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Abstract—A conflict-free schedule lets an FFT run to completion
without ever having to pause for memory-conflict resolution. We
show how to build such schedules for FFTs having any number
of butterfly units operating at any radix  , transforming any  
number of datapoints . Our algorithm works for FFT datapaths
with or without pipeline overlap, and for memory banks having
any number of access ports. Specifically, it enables construction of
conflict-free schedules using single-ported memory banks, which
require less area than more traditional multi-ported designs. 

Index Terms—Conflict-free scheduling, digital signal processor,
fast Fourier transform, FFT, single-ported memory. 

I. INTRODUCTION 

D EMAND FOR low-power and low-cost solutions under-
scores the proliferation of custom FFTs embedded in bat-

tery-driven devices like smart-phones and tablets, where they 
drive OFDM-based WiFi/WLAN and 4G cellular communica-
tion applications like LTE [1]. A myriad of architectural choices 
underlies the design of these FFTs, nearly all of which involve 
one or more radix-2, radix- , and/or prime-radix FFT stages. 
We develop a radix-2 schedule that is both power- and perfor-
mance-efficient, then demonstrate how it naturally extends to 
any radix, thus pointing the way to its use in existing and future 
FFT designs. 
Our schedule improves cost efficiency by reducing the die 

area required by custom FFT hardware. It targets smaller 
single-ported rather than traditional multi-ported memory, 
which has been shown to reduce the physical size of required 
on-chip memory by 30%–53% [2]. 
FFT implementations tend to fall into one of two main ar-

chitecture classes, serial-pipeline and memory-based [3]. Se-
rial-pipeline architectures generally require more hardware re-
sources. Therefore we target memory-based architectures, oper-
ating with as few as one butterfly unit, because our prime con-
cern is to minimize die area. In particular, we target in-place 
algorithms, generally chosen for their lower resource require-
ment versus pipeline architectures, and which can lead to lower 
power implementations [4]. 
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Each stage in an FFT must read and then write back its entire 
data set, and each time in a different order, so there are ample op-
portunities for memory-access conflict. This paper describes 
an optimal placement and access strategy for FFTs such that 
data can be fetched with zero conflicts so as to maximize per-
formance while using minimal area for data storage. 
Note that our minimal-area goal goes beyond the traditional 

concern of minimizing memory-locations-per-datapoint. Our 
in-place implementation indeed requires a minimum of only 

memory locations (data-words) to transform datapoints. 
But the area savings go a step further. Like recent work by Luo 
[2], our algorithm enables the use of single-ported memory 
structures, meaning less die area per data-word. 
To build an efficient FFT using only single-ported memory, 

we need to use multiple SRAMs and place the data such that 
butterfly unit(s) can fetch operands without conflict. We will 
show how to derive an algorithm to compute this placement, 
one that covers FFT designs operating on any given number of 
datapoints , using  any  number of butterflies operating in 
parallel, and where each butterfly operates at any radix using 
any pipeline depth .  
Initially, we restrict  , , and  to fixed powers of two, but 

later we will indicate how to relax this restriction. Also, we will 
show how to further extend the algorithm to cover overlapped/ 
pipelined execution, where  results get  written to memory at  the  
same time that new operands are being read, all without conflict 
or collision.1 

Our previous paper [5] presented an algorithm that worked 
empirically for any number of datapoints from up to 

and for , 2, 4, or 8 butterfly  units  of  radix  , 
operating with an overlapping pipeline of depth . The  
paper postulated that the algorithm should work for any values 
of , , , and  , but could not show why the algorithm would 
work. To address that shortcoming, this paper presents a re-
fined and simplified algorithm, and explains why it works 
for all , , , and  . 
We  chose a basic radix-2 Cooley-Tukey (CT) algorithm (Fig. 

1), rather than e.g., a constant-geometry (CG) design, to develop 
our method. While CG alternatives can simplify the addressing 
requirements for an FFT [6], the problem of parallel access to 
stride-separated data still remains [7]. Thus a conflict-free map 
such as the one we will propose should work for CG designs, 
especially considering that the map is heavily based on earlier 
work that specifically targeted CG [7]. The map should work 
as well for many other DFT forms, because it simply shows 
how to distribute data among memory banks to prevent colli-
sion regardless of stride. In particular, by using the radix-2 CT 
algorithm to develop a conflict-free map, we can simultaneously 
build a conflict-free CT schedule to go along with the map, using 
the same set of principles and the same simple hardware. 

1Note pipelining (Section IV) is different than time-multiplexing. 
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Fig. 1. Signal flow graph, radix-2 decimation in time (DIT). 

