

Building Conflict-Free FFT Schedules
Stephen Richardson, Member, IEEE, Dejan Marković, Member, IEEE, Andrew Danowitz, Member, IEEE,

John Brunhaver, Member, IEEE, and Mark Horowitz, Fellow, IEEE

Abstract—A conflict-free schedule lets an FFT run to completion
without ever having to pause for memory-conflict resolution. We
show how to build such schedules for FFTs having any number
of butterfly units operating at any radix , transforming any
number of datapoints . Our algorithm works for FFT datapaths
with or without pipeline overlap, and for memory banks having
any number of access ports. Specifically, it enables construction of
conflict-free schedules using single-ported memory banks, which
require less area than more traditional multi-ported designs.

Index Terms—Conflict-free scheduling, digital signal processor,
fast Fourier transform, FFT, single-ported memory.

I. INTRODUCTION

D EMAND FOR low-power and low-cost solutions under-
scores the proliferation of custom FFTs embedded in bat-

tery-driven devices like smart-phones and tablets, where they
drive OFDM-based WiFi/WLAN and 4G cellular communica-
tion applications like LTE [1]. A myriad of architectural choices
underlies the design of these FFTs, nearly all of which involve
one or more radix-2, radix- , and/or prime-radix FFT stages.
We develop a radix-2 schedule that is both power- and perfor-
mance-efficient, then demonstrate how it naturally extends to
any radix, thus pointing the way to its use in existing and future
FFT designs.
Our schedule improves cost efficiency by reducing the die

area required by custom FFT hardware. It targets smaller
single-ported rather than traditional multi-ported memory,
which has been shown to reduce the physical size of required
on-chip memory by 30%–53% [2].
FFT implementations tend to fall into one of two main ar-

chitecture classes, serial-pipeline and memory-based [3]. Se-
rial-pipeline architectures generally require more hardware re-
sources. Therefore we target memory-based architectures, oper-
ating with as few as one butterfly unit, because our prime con-
cern is to minimize die area. In particular, we target in-place
algorithms, generally chosen for their lower resource require-
ment versus pipeline architectures, and which can lead to lower
power implementations [4].

S. Richardson and M. Horowitz are with Stanford University, Stanford, CA

94305 USA (e-mail: steveri@stanford.edu; horowitz@stanford.edu).
D. Marković is with Electrical Engineering Department, University of Cali-

fornia, Los Angeles, Los Angeles, CA 90095 USA (e-mail: dejan@ee.ucla.edu).
A. Danowitz is with Computer Engineering Department, California

Polytechnic State University, San Luis Obispo, CA 93407 USA (e-mail:
adanowitz@gmail.com).
J. Brunhaver is with Arizona State University, Tempe, AZ 85281 USA

(e-mail: jbrunhaver@gmail.com).

Each stage in an FFT must read and then write back its entire
data set, and each time in a different order, so there are ample op-
portunities for memory-access conflict. This paper describes
an optimal placement and access strategy for FFTs such that
data can be fetched with zero conflicts so as to maximize per-
formance while using minimal area for data storage.
Note that our minimal-area goal goes beyond the traditional

concern of minimizing memory-locations-per-datapoint. Our
in-place implementation indeed requires a minimum of only

memory locations (data-words) to transform datapoints.
But the area savings go a step further. Like recent work by Luo
[2], our algorithm enables the use of single-ported memory
structures, meaning less die area per data-word.
To build an efficient FFT using only single-ported memory,

we need to use multiple SRAMs and place the data such that
butterfly unit(s) can fetch operands without conflict. We will
show how to derive an algorithm to compute this placement,
one that covers FFT designs operating on any given number of
datapoints , using any number of butterflies operating in
parallel, and where each butterfly operates at any radix using
any pipeline depth .
Initially, we restrict , , and to fixed powers of two, but

later we will indicate how to relax this restriction. Also, we will
show how to further extend the algorithm to cover overlapped/
pipelined execution, where results get written to memory at the
same time that new operands are being read, all without conflict
or collision.1

Our previous paper [5] presented an algorithm that worked
empirically for any number of datapoints from up to

and for , 2, 4, or 8 butterfly units of radix ,
operating with an overlapping pipeline of depth . The
paper postulated that the algorithm should work for any values
of , , , and , but could not show why the algorithm would
work. To address that shortcoming, this paper presents a re-
fined and simplified algorithm, and explains why it works
for all , , , and .
We chose a basic radix-2 Cooley-Tukey (CT) algorithm (Fig.

1), rather than e.g., a constant-geometry (CG) design, to develop
our method. While CG alternatives can simplify the addressing
requirements for an FFT [6], the problem of parallel access to
stride-separated data still remains [7]. Thus a conflict-free map
such as the one we will propose should work for CG designs,
especially considering that the map is heavily based on earlier
work that specifically targeted CG [7]. The map should work
as well for many other DFT forms, because it simply shows
how to distribute data among memory banks to prevent colli-
sion regardless of stride. In particular, by using the radix-2 CT
algorithm to develop a conflict-free map, we can simultaneously
build a conflict-free CT schedule to go along with the map, using
the same set of principles and the same simple hardware.

1Note pipelining (Section IV) is different than time-multiplexing.

mailto:adanowitz@gmail.com
mailto:dejan@ee.ucla.edu
mailto:horowitz@stanford.edu
mailto:steveri@stanford.edu
lib-spc
Typewritten Text
Richardson, Markovic, et al. Published in IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, 62(4). April, 2015. 1146-1155.

Fig. 1. Signal flow graph, radix-2 decimation in time (DIT).

