056 

EDHS 0.0111 

GTMS 0.0139 

WMSHS 0.0222 

LSE 0.0222 

MMS 0.0239 

B 

RHS 0.0304 

HGMS 0.0473 

ICE 0.0555 

UMHS 0.0597 

PHS 0.0600 

HGTWN 0.0617 

C 

SME 0.0916 

STHS 0.1130 

HHS 0.1177 

D HWPK 0.2156 

E 
CSP 0.5259 

AAS 0.6506 

 

 

 

 

 
 

Figure 5-10 K-Score: Percent of Total Site Area by Category 
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This method also proved to be statistically insignificant. School facilities, 

regardless of echelon, were not distinguishable from non-school facilities. In addition, 

greater variance between the deltas of the K-Score broke the facilities into five groups. 

Area devoted to athletic components only contributed to four facilities (two high schools, 

one middle, and one elementary school) being evaluated as dissimilar to a prototypical 

high school. A deficit in area allocated to parking contributed to the dissimilarity of two 

professional sports facilities and one middle school. Hollywood Park exceeded the 

expected parking allocation of 8% by 31%. Unoccupied areas had the most significant 

impact on this measure, with 11 facilities ranging between seven and 31% below the 

expected value. 

5.6. Results Discussion 

Assessing frequency of components by category effectively identified high schools, with 

the exception of one outlier. This assessment cannot discriminate between lower echelons 

of schools indicated by the mix of elementary and middle schools in section B. Based on 

these results, the logical next step was to determine whether the raw total area of the sites 

or the components could discriminate echelons more effectively. 

Based on the results of the different measures employed for this project, it appears 

that frequency of components, being the strongest indicator of similarity, may relate to 

the function of the facility. It is therefore logical that high schools would have the 

greatest number of components. Greater student enrollment at high schools necessitates a 

greater number of educational buildings. In addition, high schools participate in a variety 

of competitive sports, thus have athletic components not found at lower echelon schools. 

Finally, student-parking areas are located only at the high school level. 

The simplistic area analysis readily discriminated between high schools, lower 

echelon schools, and non-school facilities, with only a single outlier. However, this is a 

gross metric. In order to determine if area occupation could provide a more refined result, 

categorical analysis of component and total site area was analyzed. 

Assessing categorical component occupation discriminated between only school 

and non-school facilities, with one elementary school (LSE) being an outlier to these 

results. Additionally, this measurement introduced uncertainty between school echelons, 

therefore discounting it as an effective measurement tool for this project. 

Assessing percent of total site area by category introduced the highest degree of 

statistical insignificant resulting in five clusters of facilities with high schools being 

spread throughout all five. This approach was not capable of distinguishing schools, 

regardless of echelon, from non-school facilities.  

5.7. Results Summary 

The site similarity assessment interface is able to accept user input to establish a training 

data set from which to calculate an ideal expected value for the type of categorical 

analysis desired. Additionally, it provides an algorithm to assess three different similarity 

measures, as well as creating new associated feature layers and reports of the results. The 

resulting feature layers contain a K-Score, which quantifies a facility‘s similarity to a 
derived ideal, while the reports provide the results textually. Frequency of component by 
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category proved to be the strongest indicator to assess similarity, while percent of 

component area by category and percent of total site area by category produced 

inconclusive results. 
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6. Summary 

The objectives for this project were to develop an assessment for classifying sites using 

site-based relationships to include: 

 A formal site description including related subcomponents. 

 Creation of a geodatabase to organize and manage facility data, site description, 

and analysis. 

 Generation of a profile from control sites. 

 Mechanism to assess test data against the control data profile. 

 Capability to communicate results. 

All of these objectives were met. The formal site description identified five 

categories into which high school components may be classified, as well as the variety of 

components that may be classified within those categories. The facility description was 

implemented with domains and subtypes. Domains constrain the category to which the 

components are classified. Components were restricted to administrative, athletic, 

educational, parking, or unoccupied categories. Subtypes constrain the value choices of 

the component type. 

 The personal geodatabase created for the project manages all the input 

data, such as domains, subtypes, facility data, and raster catalogs, in addition to all output 

data, such as facility signatures, K-Scores, and K-Score reports. 