Our method should thus extend to many other common stride-
based DFT algorithms. E.g., instead of CT, a designer might 
consider prime-factor algorithms such as Good-Thomas, Wino-
grad, or a combination thereof [8], with the possible benefit of 
reducing/eliminating twiddle factors and complex multiplies, or 
providing a better fit for applications with a non-power-of-two 
number of datapoints [2]. Such designs could still be time-mul-
tiplexed and/or pipelined such that complex address generation 
would be required for conflict-free access, at which point our 
algorithm may be considered for precise data placement and ac-
cess patterns. 
Note that we target only the address generation portion of 

FFT design and do not concern ourselves with unrelated design 
issues like precise implementation of the trig table. Our sample 
design used a single ROM to hold pre-computed twiddle factors 
[5]; alternately, one might use distributed ROM tables [9] or 
even calculate twiddle factors on-the-fly [10]. 
Section II introduces schedules and groups, key concepts to 

understanding the derivation of our algorithm. Section III dis-
cusses how to map datapoints into memory banks such that they 
can be fetched and written without conflict, at least for simple 
FFTs without overlapped pipelines; and Section IV extends the 
algorithm to pipelined FFTs, as well as FFTs with radix 
Section V discusses background work, and then we conclude. 

II. SCHEDULES AND GROUPS 

A schedule tells us the order in which an FFT will process 
its data set. Our schedules are designed with a specific targeted 
group size . Each sequential group of datapoints within the 
schedule represents operands that can be processed all at once. 
Thus for maximum performance the group should be accessed 
all at once. When using single-ported memory, this means that 
the operands must live in separate SRAMs. 
Fig. 2 shows the complete schedule for a radix-2 FFT de-

signed to transform eight datapoints, a toy example we can use 
to demonstrate the important features of our algorithm. In our 
nomenclature, this is a schedule for and . 
This schedule is based on the original Cooley-Tukey algorithm 
[11]. (The map part of the schedule will be discussed later.) 2 

Unlike a signal flow graph, which can only show how data 
flows from stage to stage, this group-2 schedule shows the order 
in which a single radix-2 butterfly unit will read and process 
datapoints within each stage. In the schedule, we have bracketed 
each data pair to show that, conceptually, both are accessed at 
the same time. 
Reading Fig. 2 from top to bottom and left to right, the first 

bracket says that Stage 0 begins by reading operands dp[0] and 
dp[1]. After processing the operands, two results get written 

2Stage-to-stage arrows, added here for clarity, are left off future diagrams. 

Fig. 2. Group-2 schedule and SRAM map for 8-point FFT with one radix-2 
butterfly, i.e., and . If the operands in each bracketed pair 
live in separate memory banks, we call it a conflict-free schedule. This particular 
schedule is not conflict free. 

Fig. 3. Conflict-free schedule and SRAM map for 8-point data transform oper-
ating with group size 4 ( , ), designed to work with 
memory banks. (Note slight but necessary variation in Stage-2 datapoint order 
vs. Fig. 2, explained later in detail.). 

back to the same locations dp[0] and dp[1], overwriting previous 
contents. The butterfly then reads and subsequently writes back 
locations dp[2] and dp[3], and so on. A conflict-free layout will 
need only eight memory cycles per stage: four read pairs and 
four write pairs. The operand pairs in each stage must be sep-
arated by a distance of , thus Stage 0 is a stride-1 stage, Stage 
1 is stride-2, and so on. 
Because , an FFT with two radix-2 butterfly units 

operating in parallel, or an FFT with a single radix-4 butterfly, 
would process operands in groups of four instead of groups of 
two. To illustrate this group-4 schedule we place brackets next 
to groups of four datapoints instead of two, like in Fig. 3. 

III. MAPPING DATAPOINTS TO MEMORY BANKS 

Our goal is to map data into single-ported memory in a way 
that avoids conflicts. When we annotate a schedule to explic-
itly show these data-point-to-SRAM assignments, we call it a 
map. Our “schedule” of Fig. 2 is really a map, because it explic-
itly states which SRAM contains what datapoint. It maps out a 
simple but naïve scheme for two banks of SRAM such that even 
datapoints go to bank 0 and odd to bank 1. 
Throughout Stage 0, each bracketed group of two operands 

lives one apiece in the two memory banks; we call these groups 
nonredundant. Starting in Stage 1, however, each bracketed pair 
of operands lives in the same memory bank; dp[0] and dp[2] 
both live in bank SRAM0, dp[1] and dp[3] both live in bank 
SRAM1, etc. Because both operands live in the same bank, and 
because the bank only has a single port for reading, we cannot 
access both operands in the same memory cycle. We call this 
group redundant, because at least one memory bank is repre-
sented more than once within the group. 
Redundant groups cause conflicts, where more than one 

operand needs to be accessed from the same bank at the 
same time. A schedule like that of Fig. 3, with no redundant 



  

groups (and consequently no conflicts) is called a conflict-free 
schedule, or CFS. Note Fig. 2 is  not conflict free. 

A. Conflict-Free Schedule (CFS) with Optimal Memory Area 

Our challenge, then, is to come up with an algorithm that can 
build a conflict-free schedule for FFT designs using any number 
of data points , any number of butterfly units and any radix 
of butterfly unit . Or more simply, because group size 

, we want an algorithm that works for FFT designs using 
any number of data points and any group size . Clearly 
a conflict-free schedule for group size will require at least 

single-ported memory banks. Our goal is to use exactly G 
banks so as to produce  a  minimum-area design [5] also known 
as matched interleaved memory [12]. 
Fig. 3 shows a conflict-free schedule and map for an eight-

point data transform operating with a group size of four. We will 
show how to produce this map, and how the same procedure can 
generate a map for any number of datapoints, butterflies, groups, 
etc. 