Our method should thus extend to many other common stride-
based DFT algorithms. E.g., instead of CT, a designer might
consider prime-factor algorithms such as Good-Thomas, Wino-
grad, or a combination thereof [8], with the possible benefit of
reducing/eliminating twiddle factors and complex multiplies, or
providing a better fit for applications with a non-power-of-two
number of datapoints [2]. Such designs could still be time-mul-
tiplexed and/or pipelined such that complex address generation
would be required for conflict-free access, at which point our
algorithm may be considered for precise data placement and ac-
cess patterns.
Note that we target only the address generation portion of

FFT design and do not concern ourselves with unrelated design
issues like precise implementation of the trig table. Our sample
design used a single ROM to hold pre-computed twiddle factors
[5]; alternately, one might use distributed ROM tables [9] or
even calculate twiddle factors on-the-fly [10].
Section II introduces schedules and groups, key concepts to

understanding the derivation of our algorithm. Section III dis-
cusses how to map datapoints into memory banks such that they
can be fetched and written without conflict, at least for simple
FFTs without overlapped pipelines; and Section IV extends the
algorithm to pipelined FFTs, as well as FFTs with radix
Section V discusses background work, and then we conclude.

II. SCHEDULES AND GROUPS

A schedule tells us the order in which an FFT will process
its data set. Our schedules are designed with a specific targeted
group size . Each sequential group of datapoints within the
schedule represents operands that can be processed all at once.
Thus for maximum performance the group should be accessed
all at once. When using single-ported memory, this means that
the operands must live in separate SRAMs.
Fig. 2 shows the complete schedule for a radix-2 FFT de-

signed to transform eight datapoints, a toy example we can use
to demonstrate the important features of our algorithm. In our
nomenclature, this is a schedule for and .
This schedule is based on the original Cooley-Tukey algorithm
[11]. (The map part of the schedule will be discussed later.) 2

Unlike a signal flow graph, which can only show how data
flows from stage to stage, this group-2 schedule shows the order
in which a single radix-2 butterfly unit will read and process
datapoints within each stage. In the schedule, we have bracketed
each data pair to show that, conceptually, both are accessed at
the same time.
Reading Fig. 2 from top to bottom and left to right, the first

bracket says that Stage 0 begins by reading operands dp[0] and
dp[1]. After processing the operands, two results get written

2Stage-to-stage arrows, added here for clarity, are left off future diagrams.

Fig. 2. Group-2 schedule and SRAM map for 8-point FFT with one radix-2
butterfly, i.e., and . If the operands in each bracketed pair
live in separate memory banks, we call it a conflict-free schedule. This particular
schedule is not conflict free.

Fig. 3. Conflict-free schedule and SRAM map for 8-point data transform oper-
ating with group size 4 (,), designed to work with
memory banks. (Note slight but necessary variation in Stage-2 datapoint order
vs. Fig. 2, explained later in detail.).

back to the same locations dp[0] and dp[1], overwriting previous
contents. The butterfly then reads and subsequently writes back
locations dp[2] and dp[3], and so on. A conflict-free layout will
need only eight memory cycles per stage: four read pairs and
four write pairs. The operand pairs in each stage must be sep-
arated by a distance of , thus Stage 0 is a stride-1 stage, Stage
1 is stride-2, and so on.
Because , an FFT with two radix-2 butterfly units

operating in parallel, or an FFT with a single radix-4 butterfly,
would process operands in groups of four instead of groups of
two. To illustrate this group-4 schedule we place brackets next
to groups of four datapoints instead of two, like in Fig. 3.

III. MAPPING DATAPOINTS TO MEMORY BANKS

Our goal is to map data into single-ported memory in a way
that avoids conflicts. When we annotate a schedule to explic-
itly show these data-point-to-SRAM assignments, we call it a
map. Our “schedule” of Fig. 2 is really a map, because it explic-
itly states which SRAM contains what datapoint. It maps out a
simple but naïve scheme for two banks of SRAM such that even
datapoints go to bank 0 and odd to bank 1.
Throughout Stage 0, each bracketed group of two operands

lives one apiece in the two memory banks; we call these groups
nonredundant. Starting in Stage 1, however, each bracketed pair
of operands lives in the same memory bank; dp[0] and dp[2]
both live in bank SRAM0, dp[1] and dp[3] both live in bank
SRAM1, etc. Because both operands live in the same bank, and
because the bank only has a single port for reading, we cannot
access both operands in the same memory cycle. We call this
group redundant, because at least one memory bank is repre-
sented more than once within the group.
Redundant groups cause conflicts, where more than one

operand needs to be accessed from the same bank at the
same time. A schedule like that of Fig. 3, with no redundant

groups (and consequently no conflicts) is called a conflict-free
schedule, or CFS. Note Fig. 2 is not conflict free.

A. Conflict-Free Schedule (CFS) with Optimal Memory Area

Our challenge, then, is to come up with an algorithm that can
build a conflict-free schedule for FFT designs using any number
of data points , any number of butterfly units and any radix
of butterfly unit . Or more simply, because group size

, we want an algorithm that works for FFT designs using
any number of data points and any group size . Clearly
a conflict-free schedule for group size will require at least

single-ported memory banks. Our goal is to use exactly G
banks so as to produce a minimum-area design [5] also known
as matched interleaved memory [12].
Fig. 3 shows a conflict-free schedule and map for an eight-

point data transform operating with a group size of four. We will
show how to produce this map, and how the same procedure can
generate a map for any number of datapoints, butterflies, groups,
etc.