 A site similarity assessment toolbar with customized buttons was created 

to facilitate analysis and report creation. A combination of model builder and Python 

scripting was used to create an interface that guides users through the process necessary 

for creating training data against which test facilities are assessed for similarity to the 

derived signature. Visual Basic for Applications and ArcObjects code was used to create 

reporting functionality from the site assessment toolbar. 

 Three measures of the attribute site occupation by components were 

developed: 1) frequency of components by category; 2) percent of total component area 

by category; and 3) percent of total site area by category. In each case, the relative 

similarity of the site in question to the training sites was measured using the K-Score, 

comparing the observed values to its expected frequency. Frequency of categorical by 

category proved to be the strongest indicator to assess similarity, correctly identifying 88 

% of the high school facilities.  
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7. Future Work 

This project has identified three research areas that may improve this methodology. The 

first is to incorporate contextual information as an additional measure of similarity. For 

example, environmental conditions, such as proximity to lines of communication, 

hydrologic features, or terrain features, such slope and aspect, may constrain where a 

facility under consideration may optimally be located. Certain types of facilities, 

depending on their nature, may need to be close to a water source, rail lines, or to terrain 

that is amenable to building tunnels. Conversely, context can also exclude areas for 

consideration. For example, sensitive facilities, such as power generation or chemical 

plants, may be less likely to be located near earthquake fault lines. 

The second area that may be beneficial to investigate may be dependent on the 

complexity of the multi-component facility being evaluated. Blaser‘s (2000) work with 

scenes, which are conceptually the same as the sites discussed in this project, proved the 

concept of utilizing topological relationships, spatial location, orientation, and direction 

to evaluate similarity. Sites containing multi-component facilities that are composed of a 

fewer number of components, as well as a limited number of possible shapes associated 

with those components, may more reasonably be evaluated based upon topological 

relationships. This methodology would be able to assess similarity of sites even if the 

configuration of the components were quite different. Used in tandem with the previously 

mentioned contextual analysis may be quite valuable when trying to locate a facility that 

has proven difficult to find visually on imagery. In addition, metric refinements to the 9-

Intersection model, such as outer and inner closeness, splitting, and alongness, introduced 

by Shariff (1996) would provide greater detail of the qualitative spatial relationships 

between features in a site. 

A third area, which may ultimately prove to be the most promising, is object 

based image analysis. This approach may also be the most complex because it 

incorporates contextual feature identification and similarity rules within the extraction 

process. In addition, incorporating elevation data into the process would enable extracted 

features to have an elevation value, which enables 3-D representation and knowledge of 

feature heights. This could be an effective way to monitor sites over time to determine if 

there have been changes to the heights of buildings and thus to the potential capacity of 

the site. While the current software that is capable of this is extremely expensive and 

purportedly requires a significant learning curve to create accurate training date, the cost-

benefit ratio may ultimately prove to be worth the investment.  
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Appendix A – Geodatabase Contents 

The site similarity assessment methodology was designed to work with a personal 

geodatabase. Refer to Appendix A Table 2 for a list of the data contained within the 

geodatabase. 

 

Appendix A Table 1 Database Contents 

Dataset Description Source  

and Date 

Data Model Attributes 

Facility_ 

NoBoundary 

Feature 

Extracted 

Facility 

Components 

excludes 

unoccupied 

area 

Derived Polygon 

(vector) 

OBJECTID, 

SHAPE, 

FacilityName, 

Feature, 

Category, 

FacilCat, 

Shape_Length, 

Shape_Area 

Facility_ 

WBoundary 

Feature 

Extracted 

Facility 

Components 

includes 

unoccupied 

area 

Derived Polygon 

(vector) 

OBJECTID, 

SHAPE, 

FacilityName, 

Feature, 

Category, 

FacilCat, 

Shape_Length, 

Shape_Area 

Boundaries Total Area 

Occupied by 

Facility  

Derived Polygon 

(vector) 