B. Toggle Bits 

The group-4 schedule of Fig. 4(a) was built using a traditional 
Cooley-Tukey algorithm [11]. Here, instead of dp[0], dp[1], 
dp[2], etc., we only list the binary form of the index for each dat-
apoint—000,001,010, etc., still in groups of four.3 Notice that, 
within each group of four in every stage, there are two bits that 
always count 00,01,10,11 (these would be bits in Stage 0, 
bits in Stage 1 and bits in Stage 2). We call these the 
toggle bits, because within any given group of four, these are the 
only bits that change, while the other bits remain constant. This 
is true regardless of the number of data points in the schedule; a 
group-4 schedule for 4M datapoints would have 1M groups per 
stage, but each group would still have two toggle bits counting 
00,01,10,11 while the non-toggle bits are constant. 
Why is this important? Because 1) for conflict-free schedules 

we need non-redundant groups; 2) for non-redundancy, we need 
to map the four datapoints in each group to the four memory 
banks 00,01,10,11 in some order; 3) the toggle bits in each group 
count 00,01,10,11; so 4) we might achieve our CFS goal by cal-
culating the memory bank for each datapoint as a function of its 
toggle bits. 
In particular, we know there are toggle 

bits (call them and when group size ; and  we  
know that there are or two memory-bank bits and 

because we have memory banks. So one 
thing we could try is simply setting and to 
guarantee that each of the four memory banks were represented 
in each group; i.e., when counts 00,01,10,11, would 
count 00,01,10,11. In Stage 0 of Fig. 4(a) the toggle bits are 

. Stage-1 toggle bits are and Stage-2 
toggle bits are (not ).  
If we could simply set the memory bank  equal to the 

toggle-bit number we would easily accomplish our goal 
of nonredundant groups. Unfortunately in Fig. 4(a) that would 
mean dp[1] maps to SRAM1 in Stage 0 ( 

), but in Stage 1 it maps to SRAM0 ( 

3We denote the individual bits of an integer using subscripts, e.g., a three-bit 
integer is composed of three bits . We use the convention that the least-
significant bit (LSB) is the rightmost bit, and it has subscript 0. 

Fig. 4. Cooley-Tukey algorithm (a), modified to keep toggle bits adjacent (b). 
and . a) Schedule based on original Cooley-Tukey: toggle 

bits are non-adjacent in final stage. This can be remedied by e.g., rotating the 
lower bits in Stage 2. b) Modified schedule: toggle bits always adjacent. 
Note Stage-2 rotation (swap) of vs. original algorithm. 

Fig. 5. Toggle-based map successfully provides non-redundant groups for 
Stages 0 and 1. Stage 2 still has conflicts; its non-adjacent toggle bits and 

mean only two SRAMs per group of four. 

). For the FFT to work correctly as an in-place algo-
rithm, each datapoint must live in the same memory location 
throughout all stages. 
The problem is that the toggle bits change for each stage. 

Since the datapoint-to-memory-bank mapping must remain the 
same regardless of what stage we're in, we need to build a map-
ping such that 1) the memory bank number is always a func-
tion of the two toggle bits and 2) the datapoint-to-memory-
bank mapping stays the same regardless of stage. When 
, and for each stage where the toggle bits are adjacent, the  
following equation maps exactly four different memory banks 

to each group of four datapoints: 

or, for our example when datapoints and each datapoint 
index only has three bits , 

This gives us the schedule and map of Fig. 5. We see that this is 
now a conflict-free schedule throughout Stages 0 and 1, while 
Stage 2 still has conflicts. 



  

Fig. 6. Original Cooley-Tukey-based algorithm. It produces non-adjacent 
toggle bits in the later stages. 

Fig. 7. Our new algorithm keeps the toggle bits adjacent in all stages. This is 
the algorithm from Fig. 4(b), generalized to any group size . 

Unfortunately, the Stage-2 toggle bits and are non-adja-
cent. And while is a function of both toggle 
bits, only depends on the non-toggle-bit and we 
need each memory bank bit to be a function of the toggle bits. 
We can fix this by altering the schedule such that toggle bits are 
always adjacent, regardless of stage. 
Consider the alternate schedule for an eight-point FFT shown 

in Fig. 4(b). Here we've swapped the least-significant two bits 
of each datapoint number in Stage 2, so that the circled 

portion of Stage 2 now counts dp[2,6,1,5] instead of the original 
dp[1,5,2,6]. This is still a valid Stage-2 schedule because each 
pair of datapoints is separated by stride 4. But now, instead of 
Stage 2 having non-adjacent toggle bits we have 
adjacent toggle bits 
As it happens, our new Stage-2 ordering is the same as Stage 