B. Toggle Bits

The group-4 schedule of Fig. 4(a) was built using a traditional
Cooley-Tukey algorithm [11]. Here, instead of dp[0], dp[1],
dp[2], etc., we only list the binary form of the index for each dat-
apoint—000,001,010, etc., still in groups of four.3 Notice that,
within each group of four in every stage, there are two bits that
always count 00,01,10,11 (these would be bits in Stage 0,
bits in Stage 1 and bits in Stage 2). We call these the
toggle bits, because within any given group of four, these are the
only bits that change, while the other bits remain constant. This
is true regardless of the number of data points in the schedule; a
group-4 schedule for 4M datapoints would have 1M groups per
stage, but each group would still have two toggle bits counting
00,01,10,11 while the non-toggle bits are constant.
Why is this important? Because 1) for conflict-free schedules

we need non-redundant groups; 2) for non-redundancy, we need
to map the four datapoints in each group to the four memory
banks 00,01,10,11 in some order; 3) the toggle bits in each group
count 00,01,10,11; so 4) we might achieve our CFS goal by cal-
culating the memory bank for each datapoint as a function of its
toggle bits.
In particular, we know there are toggle

bits (call them and when group size ; and we
know that there are or two memory-bank bits and

because we have memory banks. So one
thing we could try is simply setting and to
guarantee that each of the four memory banks were represented
in each group; i.e., when counts 00,01,10,11, would
count 00,01,10,11. In Stage 0 of Fig. 4(a) the toggle bits are

. Stage-1 toggle bits are and Stage-2
toggle bits are (not).
If we could simply set the memory bank equal to the

toggle-bit number we would easily accomplish our goal
of nonredundant groups. Unfortunately in Fig. 4(a) that would
mean dp[1] maps to SRAM1 in Stage 0 (

), but in Stage 1 it maps to SRAM0 (

3We denote the individual bits of an integer using subscripts, e.g., a three-bit
integer is composed of three bits . We use the convention that the least-
significant bit (LSB) is the rightmost bit, and it has subscript 0.

Fig. 4. Cooley-Tukey algorithm (a), modified to keep toggle bits adjacent (b).
and . a) Schedule based on original Cooley-Tukey: toggle

bits are non-adjacent in final stage. This can be remedied by e.g., rotating the
lower bits in Stage 2. b) Modified schedule: toggle bits always adjacent.
Note Stage-2 rotation (swap) of vs. original algorithm.

Fig. 5. Toggle-based map successfully provides non-redundant groups for
Stages 0 and 1. Stage 2 still has conflicts; its non-adjacent toggle bits and

mean only two SRAMs per group of four.

). For the FFT to work correctly as an in-place algo-
rithm, each datapoint must live in the same memory location
throughout all stages.
The problem is that the toggle bits change for each stage.

Since the datapoint-to-memory-bank mapping must remain the
same regardless of what stage we're in, we need to build a map-
ping such that 1) the memory bank number is always a func-
tion of the two toggle bits and 2) the datapoint-to-memory-
bank mapping stays the same regardless of stage. When
, and for each stage where the toggle bits are adjacent, the
following equation maps exactly four different memory banks

to each group of four datapoints:

or, for our example when datapoints and each datapoint
index only has three bits ,

This gives us the schedule and map of Fig. 5. We see that this is
now a conflict-free schedule throughout Stages 0 and 1, while
Stage 2 still has conflicts.

Fig. 6. Original Cooley-Tukey-based algorithm. It produces non-adjacent
toggle bits in the later stages.

Fig. 7. Our new algorithm keeps the toggle bits adjacent in all stages. This is
the algorithm from Fig. 4(b), generalized to any group size .

Unfortunately, the Stage-2 toggle bits and are non-adja-
cent. And while is a function of both toggle
bits, only depends on the non-toggle-bit and we
need each memory bank bit to be a function of the toggle bits.
We can fix this by altering the schedule such that toggle bits are
always adjacent, regardless of stage.
Consider the alternate schedule for an eight-point FFT shown

in Fig. 4(b). Here we've swapped the least-significant two bits
of each datapoint number in Stage 2, so that the circled

portion of Stage 2 now counts dp[2,6,1,5] instead of the original
dp[1,5,2,6]. This is still a valid Stage-2 schedule because each
pair of datapoints is separated by stride 4. But now, instead of
Stage 2 having non-adjacent toggle bits we have
adjacent toggle bits
As it happens, our new Stage-2 ordering is the same as Stage

1 except the toggle bits (the first two bits) have been rotated.
This rotation yields a reordering that, combined with the previ-
ously shown XOR-mappings for and gives the desired
conflict-free result originally shown in Fig. 3.
We can use this toggle-rotation trick to generate a schedule

for any number of datapoints D and any group size G such that
the toggle bits within each group are always adjacent. We begin
with the Cooley-Tukey algorithm for producing a standard FFT
schedule [11], shown in Fig. 6. We modify this to account for
group size (Fig. 7), producing the toggle-normal schedule as
before, up until the stage at which the toggle bits would have
wrapped to become non-adjacent. At that point, the algorithm
switches to the rotated-toggle form.
Fig. 8 shows the schedule our algorithm produces for a

16-point transform with group size of eight. Instead of counting
000,001,010,011 with LSB as the rightmost bit, rotated Stage-2
toggle bits count 000,010,100,110 with the LSB as the middle
bit, which doubles the stride vs. the previous Stage 1, while
still preserving toggle-bit adjacency. Further-rotated Stage-3

Fig. 8. Schedule produced by modified algorithm (Fig. 7) when and
. In every stage : 1) toggle bits are adjacent, so the resulting SRAM map

will be non-redundant and consequently conflict free; and 2) the fastest-toggling
toggle bit (LSB) is bit position so Stage 0 is stride 1, Stage 1 is stride 2, and so
on. LSB rotation goes: .

toggle bits count 000,100,001,101 with the LSB as the leftmost
bit, again doubling the stride versus the previous stage. Thus
for every stage , the LSB of the toggles so Stage 0 is
stride 1, Stage 1 is stride 2, etc.

