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Summary

Recently there has been an increasing interest in using spectral searching as an alternative to

traditional database sequence searching methods for peptide identification from tandem mass

spectrometry. In spectral searching, the query spectrum is compared to a carefully compiled library

of previously observed and identified spectra; high spectral similarity signals positive identification.

We have previously developed an open-source software toolkit, SpectraST, to enable proteomics

researchers to integrate spectral searching into their data analysis pipeline. Here we report an

additional module to SpectraST that provides the functionality of spectral library building, allowing

users to build custom libraries when public spectral libraries do not adequately meet their needs. A

consensus creation algorithm was developed to coalesce replicate spectra identified to the same

peptide ion. Various quality filters were implemented to remove questionable and low-quality spectra

from the library. To validate the methodology, we first compiled a spectral library from the 1.3 million

SEQUEST-identified spectra (29,109 distinct peptide ions) among the publicly released datasets in

the Human Plasma PeptideAtlas, a collection of 40 contributed, heterogeneous shotgun proteomics

datasets, and verified the effectiveness of the library building algorithm to generate high-quality,

representative consensus spectra and to remove questionable spectra. We then re-searched the same

datasets by SpectraST against this spectral library filtered at different quality levels, and used the

performance as a benchmark to evaluate our library building methods and to determine key

parameters for high-quality library building. We demonstrated the importance of library quality on

the performance of spectral searching. The ready-to-deploy software allows individual researchers

to easily condense their raw data into specialized spectral libraries, summarizing useful information

about their observed proteomes into a concise and retrievable format for future data analyses.

Introduction

The inference of the peptide sequence from the tandem mass (MS/MS) spectra of fragmented

peptide ions is a critical step in mass-spectrometry based proteomics workflows. In most

proteomics application, this step is achieved by sequence database searching. In this approach,
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a target protein (or translated DNA) sequence database is used as a reference to generate all

possible putative peptide sequences by in silico digestion. The sequence search engine then

uses various rules to predict the theoretical fragmentation pattern of each of these putative

peptides, and compare the experimentally observed MS/MS spectra to these theoretical spectra

one-by-one for the best match (1–4). Unfortunately, due to the enormous search space and to

the computationally expensive spectral processing and similarity scoring algorithms, sequence

searching is time-consuming, and often requires substantial computational resources. With the

advent of more powerful mass spectrometers that are capable of generating spectra at even

faster rates, coupled with the increased interest in applying proteomics techniques to more

sophisticated experiments that require larger amounts of data, this problem is expected to get

worse in time. In addition, because of the uncertainty of the theoretical fragmentation pattern

predictions, the similarity scoring in sequence searching is suboptimal and often error-prone.

It is therefore important to devise methods that are more efficient and accurate than traditional

sequence database searching for identifying peptide MS/MS spectra (5,6).

Spectral library searching has been proposed as a useful complement, and in some cases, a

promising alternative to sequence database searching (7). In this approach, the peptide

identification is made by comparing the query MS/MS spectrum to a library of reference spectra

for which the identifications are known. This method has been commonly practiced for mass

spectrometric analysis of small molecules (8–10). Recently, thanks to the rapid accumulation

of shotgun proteomics data from which spectral libraries could be compiled, spectral searching

has become a reality for proteomics applications, with some preliminary demonstration of

success (11–14). As discussed in these reports, the advantages of spectral library searching

over traditional sequence searching are manifold. First, because the search space is confined

to previously observed and identified peptides, the search engine does not waste computational

time attempting to match the query spectra with putative peptide sequences that are never

observed in practice. This results in a drastic increase in search speed and selectivity. Second,

similarity scoring in spectral searching is more precise, in that one is comparing experimental

spectra to experimental spectra, and not to simplistic theoretical spectra constructed from

peptide sequences. Consequently, spectral searching is able to take full advantage of all spectral

features, including actual peak intensities and the presence of uncommon fragment ions, to

determine the best match. Therefore, the discriminating power of spectral searching is often

much greater, resulting in improved sensitivity and false discovery rates. Third, spectral

libraries can be condensed from identifications made by multiple methods (e.g., different

sequence search engines), allowing the strengths of each method to complement each other

and yield the best coverage possible. Consequently, by spectral searching against such a library,

one can reap the benefit of combining multiple methods, but without the additional time and

cost (11).