1 except the toggle bits (the first two bits) have been rotated. 
This rotation yields a reordering that, combined with the previ-
ously shown XOR-mappings for and gives the desired 
conflict-free result originally shown in Fig. 3. 
We can use this toggle-rotation trick to generate a schedule 

for any number of datapoints D and any group size G such that 
the toggle bits within each group are always adjacent. We begin 
with the Cooley-Tukey algorithm for producing a standard FFT 
schedule [11], shown in Fig. 6. We modify this to account for 
group size (Fig. 7), producing the toggle-normal schedule as 
before, up until the stage at which the toggle bits would have 
wrapped to become non-adjacent. At that point, the algorithm 
switches to the rotated-toggle form. 
Fig. 8 shows the schedule our algorithm produces for a 

16-point transform with group size of eight. Instead of counting 
000,001,010,011 with LSB as the rightmost bit, rotated Stage-2 
toggle bits count 000,010,100,110 with the LSB as the middle 
bit, which doubles the stride vs. the previous Stage 1, while 
still preserving toggle-bit adjacency. Further-rotated Stage-3 

Fig. 8. Schedule produced by modified algorithm (Fig. 7) when and 
. In every  stage  : 1) toggle bits are adjacent, so the resulting SRAM map 

will be non-redundant and consequently conflict free; and 2) the fastest-toggling 
toggle bit (LSB) is bit position so Stage 0 is stride 1, Stage 1 is stride 2, and so 
on. LSB rotation goes: . 

toggle bits count 000,100,001,101 with the LSB as the leftmost 
bit, again doubling the stride versus the previous stage. Thus 
for every stage , the LSB of the toggles so Stage 0 is 
stride 1, Stage 1 is stride 2, etc. 

C. General Algorithm for Producing Nonredundant Groups 

So, to produce a conflict-free group- mapping for 
datapoints: First, use the algorithm of Fig. 7 to create a valid 
group- schedule with adjacent toggle bits. Then, for each 
-bit datapoint calculate a -bit 

memory bank number such that 

(1) 

and where 

the number of toggle bits, is equal to and 

is an -bit datapoint such 
that 

andthe number of stages, is equal to 

is the number of datapoints to be transformed. 
Like Takala's algorithm that inspired this work [7], a hard-

ware implementation for mapping address to bank requires 
only XOR gates each with a fan-in of . Thus the  same  
logic can accommodate FFTs of any variable length simply 
by designing for the maximum size and using 0's for the 
high bits when . Moreover,  
the reordering step (discussed later in more detail) entirely elim-
inates the earlier work's need for a “rotation unit” in the mapping 
hardware. 



  

Fig. 9. Two-stage pipeline with no overlap. 

Fig. 10. Two-stage pipeline with overlap of 1. This overlapped pipeline can 
do two reads and two writes in a single cycle. Its two-stage RP/W pipe only 
takes 13 cycles to complete the point transform. Because it accesses 
four datapoints at a time, it wants a schedule with group size . 

IV. FFT WITH PIPELINE OVERLAP 

The algorithm as developed so far works only for FFTs 
without pipeline overlap, a term we shall soon explain. For 
greater performance and efficiency, designers typically prefer 
overlapped designs [13]. To extend our algorithm to overlapped 
designs, we need to understand their access patterns and how 
they differ from non-overlapped designs. 
Our original example of Fig. 2 represents a schedule for a 

simple FFT with a single radix-2 butterfly. Using a simple two-
stage non-overlapped read-process/write (or RP/W) pipeline, 
the FFT 1) Reads its first two operands dp[0] and dp[1] from 
memory and Processes them; 2) Writes the two results back to 
memory locations dp[0] and dp[1]; and then starts over again by 
reading the next two operands. Each complete RP/W butterfly 
operation takes two cycles, times twelve butterfly operations 
means that a complete 8-point transform requires 24 cycles. We 
call this a 2-stage 0-overlap pipeline, shown graphically as the 
diagram of Fig. 9. 
Fig. 10 shows the same FFT, this time reconfigured as an 

overlapping RP/W pipelined design. In the first three cycles of 
operation this FFT 1) reads its first two operands from memory 
and processes them; 2) writes the two results back to memory 
while at the same time fetching the next two operands and pro-
cessing them; then 3) repeats the previous write/read-process 
cycle with the next two operands and so on until done. After the 
read in the first cycle, the pipeline is full, and each write/read-
process combination thereafter takes only one cycle to com-
plete. The entire 8-point transform thus now takes only 13 total 
cycles instead of the previous 24: one RP cycle to load the pipe, 
and then one cycle for each of twelve successive W/RP butterfly 
operations. 
A group-2 schedule will not suffice for this 2-stage 1-overlap 

pipeline, which now accesses four locations at once, for instance 
writing dp[0,1] while reading dp[2,3]. It will need a group-4 
schedule. 
There are many other ways to construct an FFT pipeline. Our 

original design described in Section II had a three-stage non-
overlapping pipeline aka a 3-stage 0-overlap pipeline. Mean-
while, we could just as easily construct an overlapped design 
that takes multiple cycles to complete the butterfly operation, 
like the five-stage pipeline shown in Fig. 11. 