C. General Algorithm for Producing Nonredundant Groups

So, to produce a conflict-free group- mapping for
datapoints: First, use the algorithm of Fig. 7 to create a valid
group- schedule with adjacent toggle bits. Then, for each
-bit datapoint calculate a -bit

memory bank number such that

(1)

and where

the number of toggle bits, is equal to and

is an -bit datapoint such
that

andthe number of stages, is equal to

is the number of datapoints to be transformed.
Like Takala's algorithm that inspired this work [7], a hard-

ware implementation for mapping address to bank requires
only XOR gates each with a fan-in of . Thus the same
logic can accommodate FFTs of any variable length simply
by designing for the maximum size and using 0's for the
high bits when . Moreover,
the reordering step (discussed later in more detail) entirely elim-
inates the earlier work's need for a “rotation unit” in the mapping
hardware.

Fig. 9. Two-stage pipeline with no overlap.

Fig. 10. Two-stage pipeline with overlap of 1. This overlapped pipeline can
do two reads and two writes in a single cycle. Its two-stage RP/W pipe only
takes 13 cycles to complete the point transform. Because it accesses
four datapoints at a time, it wants a schedule with group size .

IV. FFT WITH PIPELINE OVERLAP

The algorithm as developed so far works only for FFTs
without pipeline overlap, a term we shall soon explain. For
greater performance and efficiency, designers typically prefer
overlapped designs [13]. To extend our algorithm to overlapped
designs, we need to understand their access patterns and how
they differ from non-overlapped designs.
Our original example of Fig. 2 represents a schedule for a

simple FFT with a single radix-2 butterfly. Using a simple two-
stage non-overlapped read-process/write (or RP/W) pipeline,
the FFT 1) Reads its first two operands dp[0] and dp[1] from
memory and Processes them; 2) Writes the two results back to
memory locations dp[0] and dp[1]; and then starts over again by
reading the next two operands. Each complete RP/W butterfly
operation takes two cycles, times twelve butterfly operations
means that a complete 8-point transform requires 24 cycles. We
call this a 2-stage 0-overlap pipeline, shown graphically as the
diagram of Fig. 9.
Fig. 10 shows the same FFT, this time reconfigured as an

overlapping RP/W pipelined design. In the first three cycles of
operation this FFT 1) reads its first two operands from memory
and processes them; 2) writes the two results back to memory
while at the same time fetching the next two operands and pro-
cessing them; then 3) repeats the previous write/read-process
cycle with the next two operands and so on until done. After the
read in the first cycle, the pipeline is full, and each write/read-
process combination thereafter takes only one cycle to com-
plete. The entire 8-point transform thus now takes only 13 total
cycles instead of the previous 24: one RP cycle to load the pipe,
and then one cycle for each of twelve successive W/RP butterfly
operations.
A group-2 schedule will not suffice for this 2-stage 1-overlap

pipeline, which now accesses four locations at once, for instance
writing dp[0,1] while reading dp[2,3]. It will need a group-4
schedule.
There are many other ways to construct an FFT pipeline. Our

original design described in Section II had a three-stage non-
overlapping pipeline aka a 3-stage 0-overlap pipeline. Mean-
while, we could just as easily construct an overlapped design
that takes multiple cycles to complete the butterfly operation,
like the five-stage pipeline shown in Fig. 11.

A. Ordered Groups Create CFS for Overlapped Pipelines

FFT's with overlapping pipelines pose a special challenge for
conflict-free scheduling. As mentioned earlier, a non-overlap-
ping 2-stage pipeline can be satisfied with a group-2 schedule,
but an overlapping 2-stage pipe needs a group-4 schedule. Not a

Fig. 11. Five-stage overlapping pipeline.

Fig. 12. The four operands in each aligned group AG map one apiece to the four
memory banks. Unfortunately, unaligned groups UG in Stages 1 and 2 use only
two memory banks each, that is, these groups are redundant. For the schedule to
work with overlapping pipelines, all groups of operands must be nonredun-
dant, whether aligned or unaligned. In this example, and .

group-4 schedule like that of Fig. 3, however; it needs an over-
lapping group-4 schedule.
While the original group-4 schedule accesses non-overlap-

ping groups of four operands dp[0,1,2,3] then dp[4,5,6,7] then
dp[8,9,10,11] and so on, the new overlapping group-4 schedule
must accommodate overlapping groups of operands dp[0,1,2,3]
then dp[2,3,4,5] then dp[4,5,6,7] and so on, where the last two
datapoints of one group overlap the first two of the next group.
The original non-overlapping groups beginning with dp[0] in
each stage—dp[0,1,2,3], dp[4,5,6,7], and so on—are called
aligned groups, while the new overlap groups dp[2,3,4,5],
dp[6,7,8,9] are unaligned groups.
We show unaligned groups in the schedule with overlapping

brackets to the right of each column. Once we do this for one
of our schedules with maps, as in Fig. 12, we immediately see
a problem. While the original non-overlapping (or aligned)
groups (bracketed on the left side of each column) all map to
non-redundant groups of four memory banks, the new overlap-
ping (unaligned) groups (bracketed on the right) do not. And
for a conflict-free schedule, we need for all the groups to be
non-redundant, including the overlap groups.
To be clear: sequential groups of operands beginning at

cycle 0 in each stage of a schedule are aligned groups. Any other
group of or fewer operands in a schedule is an unaligned
group. A schedule with nonredundant aligned groups is con-
flict-free for non-overlapping pipelines only. But if we could
build a schedule with nonredundant unaligned groups, it will be
conflict-free for all pipelines, overlapped and non-overlapped.
We are going to take a very simple approach toward

achieving this goal. Focusing only on the aligned groups, we
have solved the problem of redundancy, such that each group is
nonredundant. Now, we add a further constraint: each aligned
group within a stage must not only be nonredundant, but it must
also be strictly ordered. That is, each of the four datapoints in
an aligned group must map one-for-one to the four memory
banks, and they must map to those memory banks always in
the same order.