Of course, the availability of suitable spectral libraries is the prerequisite for the successful

implementation of spectral searching. In the context of proteomics, where the sheer number of

observable peptides makes it impractical to generate every reference spectrum from a purified

peptide, spectral libraries are typically compiled from peptide MS/MS spectra that are obtained

from the analysis of complex biological samples and identified confidently by traditional

sequence database searching. Recently, the National Institute of Standards and Technology

(NIST) has taken the steps to extend their mass spectral reference library, previously consisting

of small molecules, to include peptides from various organisms. Drawing from public shotgun

proteomics data available in various data repositories, they have compiled consensus spectral

libraries for 4 organisms, totaling about 90,000 spectra (15). Other smaller publicly available

libraries include those from X!Hunter (12) and from BiblioSpec (13). At the same time, we

have developed SpectraST, an open-source spectral search engine, to utilize these libraries for

peptide identification (11).
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However, despite the emergence of these public spectral libraries, there remains an acute need

for a ready-to-deploy software tool to create custom spectral libraries. The variety of biological

systems studied by mass spectrometry-based proteomics techniques is simply too great for a

centralized effort like NIST’s to tackle. Most likely, only the most popular model organisms

will have corresponding public spectral libraries. Even for these organisms, specialized

libraries covering subproteomes of interest are likely more useful than generic ones released

by NIST. Besides, there may also be needs for specialized libraries due to differences in

experimental practice (e.g., specialized peptide derivatization for enrichment or quantification

purposes), instrumentation and data acquisition parameter settings. Futhermore, due to various

constraints, some proteomics data are proprietary and cannot be released to the public domain

for centralized library building. A research group focused on a biological system not covered

by a suitable public spectral library can only resort to building their own custom spectral library.

To meet the needs discussed above, we have developed a ready-to-deploy library building tool

for use with proteomics data. Specifically, we have extended SpectraST, an open-source

spectral library search engine described above, to enable users to build their own spectral

libraries from sequence search results from several popular search engines. In the remainder

of this paper, we describe the library building features of this software tool. We also compared

various library building strategies proposed previously in the literature.

Experimental Procedures

Software Development

SpectraST is written in C++ and compiled on a Linux platform, although a Windows-

compatible version is made available together with the Trans Proteomic Pipeline (TPP)

software suite (16). The open-source, readily extensible software is designed to work efficiently

on modest computational resources, and requires no relational database backend or other

sophisticated computational infrastructure.

The spectral searching component of SpectraST has been previously described (11). To enable

users to build their own libraries from sequence search results, SpectraST has been extended

to accept sequence search results as input in the open pepXML format (16), and to perform

various library building functions, including consensus creation, best replicate selection, and

quality filters. Currently, search results from the sequence search engines SEQUEST (4),

Mascot (17), X!Tandem (18), Phenyx (19) and ProbID (20) can be written to pepXML formats

through the use of the Trans Proteomic Pipeline (TPP) software suite (16), and can all be used

in library building by SpectraST. It also provides other useful features, such as import of other

public library formats (NIST, X!Hunter and BiblioSpec), operations on libraries (union,

intersection, filters, etc.), and visualization of library spectra. The various library building

functionalities of SpectraST are depicted in Figure 1. Due to the open-source nature, users are

empowered to further explore strategies of library building within the framework of SpectraST.

We have also made SpectraST part of the TPP, which provides full workflow support, including

raw data file conversion to the open mzXML (21) format, automatic validation by

PeptideProphet (22), quantification, and data visualization, among others. This unique

advantage of SpectraST should enable users to switch over to the new workflow based on

spectral searching with minimal effort. The software is freely available to the community

(23).

Generation of Peptide MS/MS Spectra

In this study, we make use of the 40 publicly released (out of 61 total) datasets comprising the

current build of the Human Plasma PeptideAtlas (Build 2007-04). PeptideAtlas is a
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compendium of confidently identified peptides derived from a large number of contributed,

heterogeneous experiments processed through a uniform pipeline with validation (24–26).

Brief information about the sample preparation and instrumentation procedures employed in

these datasets is listed in Table 1; detailed information can be found in their respective

references. All samples are prepared from human serum or plasma, and digested with trypsin.

Sample depletion and fractionation methods vary from dataset to dataset. All the datasets used

in this study are from various models of ion-trap instruments. All of the datasets are available

as raw files, mzXML files, and SEQUEST search results on the data repository of PeptideAtlas

(http://www.peptideatlas.org/repository/).

Identifications of MS/MS Spectra by Sequence Searching

A total of about 16 million MS/MS spectra are acquired in the 40 datasets used in this study.