A. Ordered Groups Create CFS for Overlapped Pipelines 

FFT's with overlapping pipelines pose a special challenge for 
conflict-free scheduling. As mentioned earlier, a non-overlap-
ping 2-stage pipeline can be satisfied with a group-2 schedule, 
but an overlapping 2-stage pipe needs a group-4 schedule. Not a 

Fig. 11. Five-stage overlapping pipeline. 

Fig. 12. The four operands in each aligned group AG map one apiece to the four 
memory banks. Unfortunately, unaligned groups UG in Stages 1 and 2 use only 
two memory banks each, that is, these groups are redundant. For the schedule to 
work with overlapping pipelines, all groups of operands must be nonredun-
dant, whether aligned or unaligned. In this example, and . 

group-4 schedule like that of Fig. 3, however; it needs an over-
lapping group-4 schedule. 
While the original group-4 schedule accesses non-overlap-

ping groups of four operands dp[0,1,2,3] then dp[4,5,6,7] then 
dp[8,9,10,11] and so on, the new overlapping group-4 schedule 
must accommodate overlapping groups of operands dp[0,1,2,3] 
then dp[2,3,4,5] then dp[4,5,6,7] and so on, where the last two 
datapoints of one group overlap the first two of the next group. 
The original non-overlapping groups beginning with dp[0] in 
each stage—dp[0,1,2,3], dp[4,5,6,7], and so on—are called 
aligned groups, while the new overlap groups dp[2,3,4,5], 
dp[6,7,8,9] are unaligned groups. 
We show unaligned groups in the schedule with overlapping 

brackets to the right of each column. Once we do this for one 
of our schedules with maps, as in Fig. 12, we immediately see 
a problem. While the original non-overlapping (or aligned) 
groups (bracketed on the left side of each column) all map to 
non-redundant groups of four memory banks, the new overlap-
ping (unaligned) groups (bracketed on the right) do not. And 
for a conflict-free schedule, we need for all the groups to be 
non-redundant, including the overlap groups. 
To be clear: sequential groups of operands beginning at 

cycle 0 in each stage of a schedule are aligned groups. Any other 
group of or fewer operands in a schedule is an unaligned 
group. A schedule with nonredundant aligned groups is con-
flict-free for non-overlapping pipelines only. But if we could 
build a schedule with nonredundant unaligned groups, it will be 
conflict-free for all pipelines, overlapped and non-overlapped. 
We are going to take a very simple approach toward 

achieving this goal. Focusing only on the aligned groups, we 
have solved the problem of redundancy, such that each group is 
nonredundant. Now, we add a further constraint: each aligned 
group within a stage must not only be nonredundant, but it must 
also be strictly ordered. That is, each of the four datapoints in 
an aligned group must map one-for-one to the four memory 
banks, and they must map to those memory banks always in 
the same order.  



  

Fig. 13. We sorted the four operands in each aligned group AG so as to make 
them strictly ordered per stage. As a result, unaligned groups UG are now guar-
anteed to be nonredundant. and . 

In the schedule of Fig. 12, produced by our algorithm as de-
veloped so far, the SRAM mapping for each group is nonredun-
dant, but the SRAM sequence within each group is unordered 
with respect to neighboring groups. Again: to work for overlap-
ping pipelines, the schedule needs groups that are both nonre-
dundant and strictly ordered within each stage. 
Fig. 13 shows the result of just such a map, where, e.g., each 

aligned group in Stage 0 has been ordered such that the data-
points  map to SRAM0, 1, 2, 3  in that order. The special con-
sequence of making ordered aligned groups is that now all un-
aligned groups are also ordered and therefore nonredundant and 
therefore conflict-free. 
When group size as in Fig. 13, this mapping means 

that aligned groups in even-numbered stages (Stage 0, 2, 4, ) 
keep bank order SRAM0,1,2,3 while odd-numbered stages are 
ordered SRAM0,2,1,3. And now, because the aligned groups are 
strictly ordered, this means that the unaligned groups are also 
strictly ordered: unaligned groups in even stages are ordered 
SRAM2,3,0,1 and unaligned groups in odd stages are ordered 
SRAM1,3,0,2.4 

This reordering is possible because datapoint pairs can be 
processed in any order so long as the stride relationship within 
each pair is preserved, i.e., stride 1 for Stage 0, stride 2 for Stage 
1 and so on, i.e., the operand pairs in each stage must be sep-
arated by . (Remember, we already changed the order of the 
datapoints once before, when our algorithm moved from pro-
ducing the schedule of Fig. 4(a) to the schedule of Fig. 4(b). 
The datapoint order in Stage 2 changed slightly, but the result 
of the transform is the same for either schedule.) 
The extension of this principle to arbitrarily deep pipelines is 

given in Section IV-C.  