Fig. 13. We sorted the four operands in each aligned group AG so as to make
them strictly ordered per stage. As a result, unaligned groups UG are now guar-
anteed to be nonredundant. and .

In the schedule of Fig. 12, produced by our algorithm as de-
veloped so far, the SRAM mapping for each group is nonredun-
dant, but the SRAM sequence within each group is unordered
with respect to neighboring groups. Again: to work for overlap-
ping pipelines, the schedule needs groups that are both nonre-
dundant and strictly ordered within each stage.
Fig. 13 shows the result of just such a map, where, e.g., each

aligned group in Stage 0 has been ordered such that the data-
points map to SRAM0, 1, 2, 3 in that order. The special con-
sequence of making ordered aligned groups is that now all un-
aligned groups are also ordered and therefore nonredundant and
therefore conflict-free.
When group size as in Fig. 13, this mapping means

that aligned groups in even-numbered stages (Stage 0, 2, 4,)
keep bank order SRAM0,1,2,3 while odd-numbered stages are
ordered SRAM0,2,1,3. And now, because the aligned groups are
strictly ordered, this means that the unaligned groups are also
strictly ordered: unaligned groups in even stages are ordered
SRAM2,3,0,1 and unaligned groups in odd stages are ordered
SRAM1,3,0,2.4

This reordering is possible because datapoint pairs can be
processed in any order so long as the stride relationship within
each pair is preserved, i.e., stride 1 for Stage 0, stride 2 for Stage
1 and so on, i.e., the operand pairs in each stage must be sep-
arated by . (Remember, we already changed the order of the
datapoints once before, when our algorithm moved from pro-
ducing the schedule of Fig. 4(a) to the schedule of Fig. 4(b).
The datapoint order in Stage 2 changed slightly, but the result
of the transform is the same for either schedule.)
The extension of this principle to arbitrarily deep pipelines is

given in Section IV-C.

B. Producing Ordered Groups

To produce a schedule with strictly ordered, aligned groups
of size , then, we use the following generate-map-reorder se-
quence:
1) Generate a base schedule with adjacent toggle groups

using the modified Cooley-Tukey algorithm of Fig. 7.
2) Map datapoints to memory banks according to the simple

parity mapping (1) at the end of Section III.
3) Reorder the datapoints such that the memory banks within

each group follow the same strict order.

4Note conflicts still exist when an unaligned group crosses an interstage
boundary. E.g., in Fig. 13 the last two accesses dp[7,6] of Stage 0 use SRAMs
2,3 while the first two accesses dp[0,2] of Stage 1 access SRAMs 0,2. SRAM2
gets used twice in this same unaligned group of 4, thus the conflict. Our earlier
paper [5] explains why such conflicts are rare, and describes a simple way to
prevent them from impacting performance.

Fig. 14. Middle of Stage 2 (stride-4 stage) of a 64-point transform. Before
reordering: As counts 3,7,11,15, toggle bits count 00,01,10,11 while
non-toggle bits remain constant. The four datapoints map to four
separate memory banks, but the memory banks are not in sequential order.
After reordering: counts 15,11,7,3, and reordered toggle bits count
11,10,01,00 while non-toggle still constant (00)(11). In the end, the four dat-
apoints map to four separate memory banks in sequential order. In this
example and .

The previously-discussed generate and map steps produce a
sequence of datapoints similar to that shown in Fig. 3, whose
map has groups with unordered memory banks. The goal of
the new reorder step is to rearrange each group's sequence to
produce a new sequence such that the memory banks in each
group are strictly ordered.
We begin the reorder process by observing that the original

memory bank order in any given group is strictly determined by
the toggle bits of the datapoints in that group. This should be
obvious considering the fact that, as we noted earlier, only the
toggle bits differ from datapoint to datapoint within any given
aligned group of operands. The toggle bits count from 0 to
(-1) in strict numeric order, while the corresponding memory
banks count from 0 to (-1) in scrambled order determined
by the XOR functions in (1) at the end of Section III. For ex-
ample, Fig. 14 shows a group of four datapoints in the middle
of Stage 2 of a 64-point transform. Here the toggle bits are two
bits in the middle of the datapoint index . As counts
3,7,11,15, the toggle bits count 00,01,10,11.
If we take the toggle bits =(00,01,10,11) of Fig. 14 and

change their order to match the calculated memory bank bits
, we get the new datapoint order

. If we now perform our -to- mapping (1)
on this new order we get the desired canonical memory-bank
order . In other
words, to get the new sequence we replaced each toggle bit
in each datapoint index with memory-bank bit .
The reordering works because in Stage 2 is a function of
and is a function of . Remember, and ,

and so from (1) we get and
.

Unfortunately, this does not hold true for every stage. In fact,
when group size as in our example, is a function
of only for even-numbered stages. Remember so
in even-numbered stages and thus

. In (even-numbered) Stage 2, and
, and we achieve the desired final order

SRAM0,1,2,3. In, e.g., (odd-numbered) Stage 1, however, we
would have and , and
reordering would fail to achieve the desired result.
So instead of replacing each toggle bit with memory bank
, let us replace with . We will do this because

we know that, depending on stage number , it may or may
not be true that is a function of toggle bit . However, be-
cause for each stage is datapoint bit , and because

is always a function of , we therefore know

http:order.In

that is always a function of regardless of stage
number .
To be even more precise, we must take into account the fact

that, in the final stages () through () of a schedule
produced by our generate algorithm (Fig. 7), toggle bits are
aligned at the top (MSB end) of the data word. For these stages,
instead of , it is the case that the toggle bits are the
top bits i.e., .
Thus the final reordering procedure is

Reordering

(2)

where is a datapoint calculated using the algorithm of
Fig. 7, and =no. of transformation stages, and

where s is stage number and T is number of toggle bits.