The raw data files are converted to mzXML 2.0 format using converters available with the

Trans Proteomic Pipeline (16). SEQUEST (version 27) is employed to identify the query

spectra by searching against a human IPI protein sequence database (31) (see Table 1), with

the following search parameters: +/− 3 Da parent average mass window, at least 1 tryptic

terminus, up to 5 missed internal tryptic cleavage sites, and variable methionine oxidation

(+16.0 Da). If applicable, cysteine alkylation modifications are also specified, depending on

the sample preparation of each individual dataset. A deamidation modification (−1 Da) on

asparagine is also specified for glyco-capture datasets. Exact search parameters used are

available alongside the datasets in the PeptideAtlas repository.

The SEQUEST search results of each dataset are analyzed through the Trans Proteomic

Pipeline. Mainly, PeptideProphet is used to validate the identifications and assign probabilities

to them, and ProteinProphet (32) is used to infer the set of proteins present in the samples based

on peptide identifications. A PeptideProphet probability above 0.9 is required for a peptide

identification to be included in the PeptideAtlas. A total of 1.3 million spectra are identified

with PeptideProphet probability above 0.9. The PeptideProphet-estimated false discovery rate

for these 1.3 million identifications is 1.2%. The data are available for download and browsing

as Human Plasma PeptideAtlas Build 2007-04 at http://www.peptideatlas.org/.

Library Building

A. Extraction of Experimental Spectra—The SEQUEST-searched, and PeptideProphet-

processed results of all 40 datasets are filtered by SpectraST for confident identifications. A

default PeptideProphet probability cutoff of 0.9 is used in this study, yielding a total of 1.3

million identifications. For each of these confident identifications, SpectraST extracts the

corresponding MS/MS spectrum, and imports it into a raw spectral library. Each spectrum is

normalized such that the base peak (most intense peak) has an intensity of 10000.0. Each library

entry contains the identification (peptide sequence, charge state, modifications if any), the

parent mass-to-charge ratio, the peak list of the experimental spectrum, and measures of

confidence such as sequence search scores and PeptideProphet probabilities. The isotopically

averaged parent mass-to-charge ratio of the library entry is calculated based on the peptide

sequence.

B. Creation of Consensus Spectra—The raw spectral library generated as described in

the previous section contains non-unique entries resulting from multiple observations of the

same peptide ion. Spectra with the same peptide identification are termed replicates. Where

available, replicates are combined to create a “consensus” spectrum that is representative of

the peptide ion through a series of steps:

1. Remove dissimilar replicates – Pairwise dot products among replicates are calculated,

and replicates that do not resemble the rest of the replicates are discarded.
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2. Rank the remaining replicates by quality -- The remaining replicates are then ranked

by their signal-to-noise ratio (defined here as the average intensity of the 2nd to 6th

highest peaks divided by the median intensity).

3. Align the replicates -- For each replicate, alignment is performed for each peak,

starting from the base peak, by looking for matching peaks in all other replicate spectra

within an adaptive m/z tolerance that is inversely proportional to the intensity rank of

the matched peak (+/− 0.8 Th at maximum). This helps limit the undesirable matching

of noise peaks while allowing significant peaks to be aligned easily. This process is

repeated for each replicate, starting from the top-ranked (highest signal-to-noise

ratio), and for each remaining unaligned peak.

4. Remove noise peaks -- A peak “voting” scheme is adopted, whereby the aligned peak

will be included in the final consensus spectrum if and only if it is present in more

than 60% of the replicate spectra. In other words, the resulting consensus spectrum

only contains peaks that are consistently present in a majority of the replicates, and

therefore should be largely devoid of random noise or spurious impurity peaks.

5. Average peak m/z and intensities -- The consensus m/z and intensity values are

calculated as weighted averages of the respective values of the corresponding peaks

in the replicates. The weight used is the signal-to-noise ratio of the replicate, so that

the consensus spectrum resembles the higher-quality replicates more than the lower-

quality ones.

6. Perform book-keeping – Various types of information, including the sample sources

and sequence searching scores are combined and copied over to the consensus library

entry, such that valuable information of the originating datasets is preserved for future

reference.

It should be noted that the above procedure for creating the consensus spectrum is devised in

the hope that it will work reasonably well under less than ideal circumstances, such as when

the number of replicates is small or when some replicates are of poor quality. The details of

the methodology were developed by trail-and-error and manual inspection of many consensus

spectra created with different methods and parameters, and were found to be effective. Due to

the open-source nature of the software, the user is encouraged and empowered to further

optimize the method as needed in different circumstances.

C. Quality filters—Even with a stringent probability cutoff and a deliberate and conservative

approach in creating consensus spectra, the resulting consensus spectral library still contains

occasional false positive identifications and low-quality spectra. To ensure that one does not

propagate the error made in the initial identification by sequence searching, or induce rampant

false positive matches to noisy spectra, the library is then subjected to various quality filters.