B. Producing Ordered Groups 

To produce a schedule with strictly ordered, aligned groups 
of size , then, we use the following generate-map-reorder se-
quence: 
1) Generate a base schedule with adjacent toggle groups 

using the modified Cooley-Tukey algorithm of Fig. 7. 
2) Map datapoints to memory banks according to the simple 

parity mapping (1) at the end of Section III. 
3)  Reorder the datapoints such that the memory banks within 

each group follow the same strict order. 

4Note conflicts still exist when an unaligned group crosses an interstage 
boundary. E.g., in Fig. 13 the last two accesses dp[7,6] of Stage 0 use SRAMs 
2,3 while the first two accesses dp[0,2] of Stage 1 access SRAMs 0,2. SRAM2 
gets used twice in this same unaligned group of 4, thus the conflict. Our earlier 
paper [5] explains why such conflicts are rare, and describes a simple way to 
prevent them from impacting performance. 

Fig. 14. Middle of Stage 2 (stride-4 stage) of a 64-point transform. Before 
reordering: As  counts 3,7,11,15, toggle bits count 00,01,10,11 while 
non-toggle bits remain constant. The four datapoints map to four 
separate memory banks, but the memory banks are not in sequential order. 
After reordering: counts 15,11,7,3, and reordered toggle bits count 
11,10,01,00 while non-toggle still constant (00)(11). In the end, the four dat-
apoints map to four separate memory banks in sequential order. In  this  
example and . 

The previously-discussed generate and map steps produce a 
sequence of datapoints similar to that shown in Fig. 3, whose 
map has groups with unordered memory banks. The goal of 
the new reorder step is to rearrange each group's sequence to 
produce a new sequence such that the memory banks in each 
group are strictly ordered. 
We begin the reorder process by observing that the original 

memory bank order in any given group is strictly determined by 
the toggle bits of the datapoints in that group. This should be 
obvious considering the fact that, as we noted earlier, only the 
toggle bits differ from datapoint to datapoint within any given 
aligned group of operands. The toggle bits count from 0 to 
( -1) in strict numeric order, while the corresponding memory 
banks count from 0 to ( -1) in scrambled order determined 
by the XOR functions in (1) at the end of Section III. For ex-
ample, Fig. 14 shows a group of four datapoints in the middle 
of Stage 2 of a 64-point transform. Here the toggle bits are two 
bits in the middle of the datapoint index . As  counts 
3,7,11,15, the toggle bits count 00,01,10,11. 
If we take the toggle bits =(00,01,10,11) of Fig. 14 and 

change their order to match the calculated memory bank bits 
, we get the new datapoint order 

. If we now perform our -to- mapping (1) 
on this new order we get the desired canonical memory-bank 
order . In other  
words, to get the new sequence we replaced each toggle bit 
in each datapoint index with memory-bank bit . 
The reordering works because in Stage 2 is a function of 
and is a function of . Remember, and , 

and so from (1) we get and 
. 

Unfortunately, this does not hold true for every stage. In fact, 
when group size as in our example, is a function 
of only for even-numbered stages. Remember so 
in even-numbered stages and thus 

. In (even-numbered) Stage 2, and 
, and we achieve the desired final order 

SRAM0,1,2,3. In, e.g., (odd-numbered) Stage 1, however, we 
would have and , and  
reordering would fail to achieve the desired result. 
So instead of replacing each toggle bit with memory bank 
, let us replace with . We will do this because 

we know that, depending on stage number , it may  or  may  
not be true that  is a function of toggle bit . However, be-
cause for each stage is datapoint bit , and because 

is always a function of , we therefore know 

http:order.In


  

that is always a function of regardless of stage 
number . 
To be even more precise, we must take into account the fact 

that, in the final stages ( ) through ( ) of a schedule  
produced by our generate algorithm (Fig. 7), toggle bits are 
aligned at the top (MSB end) of the data word. For these stages, 
instead of , it is the case that the toggle bits are the 
top bits i.e., . 
Thus the final reordering procedure is 

Reordering 

(2) 

where is a datapoint calculated using the algorithm of 
Fig. 7, and =no. of transformation stages, and 

where s is stage number and T is number of toggle bits. 

This is the reorder part of the generate-map-reorder sequence 
we introduced at the beginning of this subsection. The com-
plete procedure appears more formally in Appendix A where 
A1, A2 give the generate and reorder formulas for non-over-
lapping and overlapping pipelines respectively, while Sec. A3 
recaps the map portion common to both. 
Fig. 15 shows how the process works for a more compli-

cated reordering. This is a schedule and map for part of Stage 
3 in a 256-point transform with group size . Highlighted 
columns and arrows explain the two-step process, whereby 
1) Every bit of datapoint index gets XOR'ed together to 

form one of the memory bank bits . The top-left quad-
rant of Fig. 15 illustrates how is formed by XORing 
datapoint bits , and (i.e., very third bit starting with 
). 

2) Memory bits replace toggle bits to produce a new ordering 
for the datapoints. The bottom half of Fig. 15 shows how 
bits replace toggle bits to form bits 

. 

The net effect is  that the original stride-16 order 
is replaced by a new, scrambled order 
such that the final memory bank order 

is a repeating series (SRAM0,2,4,6,1,3,5,7). 