This is the reorder part of the generate-map-reorder sequence
we introduced at the beginning of this subsection. The com-
plete procedure appears more formally in Appendix A where
A1, A2 give the generate and reorder formulas for non-over-
lapping and overlapping pipelines respectively, while Sec. A3
recaps the map portion common to both.
Fig. 15 shows how the process works for a more compli-

cated reordering. This is a schedule and map for part of Stage
3 in a 256-point transform with group size . Highlighted
columns and arrows explain the two-step process, whereby
1) Every bit of datapoint index gets XOR'ed together to

form one of the memory bank bits . The top-left quad-
rant of Fig. 15 illustrates how is formed by XORing
datapoint bits , and (i.e., very third bit starting with
).

2) Memory bits replace toggle bits to produce a new ordering
for the datapoints. The bottom half of Fig. 15 shows how
bits replace toggle bits to form bits

.

The net effect is that the original stride-16 order
is replaced by a new, scrambled order
such that the final memory bank order

is a repeating series (SRAM0,2,4,6,1,3,5,7).

C. Extension to Arbitrarily Deep Pipelines

Earlier, we showed how to create a conflict-free schedule for
a 2-stage pipeline with overlap of 1. Here, we show how the
same principle can be used to create schedules for arbitrarily
deep pipelines.
For instance, say we have a three-stage pipeline with overlap

of two (Fig. 16). Such a pipeline would write operands dp[0,1]

Fig. 15. Generating the schedule for a couple of groups in the middle of Stage
3 (stride 16) in a 256-point transform where . Four highlighted columns
in the top group show how . Highlighted columns
in the bottom group show how toggle bits get replaced by
to form the new datapoint sequence. The final SRAM order is consistent
(0,2,4,6,1,3,5,7) for each group. Note transformations are the same for both
groups, we simply highlighted them differently in top and bottom to show the
two steps of the transformation sequence.

Fig. 16. Ordered groups allow arbitrary pipeline depth and overlap. This three-
deep pipeline requires a group schedule because it accesses, e.g., dp[0,1]
at the same time it accesses dp[4,5]. We use because the algorithm only
works for power-of-two group sizes. So in this example and .

while reading operands dp[4,5] and would thus need nonre-
dundant groups of six operands. Because our algorithm only
produces schedules for power-of-two group sizes, we create
a group-8 schedule whose aligned groups are strictly ordered
as shown in Fig. 16. Because the aligned groups are ordered,
this means that all groups of or smaller, whether aligned
or not, are nonredundant. In particular, all unaligned groups of
six operands are nonredundant, meaning, e.g., that the first and
last pairs in each group of six map to four separate memory
banks and thus all four operands can be accessed simultane-
ously, which is what we need for this particular pipeline to work
conflict-free.
The algorithm thus extends to any pipeline depth with

overlap simply by building a group- schedule with
memory banks where, as in this example, is the largest

power-of-2 equal to or greater than or (as we shall see)
where and .

Fig. 17. To produce a CFS for e.g., and , use a group-4 schedule
(and) and ignore extraneous data locations.

D. Extension to Other Radices

The extension of our algorithm to transforms with mixed
radix and/or non-power-of-two radices is fairly straightforward.
Simply use a group- schedule, where is the next power-
of-two greater than or equal to the largest radix being used,
and distribute the operands such that each butterfly uses one
group, with unused data locations per group when/if
is less than .
For example, when using radix-3 butterfly units to transform

nine datapoints, we could use a group-4 schedule for sixteen
datapoint locations and map the nine datapoints to dp[0,1,2],
dp[4,5,6], and dp[8,9,10], respectively. That is, we put three dat-
apoints in each group of datapoint locations, while one
datapoint location in each group goes unused. Note that while
the resulting schedule will indeed be conflict-free, the packing
is suboptimal, using four SRAMs with four data-words each, or
sixteen datapoint locations for just nine datapoints. But we can
do better than that.
A better approach is to use only data locations that map to

SRAMs 0, 1, and 2. Fig. 17 shows a group-4 map for sixteen dat-
apoints, and the subsequent radix-3 butterfly network using it to
produce a CFS for transforming nine datapoints. The nine data-
points thus use locations dp[0,1,2], dp[5,4,7], and dp[10,11,8],
which map to only three SRAMs instead of four.
Thus the algorithm further extends to any radix , simply by

using memory banks along with a group- schedule
where is the largest power-of-2 equal to or greater than .

V. BACKGROUND AND RELATED WORK

Pease [14] presented a clever way of assigning operands to
memory banks such that operands can be accessed without con-
flict within a given FFT stage. To keep running smoothly from
one stage to the next, however, requires double buffering: a re-
dundant second block of memory that can be “unloaded and
reloaded” while operating on the first block and vice versa.
Johnson [15] used an in-place algorithm to produce conflict-

free mappings, and one that works for any given radix of but-
terfly, not just radix-2. However (according to Takala [7]) the
algorithm does not extend to multiple butterflies operating in
parallel. Also, Johnson does not discuss how to avoid intercycle
conflicts that result from pipeline overlap, i.e., where the write-
back of results from a previous cycle interferes with the reading
of a new set of operands.
Ma [16] improves on these earlier schemes, with a way to

map operands to memory banks using less computation and thus

speeding the address generation. Ma reduces address-generation
time down to 7 gate delays from Johnson's original 12. Ma's
scheme requires a minimum of two banks of two-port memory
plus a bypass buffer to hold an extra value between successive
computations and, like Johnson, does not eliminate intercycle
conflicts.
Chang [17] avoids conflicts by using three 2-port RAMs that

can read-and-then-write a given address in one clock cycle.
Each RAM holds data points, thus over-provisioning by