Three different quality filters were implemented in SpectraST, and are described below. The

user can select the desired quality level by turning on or off these qualiy filters. In this study,

the same spectral library is filtered at different quality levels and the results compared in the

Results and Discussion Section.

1. Impure spectra -- Impure spectra refer to spectra having an abnormally high number

of intense but unexplained peaks given the peptide identification. These are

determined by first attempting to annotate all the peaks as common fragment ions

from the peptide identified, and then calculating the fraction of intensity that remains

unannotated. SpectraST annotates each library spectrum using a comprehensive list

of fragment ion types, including neutral losses from the parent ion, b-, and y-type ions

and their neutral losses, a-type ions, and frequently observed fragments from alkylated

cysteines. For each possible fragment ion, the spectrum is scanned for the most intense

Lam et al. Page 5

Nat Methods. Author manuscript; available in PMC 2009 April 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



peak within +/− 0.8 Th of the theoretical monoisotopic m/z value of that fragment

ion. If found, the peak is assigned the respective fragment ion annotation, and any

present higher isotopic peaks (up to +2 Da from the monoisotopic peak) are also

annotated as such. All remaining peaks are considered unannotated. We found that

the quality filter is most effective if it only considers the 20 most intense peaks of a

spectrum. The intensities of the unannotated peaks among the top 20 peaks are

summed, and if this sum exceeds a default threshold of 40% of the total intensity of

the top 20 peaks, the spectrum is considered impure and removed from the library.

Note that since the annotation information is not used when creating the consensus

spectra, no bias is introduced, and so the information can therefore be safely used for

quality filter purposes.

2. Similar spectra having conflicting identifications -- Due to the presence of noise and

other experimental artifacts, sequence searching can sometimes assign completely

different identifications to highly similar spectra. Our experience suggests that one

of the conflicting identifications is likely false. SpectraST detects these conflicting

identifications by searching the library spectra against itself, and spotting any spectral

matches (above a default dot product cutoff of 0.7) that do not occur between pairs

of identical or homologous library entries. SpectraST will then decide which of the

two identifications is more likely correct by comparing the number of replicates,

whereby the identification made more times is favored. In case of a tie, the

identification with the higher PeptideProphet probability is favored. The other

spectrum with the conflicting identification is then removed from the library.

3. Singly observed spectra -- These spectra stem from peptide ions that are observed and

identified only once among millions of identifications, and are often the result of false

positive identifications by the sequence search engine. In SpectraST, the user can

select whether to remove all singly observed spectra from the library, or to remove

only the subset of singly observed spectra for which the identifications are

unconfirmed by other library entries. To be considered confirmed, the identified

sequence must either be identical to that of another library entry (but with a different

charge state or modification), or share a sub-sequence with that of another library

entry (e.g., a semitryptic peptide that is part of a tryptic peptide).

Library Evaluation by Spectral Searching

In order to test the libraries built as described above, the 40 datasets used to generate the spectral

libraries are re-searched by spectral searching against the libraries using SpectraST. The search

algorithm has been previously described (11). A precursor m/z tolerance of +/− 3.0 Th was

used. In spectral searching, all candidate library spectra within the m/z tolerance, irrespective

of the number of tryptic termini, charge state or modifications, are considered for each query

spectrum. To compare library building strategies, we performed the same searches against 6

spectral libraries built from the same 40 datasets, as listed in Table 2.

The search result of each dataset was then run through the Trans Proteomic Pipeline.

Specifically, PeptideProphet was employed to assign probabilities to the top-scoring hit of each

query spectrum. The probability threshold, above which the search results were considered

positive, was selected separately for each dataset to yield a dataset-wide false discovery rate

of 1%, as modeled by PeptideProphet. The same analysis was performed for search results of

each of the 6 spectral libraries. Receiver operator characteristics (ROC) curves were generated

by aggregating the PeptideProphet model statistics across all 40 datatsets.
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Results

Creation of Consensus Spectra

The consensus spectrum creation process is illustrated in an example in Figure 2 A peptide

ion, SITLFVQEDR (charge +2), was observed 6 times (Figure 2a through 2f), with various

quality measures listed in Table 3. As can be seen, 5 of the 6 replicate spectra (Figures 2a

through 2e) are largely similar, but differ a great deal in quality. Figure 2a is probably the

highest quality spectrum, with the best signal-to-noise ratio, and Figure 2e is the worst.

Considering the peak intensities, large peaks are generally large across the board, but there are

significant variations in the actual intensities among the replicates. Figure 2f, on the other hand,

is an anomaly; it does not quite resemble the other 5 replicates at all, but was nevertheless

assigned to the same peptide ion, by SEQUEST. From our experience, this degree of variation

among replicate spectra is fairly typical.