C. Extension to Arbitrarily Deep Pipelines 

Earlier, we showed how to create a conflict-free schedule for 
a 2-stage pipeline with overlap of 1. Here, we show how the 
same principle can be used to create schedules for arbitrarily 
deep pipelines. 
For instance, say we have a three-stage pipeline with overlap 

of two (Fig. 16). Such a pipeline would write operands dp[0,1] 

Fig. 15. Generating the schedule for a couple of groups in the middle of Stage 
3 (stride 16) in a 256-point transform where . Four highlighted columns 
in the top group show how . Highlighted columns 
in the bottom group show how toggle bits get replaced by 
to form the new datapoint sequence. The final SRAM order is consistent 
(0,2,4,6,1,3,5,7) for each group. Note transformations are the same for both 
groups, we simply highlighted them differently in top and bottom to show the 
two steps of the transformation sequence. 

Fig. 16. Ordered groups allow arbitrary pipeline depth and overlap. This three-
deep pipeline requires a group schedule because it accesses, e.g., dp[0,1] 
at the same time it accesses dp[4,5]. We use because the algorithm only 
works for power-of-two group sizes. So in this example and . 

while reading operands dp[4,5] and would thus need nonre-
dundant groups of six operands. Because our algorithm only 
produces schedules for power-of-two group sizes, we create 
a group-8 schedule whose aligned groups are strictly ordered 
as shown in Fig. 16. Because the aligned groups are ordered, 
this means that all groups of or smaller, whether aligned 
or not, are nonredundant. In particular, all unaligned groups of 
six operands are nonredundant, meaning, e.g., that the first and 
last pairs in each group of six map to four separate memory 
banks and thus all four operands can be accessed simultane-
ously, which is what we need for this particular pipeline to work 
conflict-free. 
The algorithm thus extends to any pipeline depth with 

overlap simply by building a group- schedule with 
memory banks where, as in this example, is the largest 

power-of-2 equal to or greater than or (as we shall see) 
where and . 



  

Fig. 17. To produce a CFS for e.g., and , use a group-4 schedule 
( and ) and ignore extraneous data locations. 

D. Extension to Other Radices 

The extension of our algorithm to transforms with mixed 
radix and/or non-power-of-two radices is fairly straightforward. 
Simply use a group- schedule, where is the next power-
of-two greater than or equal to the largest radix being used, 
and distribute the operands such that each butterfly uses one 
group, with unused data locations per group when/if 
is less than . 
For example, when using radix-3 butterfly units to transform 

nine datapoints, we could use a group-4 schedule for sixteen 
datapoint locations and map the nine datapoints to dp[0,1,2], 
dp[4,5,6], and dp[8,9,10], respectively. That is, we put three dat-
apoints in each group of datapoint locations, while one 
datapoint location in each group goes unused. Note that while 
the resulting schedule will indeed be conflict-free, the packing 
is suboptimal, using four SRAMs with four data-words each, or 
sixteen datapoint locations for just nine datapoints. But we can 
do better than that. 
A better approach is to use only data locations that map to 

SRAMs 0, 1, and 2. Fig. 17 shows a group-4 map for sixteen dat-
apoints, and the subsequent radix-3 butterfly network using it to 
produce a CFS for transforming nine datapoints. The nine data-
points thus use locations dp[0,1,2], dp[5,4,7], and dp[10,11,8], 
which map to only three SRAMs instead of four. 
Thus the algorithm further extends to any radix , simply by  

using memory banks along with a group- schedule 
where is the largest power-of-2 equal to or greater than . 

V. BACKGROUND AND RELATED WORK 

Pease [14] presented a clever way of assigning operands to 
memory banks such that operands can be accessed without con-
flict within a given FFT stage. To keep running smoothly from 
one stage to the next, however, requires double buffering: a re-
dundant second block of memory that can be “unloaded and 
reloaded” while operating on the first block and vice versa. 
Johnson [15] used an in-place algorithm to produce conflict-

free mappings, and one that works for any given radix of but-
terfly, not just radix-2. However (according to Takala [7]) the 
algorithm does not extend to multiple butterflies operating in 
parallel. Also, Johnson does not discuss how to avoid intercycle 
conflicts that result from pipeline overlap, i.e., where the write-
back of results from a previous cycle interferes with the reading 
of a new set of operands. 
Ma [16] improves on these earlier schemes, with a way to 

map operands to memory banks using less computation and thus 

speeding the address generation. Ma reduces address-generation 
time down to 7 gate delays from Johnson's original 12. Ma's 
scheme requires a minimum of two banks of two-port memory 
plus a bypass buffer to hold an extra value between successive 
computations and, like Johnson, does not eliminate intercycle 
conflicts. 
Chang [17] avoids conflicts by using three 2-port RAMs that 

can read-and-then-write a given address in one clock cycle. 
Each RAM holds data points, thus over-provisioning by 