. The extra memory is used to buffer intermediate results
and prevent collisions, by writing the data back in a slightly
different order than the original read.
Hidalgo [6] goes a step further to include parallel butterfly

computations, requiring a complex “perfect unshuffle” intercon-
nection network for reordering, as well as a serial-in parallel-out
(SIPO) delay line to further prevent stalls.
Takala [7] extends Johnson's work, providing conflict-free

mappings for an arbitrarily large number of operand pairs being
either read or written in a given cycle, for any number of but-
terfly units operating in parallel, and for any given radix of but-
terfly unit, without requiring the additional registers of Hidalgo.
However, there is no discussion about how to avoid intercycle
conflicts.
Inspired by Takala's algorithm, the scheme presented herein

uses near-minimal memory to implement FFTs with or without
pipeline overlap. The resulting schedule lets the FFT operate
in near-minimal time with no intracycle, intercycle, or inter-
stage memory conflicts. At constant throughput, FFTs based on
this work are strictly smaller than implementations based on
earlier algorithms; at constant area, they match or exceed the
throughput [5]. So the resulting design space is pareto-optimal
in area and throughput relative to prior work.
We say “near-minimal” rather than “minimal” memory and

time because of extremely small (relative to data memory)
per-butterfly bypass buffers required for maximum perfor-
mance in pipelined implementations only. The buffers make the
practical pipelined version of the algorithm truly conflict-free,
rather than almost conflict free, at least in our implementation
[5]. Without the buffers, a pipelined 1024-point FFT with one
butterfly unit might have 10 conflicts (depending on pipeline
depth), resulting in 5130 cycles of operation instead of 5120,
a difference of 0.2%. With the buffer, the algorithm completes
in minimal time, but the buffer increases total memory size
by one word above the 1024 already needed to store data, for
a difference of 0.1%. More information can be found in the
previous paper [5], which emphasized experimental results but
did not sufficiently develop the underlying algorithm—hence
the need for this more scholarly follow-up article.
To verify that it indeed produces conflict-free operation, the

scheme has been tested at multiple levels, from functional Perl
scripts down to Verilog RTL, for various -point FFT lengths
where varies from as little to 8 to as high as 8192, and at
multiple levels of parallelism from butterfly up to

by powers of two. Moreover, the Verilog implementation
has been used as part of an online FFT generator [18].

VI. CONCLUSIONS

We have shown how to produce conflict-free schedules for
in-place FFTs having any number of butterflies operating
at any radix , with or without pipeline overlap, operating on
any number of datapoints . The resulting group-G schedule

uses banks of single-ported memory, where is the next
power-of-2 greater than or equal to BRP, and where for
pipelines with no overlap and for overlapping
pipes. E.g., an FFT having one radix-two butterfly unit with no
pipeline overlap will need a group-2 schedule and two banks
of single-ported SRAM. An FFT having two radix-four but-
terflies and overlapping 3-deep pipelines will need a group-32
schedule with 32 memory banks, because where

thus .
Because single-port RAM is faster and requires less area to

implement versus multiported RAM, this ability to construct
conflict-free schedules for FFTs based on single-ported memory
lets us approach minimum area at maximum throughput.
In fact, experimental results show that 1) at constant area,

a conflict-free schedule, such as that produced by this type of
algorithm, exceeds the throughput performance of implementa-
tions based on earlier algorithms; and 2) at constant throughput,
FFTs based on this algorithm are strictly smaller [5].
Such conflict-free schedules can be constructed by the

generate-map-reorder sequence developed in Section IV-B
above and summarized by the equations in Appendix A. The
resulting schedule and map works for FFTs that use radix-
butterfly units to transform datapoints, for any given values
of , and , operating with overlapping or non-overlapping
pipelines of any depth.

APPENDIX

Schedule and Map Formulas: In each formula below

is an -bit number and is a -bit number,
and

number of stages for the transformation

also the number of bits in each datapoint

number of toggle bits

group size for the transformation

number of datapoints to be transformed

of mem. banks for conflict-free
operation Fig. 19. EXAMPLE: , .

A1. Scheduling FFTs With Non-Overlapping Pipelines:
where is a datapoint calculated using the formula for non-Given datapoints to transform and desired group size . overlapping pipelines, above, and To produce datapoint sequence for nonoverlapping

pipelines, where is the datapoint of stage :

Fig. 18. EXAMPLE: , .

where

(Note the final mul-add is just a shift/concat.)
A2. Scheduling FFTs With Overlapping Pipelines: Given

datapoints to transform and desired group size . To produce
datapoint sequence for overlapping pipelines, where

is the datapoint of stage :

A3. Map: Each datapoint gets stored in memory bank
which is calculated as follows:

A4. Examples: Fig. 18 shows the result of using these for-
mulae to produce a schedule and map for an 8-point FFT with
group size 4. Fig. 19 shows the schedule and map for a 32-point
FFT with group size 8.

ACKNOWLEDGMENT

This material is based upon work supported by the Defense
Advanced Research Projects Agency under Contract No.
HR0011-11-C-0007. Any opinions, findings and conclusion
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency.

REFERENCES

[1] T. Patyk, D. Guevorkian, T. Pitkanen, P. Jaaskelainen, and J. Takala,
“Low-power application-specific FFT processor for LTE applications,”
in Proc. Int. Conf. Embedded Comput. Syst.: Archit., Model., Simul.
(SAMOS XIII), Jul. 2013, pp. 28–32.