The consensus spectrum generated by SpectraST is shown in Figure 2g. Several features of

the consensus creation process are worth noting. First, the variation among replicate data can

be rather large, and a successful consensus building strategy must effectively deal with this

variability. This is true even for data acquired in the same instrument (ThermoFinnigan LTQ)

in the same experiment (HUPOPPP34/HUPO34_b1-SERUM) as in this example. SpectraST

was able to detect and remove the spectrum in Figure 2f from consideration, an extreme but

not uncommon example of this inherent variability. On average, about 8% of replicate spectra

are removed in this manner.

Second, the consensus spectrum (Figure 2g) is clearly much less noisy than any of the

replicates, with significantly fewer unannotated peaks. This can be attributed largely to the

peak voting scheme that selectively retains annotated peaks, even those within the noise regime,

by virtue of their consistent presence in multiple observations. Figure 3 illustrates the noise

reduction effect of the consensus creation process. Even for peptide ions with as few as 2 or 3

replicates, the number of peaks in the consensus spectrum is only about a quarter of those in

the individual replicates; at the same time, the fraction of annotated peaks is much higher in

the consensus spectrum (69%) than that in the individual replicates (42%). As more replicates

are available, the peak reduction ratio increases until it plateaus at about 6, and the fraction of

assigned peaks plateaus at about 86%. Therefore, it appears that the availability of more

replicates improves the quality of the consensus spectrum, but the incremental increase is

minimal after about 20 replicates. This is to be expected, as once a reliably representative

consensus can be formed, introducing additional replicates to it should not add much

information.

Third, the overall appearance of the consensus spectrum resembles the higher-quality

replicates, properly reflecting the difference in confidence in the accuracy of the observations.

Quantitatively this can be seen in the second-to-last column of Table 3. This desirable effect

is achieved by weighted-averaging the aligned peak intensities by a measure of replicate

quality. Intuitively, uneven weighting is especially important in cases when only a handful of

replicates are available, and some are of poor quality, as in the example shown in Figure 2.

In summary, building a consensus spectrum is analogous to the scientific practice of averaging

multiple measurements of a quantity of interest, in order to obtain a reliable measurement closer

to the truth by minimizing experimental noise and artifacts. Therefore, the consensus spectrum

is not only a better representation of the expected fragmentation pattern of the peptide ion, but

is often of higher quality than the individual observed spectra, as demonstrated.
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Quality Control of the Spectral Library

In this study, the spectral library generated is subject to careful quality control. The motivation

for this step is two-fold. First, because the spectral libraries are derived from sequence search

results, one must be cognizant of the fact that some of the identifications are incorrect. Including

these misidentified spectra in spectral libraries can potentially propagate the error of the

sequence search engines and generate false positives in the spectral searching step. Second,

even with the noise filtering mechanisms employed, some low-quality spectra still remain.

These spectra may have been identified correctly by the sequence search engine, but are not

likely to be representative of the peptide ion. The signal-to-noise ratio may be very poor, such

that future matches to a spectrum are as likely to result from matching signals as from matching

noise. Or there may be significant contamination due to coeluting peptides or other impurities,

such that some intense peaks in the spectra do not come from the peptide ion identified. It is

important to note that when creating a spectral library, the correctness of the identifications is

essential, but not sufficient. The library spectra must also be high-quality and truly

representative observations of the originating peptide ions in a relatively pure form, so that one

can be confident that future matches to these library spectra necessarily imply the observations

of the same peptide ions in the sample. Therefore special care must be taken to ensure the

accuracy and quality of the library spectra.

We implemented three different quality filters for SpectraST to achieve the goal of pinpointing

questionable spectra and removing them from our libraries. First, impure spectra, in which

there are numerous intense unannotated peaks, for which no straightforward explanation can

be found given the peptide identification, are detected and removed. In addition to weeding

out many false positives, this also filters out extremely noisy spectra and spectra from highly

contaminated peptide ions. Second, SpectraST also detects highly similar spectra which are

assigned completely different identifications by the sequence search engine. Our experience

suggests that one of the two conflicting identifications is likely a false positive, usually caused

by the presence of noise that confuses the search engine. If these questionable spectra are

allowed to remain in the library, they will not only propagate the false positives in spectral

searching, but also cause false negatives when the questionable library spectra come up as

high-scoring second hits, due to high spectral similarity to the corresponding correctly

identified spectra. In this case, the top scoring hit will be erroneously considered insignificant

and discarded, leading to false negatives. Third, as a conservative and simple approach,

SpectraST also allows the user to remove all singly observed spectra. In a large enough body

of data such as the Human Plasma PeptideAtlas, the odds are against observing a certain peptide

ion only once among millions of acquired MS/MS spectra. On the other hand, false positive

identifications, which can be thought of as randomly distributed in the search space, often end

up being singly observed. In fact, removing all the so-called “one-hit wonders” from the set of

identifications is a popular method to reduce the false discovery rates in large datasets.