. The extra memory is used to buffer intermediate results 
and prevent collisions, by writing the data back in a slightly 
different order than the original read. 
Hidalgo [6] goes a step further to include parallel butterfly 

computations, requiring a complex “perfect unshuffle” intercon-
nection network for reordering, as well as a serial-in parallel-out 
(SIPO) delay line to further prevent stalls. 
Takala [7] extends Johnson's work, providing conflict-free 

mappings for an arbitrarily large number of operand pairs being 
either read or written in a given cycle, for any number of but-
terfly units operating in parallel, and for any given radix of but-
terfly unit, without requiring the additional registers of Hidalgo. 
However, there is no discussion about how to avoid intercycle 
conflicts. 
Inspired by Takala's algorithm, the scheme presented herein 

uses near-minimal memory to implement FFTs with or without 
pipeline overlap. The resulting schedule lets the FFT operate 
in near-minimal time with no intracycle, intercycle, or inter-
stage memory conflicts. At constant throughput, FFTs based on 
this work are strictly smaller than implementations based on 
earlier algorithms; at constant area, they match or exceed the 
throughput [5]. So the resulting design space is pareto-optimal 
in area and throughput relative to prior work. 
We say “near-minimal” rather than “minimal” memory and 

time because of extremely small (relative to data memory) 
per-butterfly bypass buffers required for maximum perfor-
mance in pipelined implementations only. The buffers make the 
practical pipelined version of the algorithm truly conflict-free, 
rather than almost conflict free, at least in our implementation 
[5]. Without the buffers, a pipelined 1024-point FFT with one 
butterfly unit might have 10 conflicts (depending on pipeline 
depth), resulting in 5130 cycles of operation instead of 5120, 
a difference of 0.2%. With the buffer, the algorithm completes 
in minimal time, but the buffer increases total memory size 
by one word above the 1024 already needed to store data, for 
a difference of 0.1%. More information can  be  found in the  
previous paper [5], which emphasized experimental results but 
did not sufficiently develop the underlying algorithm—hence 
the need for this more scholarly follow-up article. 
To verify that it indeed produces conflict-free operation, the 

scheme has been tested at multiple levels, from functional Perl 
scripts down to Verilog RTL, for various -point FFT lengths 
where varies from as little to 8 to as high as 8192, and at 
multiple levels of parallelism from butterfly up to 

by powers of two. Moreover, the Verilog implementation 
has been used as part of an online FFT generator [18]. 

VI. CONCLUSIONS 

We have shown how to produce conflict-free schedules for 
in-place FFTs having any number of butterflies operating 
at any radix , with or without pipeline overlap, operating on 
any number of datapoints . The resulting group-G schedule 



  

uses banks of single-ported memory, where is the next 
power-of-2 greater than or equal to BRP, and  where  for 
pipelines with no overlap and for overlapping 
pipes. E.g., an FFT having one radix-two butterfly unit with no 
pipeline overlap will need a group-2 schedule and two banks 
of single-ported SRAM. An FFT having two radix-four but-
terflies and overlapping 3-deep pipelines will need a group-32 
schedule with 32 memory banks, because where  

thus  . 
Because single-port RAM is faster and requires less area to 

implement versus multiported RAM, this ability to construct 
conflict-free schedules for FFTs based on single-ported memory 
lets us approach minimum area at maximum throughput. 
In fact, experimental results show that 1) at constant area, 

a conflict-free schedule, such as that produced by this type of  
algorithm, exceeds the throughput performance of implementa-
tions based on earlier algorithms; and 2) at constant throughput, 
FFTs based on this algorithm are strictly smaller [5]. 
Such conflict-free schedules can be constructed by the 

generate-map-reorder sequence developed in Section IV-B 
above and summarized by the equations in Appendix A. The  
resulting schedule and map works for FFTs that use radix-
butterfly units to transform datapoints, for any given values 
of , and , operating  with  overlapping or non-overlapping 
pipelines of any depth. 

APPENDIX 

Schedule and Map Formulas: In each formula below 

is an -bit number and is a -bit number,  
and  

number of stages for the transformation 

also the number of bits in each datapoint 

number of toggle bits 

group size for the transformation 

number of datapoints to be transformed 

# of mem. banks for conflict-free  
operation Fig. 19. EXAMPLE:  , . 

A1. Scheduling FFTs With Non-Overlapping Pipelines: 
where is a datapoint calculated using the formula for non-Given datapoints to transform and desired group size . overlapping pipelines, above, and To produce datapoint sequence for nonoverlapping 

pipelines, where is the datapoint of stage : 

Fig. 18. EXAMPLE: , . 

where 

(Note the final mul-add is just a shift/concat.) 
A2. Scheduling FFTs With Overlapping Pipelines: Given 

datapoints to transform and desired group size . To produce  
datapoint sequence for overlapping pipelines, where 

is the datapoint of stage : 

A3. Map: Each datapoint gets stored in memory bank 
which is calculated as follows: 

A4. Examples: Fig. 18 shows the result of using these for-
mulae to produce a schedule and map for an 8-point FFT with 
group size 4. Fig. 19 shows the schedule and map for a 32-point 
FFT with group size 8. 
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