[2] H.-F. Luo, Y.-J. Liu, and M.-D. Shieh, “Efficient memory-addressing
algorithms for FFT processor design,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., 2014 [Online]. Available: http://ieeex-
plore.ieee.org

[3] J. Wu, K. Liu, B. Shen, and H. Min, “A hardware efficient VLSI archi-
tecture for FFT processor in OFDM systems,” in Proc. 6th Int. Conf.
ASIC (ASICON 2005), Oct. 2005, vol. 1, pp. 232–235.

[4] Z. Qian and M. Margala, “A novel low-power and in-place split-radix
FFT processor,” in Proc. 24th Ed. Great Lakes Symp. VLSI, 2014, ser.
GLSVLSI '14, pp. 81–82 [Online]. Available: http://doi.acm.org/10.
1145/2591513.2591563

[5] S. Richardson, O. Shacham, D. Markovié, and M. Horowitz, “An area-
efficient minimum-time FFT schedule using single-ported memory,” in
Proc. IFIP/IEEE 21st Int. Conf. Very Large Scale Integr. (VLSI-SoC),
Istanbul, Turkey, 2013, pp. 39–44.

[6] J. A. Hidalgo, J. López, F. Arguello, and E. L. Zapata, “Area-efficient
architecture for fast Fourier transform,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 46, no. 2, pp. 187–193, 1999.

[7] J. H. Takala, T. Jarvinen, and H. Sorokin, “Conflict-free parallel
memory access scheme for FFT processors,” in Proc. Int. Symp. Cir-
cuits Syst. (ISCAS'03), Bangkok, Thailand, vol. 4, pp. IV.524–IV.527.

[8] Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, and L. Yang, “Design of a 3780-point
ifft processor for tds-ofdm,” IEEE Trans. Broadcast., vol. 48, no. 1, pp.
57–61, Mar. 2002.

[9] J. Baek and K. Choi, “New address generation scheme for memory-
based FFT processor using multiple radix-2 butterflies,” in Proc. SoC
Int. Design Conf. (ISOCC '08), Nov. 2008, vol. 01, pp. I-273–I-276.

[10] S. Johnson and M. Frigo, “A modified split-radix FFT with fewer arith-
metic operations,” IEEE Trans. Signal Process., vol. 55, no. 1, pp.
111–119, Jan. 2007.

[11] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcu-
lation of complex Fourier series,” Math. Comput., vol. 19, no. 90, p.
297, 1965.

[12] D. T. Harper, III, “Block, multistride vector, FFT accesses in parallel
memory systems,” IEEE Trans. Parallel Distrib. Syst., vol. 2, no. 1,
pp. 43–51, 1991.

[13] D. A. Patterson and J. L. Hennessy, “Appendix A: Pipelining: Basic
and intermediate concepts,” in Computer Architecture: A Quantitative
Approach, 3rd ed. San Mateo, CA, USA: Morgan Kauffman, 2003.

[14] M. C. Pease, “Organization of large scale Fourier processors,” J. ACM
(JACM), vol. 16, no. 3, pp. 474–482, 1969.

[15] L. Johnson, “Conflict free memory addressing for dedicated FFT hard-
ware,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol.
39, no. 5, pp. 312–316, 1992.

[16] Y. Ma, “An effective memory addressing scheme for FFT processors,”
IEEE Trans. Signal Process., vol. 47, no. 3, pp. 907–911, 1999.

[17] C.-H. Chang, C.-L. Wang, and Y.-T. Chang, “A novel memory-based
FFT processor for DMT/OFDM applications,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Phoenix, AZ, USA, 1999, vol. 4, pp.
1921–1924.

[18] Interactive chip generator, powered by Genesis [Online]. Available:
http://www-vlsi.stanford.edu/genesis

Stephen Richardson received the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, and has worked in industry at
Weitek and MIPS, as well as at Sun Microsystems
and Hewlett-Packard research labs. He is currently
a Research Associate in the Stanford University EE
Department.

Dejan Marković is a Professor of Electrical
Engineering at the University of California, Los
Angeles, CA, USA. He is also affiliated with UCLA
Bioengineering Department as a co-chair of the
Neuroengineering field. His current research is
focused on emerging radio and healthcare systems,
programmable ICs, design with post-CMOS devices,
optimization methods and CAD flows. Dr. Markovié
received the 2007 David J. Sakrison Memorial Prize
at UC Berkeley for his PhD research. He received
an NSF CAREER Award in 2009. In 2010, he was

a co-recipient of the ISSCC Jack Raper Award for Outstanding Technology
Directions

Andrew Danowitz received his M.S. and Ph.D.
degrees in electrical engineering from Stanford
University, Stanford, CA, USA, in 2010 and 2014
respectively. He is currently an Assistant Professor
of Computer Engineering at California Polytechnic
State University, San Luis Obispo, CA, USA, where
he conducts research in the fields of digital design
methodologies, and energy efficient computing, and
hardware/software co-design.

John Brunhaver is an Assistant Professor at
Arizona State University, Tempe, AZ, USA, as
of 2015. His current research focuses on energy
efficient, programmable, domain specific computer
architectures, and the design automation techniques
for implementing them. His Stanford University
Ph.D. thesis, The Design and Optimization of A
Stencil Engine, examines the virtual machine model
for an image processing and image understanding
domain specific processor.

Mark Horowitz (F’00) is the Yahoo! Founders
Professor at Stanford University, Stanford, CA,
USA, and was chair of the Electrical Engineering
Department from 2008 to 2012. He co-founded
Rambus, Inc. in 1990 and is a fellow of the ACM and
a member of the National Academy of Engineering
and the American Academy of Arts and Science.
Dr. Horowitz's research interests are quite broad and
span using EE and CS analysis methods to prob-
lems in molecular biology to creating new design
methodologies for analog and digital VLSI circuits.

http://www-vlsi.stanford.edu/genesis
http://doi.acm.org/10
http:plore.ieee.org
http://ieeex