Moreover, in the context of spectral library building, the singly observed spectra should be

treated with special caution, since no additional replicate is available to help remove random

noise and ascertain the peak intensities. They are therefore of lower quality and less likely to

be truly representative of their respective peptide ions.

Some statistics of the consensus spectral libraries created from the Human Plasma PeptideAtlas

datasets (Table 1) are presented in Table 4. The three columns represent the spectral libraries

at different quality levels: Q0 (no quality control; all spectra are included), Q1 (intermediate

quality level; impure spectra and spectra having spectrally similar counterparts with conflicting

identifications are removed) and Q2 (high quality level; singly observed spectra are also

removed in addition to those removed at Q1). As shown, the quality filters reduced the size of

the library by 18% at the intermediate quality level, and 43% at the high quality level.

Importantly, considering the breakdown by probability of correct identification (as estimated
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by PeptideProphet), the lower the probability, the more likely the spectrum will be removed

by the quality filters. In addition, among the spectra removed at Q1, 86% are singly observed

spectra, and 95% are observed in only one dataset. This is in line with the expectation that a

good majority of the removed spectra should be false positives and thus should have lower

probabilities and be more likely to be singly observed and only found in one dataset. This can

also be seen in Figure 4, a Venn diagram of the 3 categories of questionable spectra determined

by SpectraST. As shown, there is considerable overlap among the 3 groups, suggesting that

many questionable spectra fail multiple filters, providing some cross-validation among the

three filters based on different criteria. Manual inspection of many of the removed spectra

confirmed that most of them are either misidentified or of poor quality.

Library Evaluation by Spectral Searching

One of the outstanding challenges in developing a method for spectral library building is the

difficulty of assessing the quality of the resulting libraries, which are often too big for manual

inspection. We propose that the quality of the libraries can be evaluated by the following two-

step strategy. First, libraries are built from the sequence search results of a predefined set of

datasets, employing different strategies such as those outlined above. Second, the same datasets

are searched against the spectral libraries, and the spectral search results compared. The metric

we use is the number of spectra identified at fixed false discovery rates. Given that all the

identifiable peptide ions in those datasets are represented in the library, the performance of the

spectral searches will be solely determined by the effectiveness of library building methods,

free from the influence of incomplete library coverage. Naturally, a “better” library would

allow the spectral search engine to better discriminate the correct and incorrect hits, resulting

in a greater number of spectra identified at fixed false discovery rates. We therefore compare

the search results against the 6 spectral libraries in Table 2 and summarize the results below.

A. Effect of Quality Level—We observe a strong dependence on the quality level of the

library. As shown in Figure 5, at a constant false discovery rate of 1%, the more stringent the

quality level, the higher number of identified spectra, although the difference between quality

levels Q1 and Q2 is very small. At first glance this may be counterintuitive, since the unfiltered

library Q0 has the maximum coverage, and so should be able to match more spectra. However,

if one factors in the confidence of the spectral match, the larger number of noisy and impure

spectra in Q0 contributes to a higher background similarity score due to matching of noise

peaks, resulting in diminished discriminating power.

While we obtained the best performance with the most stringently filtered library Q2, we feel

that a better balance between discriminating power and coverage can be found at the

intermediate quality level Q1, which performs only slightly worse than Q2. In fact, removing

all the singly observed spectra is perhaps too conservative, as this reduces the library size by

over 40% and results in a significant loss of coverage. One can determine, by manual

inspection, that a significant number of the singly observed spectra are actually correctly

identified, and are observed only once probably due to the rarity of the peptide in the samples.

The quality filters of SpectraST, therefore, allow the user to selectively retain these potentially

interesting spectra while maintaining similar level of performance and discriminating power.

B. Consensus vs Best-Replicate—The use of so-called best-replicate libraries are

previously proposed (13). This has the advantage of simplicity over consensus approaches. We

therefore sought to compare the search results against the consensus spectral library (at quality

level Q2) and those against the corresponding best-replicate library (Q2-BR). The two libraries

contain exactly the same peptide ions; the former contains consensus spectra, and the latter the

highest-quality (with highest signal-to-noise ratio) spectrum among the replicates observed for

each peptide ion.
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As shown in Figure 5, the sensitivity and false discovery rate of the search against Q2-BR is

significantly inferior to that against Q2. This is in fact not surprising in light of the last two

columns of Table 3, which show that the non-best individual replicates are generally more

similar to the consensus spectrum than to the best replicate. In other words, the consensus

spectrum is a truer representation of the characteristic fragmentation pattern of the peptide ion

than the best replicate, which is still subject to experimental variations and other random

artifacts. This is especially true when the number of replicates is small and none of them is of

particularly good quality. Combining mediocre replicates to form a consensus spectrum, which

removes noise and averages out experimental variations, is a much more robust strategy than

selecting any of the replicates to include in the library.