OBJECTID, 

SHAPE, 

FacName, 

Shape_Length, 

Shape_Area 

edcSchools03 Aerial 

Photography, 

2 foot 

resolution 

AirPhoto, 

USA, 

2003  

Raster 

Catalog 

OBJECTID, 

Shape, Raster, 

Name, 

Shape_Length, 

Shape_Area 

edcSchools04 Aerial 

Photography, 

2 foot 

resolution 

AirPhoto, 

USA, 

2004 

Raster 

Catalog 

OBJECTID, 

Shape, Raster, 

Name, 

Shape_Length, 

Shape_Area 
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Dataset Description Source  

and Date 

Data Model Attributes 

Signature_NB Frequency 

and % 

Component 

Area 

Signatures 

Derived Database 

Table 

OBJECTID, 

Category, cExp, 

pExp, aExp 

Signature_WB Total Site 

Area 

Signature 

Derived Database 

Table 

OBJECTID, 

Category, cExp, 

pExp, aExp 

K-

Score_Facility 

_NB 

K-Scores for  

Frequency 

and 

Component 

Area 

Derived Feature 

Class 

OBJECITD, 

Facility, 

TestFacil, 

cKMax, cK-

Score, cK-

ScoreNorm, 

aKMax, aK-

Score, aK-

ScoreNorm 

K-

Score_Facility 

_WB 

K-Scores for  

Percent Total 

Site Area 

Derived Feature 

Class 

OBJECITD, 

Facility, 

TestFacil, 

cKMax, cK-

Score, cK-

ScoreNorm, 

aKMax, aK-

Score, aK-

ScoreNorm 

 

The domains and values used by the Facilities feature class are listed in Appendix 

A Table 3. The domains were implemented to ensure data integrity. The component 

categories and associated subtypes used by the Facilities feature class are listed in 

Appendix A Table 4. The component categories were implemented to conduct statistical 

analysis from and the subtypes were implemented to enforce data integrity.  
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Appendix A Table 2 Facility Domain 

Domain Name Coded Values 

Category ATHL – Athletic 

ADMIN – Administrative 

EDUC – Educational 

PRKG – Parking 

UNOCC - Unoccupied 

FacilityName AAS – Anaheim Angels Stadium 

CSP – Candlestick Park 

EDHS – El Dorado High School 

GSHS – Golden Sierra High School 

GTMS – Gold Trail Middle School 

HGMS – Herbert Green Middle School 

HGTWN – Hangtown Speedway 

HHS – Highland High School 

HWPK – Hollywood Park 

ICE – Indian Creek Elementary School 

LSE – Louisiana Schnell Elementary School 

MMS – Markum Middle School 

ORHS – Oak Ridge High School 

PHS – Ponderosa High School 

RHS – Redlands High School 

SME – Sutter‘s Mill Elementary School 

STHS – South Tahoe High School 

UMHS – Union Mine High School 

WMSHS – William S. Hart High School 
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Appendix A Table 3 Facility_NoBoundary Feature Class Attributes 

Field Name Description Data Type 

OBJECTID ArcGIS system generated  Object ID 

SHAPE ArcGIS system generated Geometry 

FacilityName Name of facility Text 

Feature Type of component Short Integer 

Category Component category Text 

FacilCat Concatenation of 

FacilityName and Category 

used to derive component 

frequency counts per 

facility and total area per 

category per facility 

Text 

SHAPE_Length ArcGIS system generated Double 

SHAPE_Area ArcGIS system generated Double 
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Appendix A Table 4 Facility_WBoundary Feature Class Attributes 

Field Name Description Data Type 

OBJECTID ArcGIS system generated  Object ID 

SHAPE ArcGIS system generated Geometry 

FacilityName Name of facility Text 

Feature Type of component Short Integer 

Category Component category Text 

FacilCat Concatenation of 

FacilityName and Category 

used to derive component 

frequency counts per 

facility and total area per 

category per facility 

Text 

SHAPE_Length ArcGIS system generated Double 

SHAPE_Area ArcGIS system generated Double 

 

 

Appendix A Table 5 Boundaries Feature Class Attributes 

Field Name Description Data Type 

OBJECTID ArcGIS system generated  Object ID 

Shape ArcGIS system generated Geometry 

FacilityName Name of facility Text 

SHAPE_Length ArcGIS system generated Double 

SHAPE_Area ArcGIS system generated Double 

 

 

 

 