C. Full versus Reduced Consensus Spectra—It has been proposed in previous attempts

in spectral library building that the library spectra be simplified by retaining only a fixed

maximum number of peaks (12). This has the benefits of smaller library size and quicker

searches; however, some information that can potentially be used to aid discrimination will be

lost. To study the effect of number of peaks retained, reduced libraries Q2-20p and Q2-50p

from the consensus library Q2 are created by retaining the most intense 20 and 50 peaks,

respectively, in each spectrum, and their performances in spectral searching compared.

Figure 6 shows the proportion of total scaled intensity retained at different peak number cutoff,

for the consensus library Q2. Because, in principle, all peaks included in the consensus

spectrum are present in a majority of replicates, and there is no singly observed spectrum in

Q2, one can assume that most, if not all, of the peaks included represent useful information

about the expected fragmentation of the peptide ion. As shown, only about 50% of the total

intensity is retained if 20 peaks are kept, and about 80% is retained if 50 peaks are kept. It takes

about 100 peaks to retain over 95% of the total intensity. Therefore one expects some loss of

discriminating power if we simplify spectra in this manner, and the question is if the loss is

significant enough to cause a noticeable drop in performance.

Figure 7 shows the ROC curves for the spectral searches against the libraries Q2, Q2-20p and

Q2-50p. It is clear that Q2-20p suffers from a significant drop in performance, whereas Q2 and

Q2-50p offer largely similar performance except at very stringent FDR cutoff. In examining

the score histograms (not shown), we observed decreasing separation between the positive and

negative distributions modeled by PeptideProphet for the search against Q2-20p. Therefore, it

appears that reducing library spectra to only the top 20 peaks is an over-aggressive

simplification. Keeping the top 50 peaks, on the other hand, seems to be acceptable for spectral

searching purposes under the conditions studied. However, as with the NIST public libraries,

we would still advocate maintaining the full spectra for the sake of completeness. In fact, the

computational cost of using the full spectra is minimal, as we do not observe a significant speed

gain with the reduced libraries, probably because reading and processing the library spectra is

only performed once and represents a small fraction of the total search time.

Discussion

We believe that spectral searching, with its many advantages already discussed elsewhere, is

primed to take a prominent role in proteomics data analysis, especially in larger-scale studies

of many repeated samplings, and targeted approaches in which is the researcher is actively

looking for known targets in the sample. For these increasingly popular experiments, where

discovery of novel peptides is not the goal, it makes sense to learn from the past. Spectral

library building and searching is a straightforward and logical approach to take advantage of

previous experiments to improve the efficiency and sensitivity of future data analyses.
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We have developed an easy-to-deploy, open-source software toolkit, SpectraST, to enable

proteomics researchers to integrate spectral library building and searching into their data

analysis pipeline. SpectraST is an open-source program that allows the user to build spectral

libraries in a variety of ways, and to utilize them to identify newly acquired spectra by spectral

searching. We then proceeded to evaluate several library building strategies by a re-analysis

of the Human Plasma PeptideAtlas datasets, totaling over 16 million spectra in 40 datasets,

contributed by researchers from all over the world. Among our key findings is the importance

of quality control, a critical aspect of spectral library building that, we believe, can be easily

overlooked, for the naïve goal of the library builder is often to make the libraries as

comprehensive as possible.

Lastly, we would like to emphasize again that while there are ongoing and rapidly progressing

endeavors to build public, comprehensive spectral libraries, library building need not and

should not be restricted to the experts. Because SpectraST, unlike competing tools for library

building, takes special care to preserve the linkage between the library and the originating

datasets, a spectral library built in this manner is simply a concise summary of previous

experiments and their data analyses, and is a much more accessible and useful resource than

the raw data files themselves. The easy-to-use software presented in this paper should enable

smaller and more specialized research effort to build their own spectral libraries, and in doing

so, better organize and condense huge amounts of largely unusable raw data into an easily

retrievable manner for future reference and data analysis.
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Figure 1.

A schematic diagram showing the various library building functionalites of SpectraST.

Pertinent file formats are given in parentheses.
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Figure 2.

An example of consensus spectrum building. (a–f) Raw replicate spectra assigned to the same

peptide ion SITLFVQEDR (charge +2) by SEQUEST at probabilities above 0.9. (g) Resulting

consensus spectrum created for this peptide ion by SpectraST. Solid lines: annotated peaks

(annotations shown for common ions); Dotted lines: unannotated peaks. Various quality

measures of the replicates are listed in Table 2. All 6 replicates are from the same dataset

HUPOPPP34/HUPO34_b1-SERUM, acquired on a ThermoFinnigan LTQ at a collision energy

of 25.
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Figure 3.

Reduction of noise after consensus creation, by the number of replicates used. The average

peak reduction factor (bars, left axis) is the average, over all library entries in that bin, of the

peak reduction factor, which is defined as the average number of peaks in the replicate spectra

divided by that in the consensus spectrum. The average fraction of peaks annotated in consensus

(line, right axis) is the average, over all library entries in that bin, of the fraction of peaks that

are annotated in the consensus spectrum. Note also that the average fraction of annotated peaks

in the raw replicate spectra is about 42% (not shown in the figure).
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Figure 4.

Venn diagram of quality-filtered spectra. The three categories of questionable spectra (Impure,

Conflicting ID, and Single) as determined by SpectraST are described in the Experimental

Procedure Section.
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Figure 5.

Receiver operator characteristic (ROC) curves for SpectraST searches against consensus

spectral libraries of three different quality levels – Q0 (squares), Q1 (triangles), Q2 (circles,

solid curve) and against a best-replicate spectral library Q2-BR (circles, dotted curve), of all

40 datasets used in the study, as estimated by PeptideProphet.

Lam et al. Page 21

Nat Methods. Author manuscript; available in PMC 2009 April 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6.

Average fraction of scaled intensity retained at different maximum number of peaks retained

per library spectrum, across all spectra in the Q2 library. Scaled intensity is defined as the

square root of the raw intensity; it is the measure used to calculate dot products during spectral

searching (Ref 11). Error bars represent one standard deviation of values calculated for all

spectra in the Q2 library.
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Figure 7.

Receiver operating characteristic (ROC) curves for the 3 SpectraST searches illustrating the

effect of library spectrum simplification, against consensus spectral libraries at three maximum

number of peaks retained – Q2 (full spectra retained, circles), Q2-20p (top 20 peaks retained,

diamonds), Q2-50p (top 50 peaks retained, triangles), of all 40 datasets used in the study, as

estimated by PeptideProphet.
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Table 2

Spectral libraries created from the 40 datasets listed in Table 1, and evaluated in this study.

Library Consensus/Best Replicate a Removed by Quality Filter b Max # Peaks
c

# Spectra

Q0 Consensus No Filter Full 29109

Q1 Consensus Impure, Conflicting ID Full 23841

Q2 Consensus Impure, Conflicting ID, Singletons Full 16669

Q2-BR Best Replicate Impure, Conflicting ID, Singletons Full 16669

Q2-20p Consensus Impure, Conflicting ID, Singletons Top 20 16669

Q2-50p Consensus Impure, Conflicting ID, Singletons Top 50 16669

a
Consensus (described in Section x) or Best-Replicate spectral libraries; in the latter, the replicate with the highest signal-to-noise ratio is selected as best

for each peptide ion.

b
Types of spectra removed by the quality filters described in Section x.

c
Spectrum simplification: Full = no simplication; Top N = keeping only the N most intense peaks in each consensus spectrum.
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Table 4

Statistics of Consensus Spectral Libraries at different quality levels.

Spectral library quality levels a Q0 Q1 (% decrease from Q0) Q2 (% decrease from Q0)

Total number of spectra 29109 23841 (18%) 16669 (43%)

By peptide termini

Tryptic 18265 14234 (22%) 10448 (43%)

Semitryptic 10844 9607 (11%) 6221 (43%)

By charge state

+1 1841 1818 (1%) 1152 (37%)

+2 18023 14237 (21%) 10175 (44%)

+3 9245 7786 (16%) 5342 (42%)

By probability b

>0.9999 9129 8973 (2%) 8195 (10%)

0.999–0.9999 3821 3648 (5%) 2965 (22%)

0.99–0.999 5432 4811 (11%) 3291 (39%)

0.9–0.99 10727 6409 (40%) 2218 (79%)

By number of replicates

1 11682 7172 (39%) 0 (100%)

2–3 4973 4493 (10%) 4493 (10%)

4–9 4663 4470 (4%) 4470 (4%)

10–19 2477 2441 (1%) 2441 (1%)

20+ 5314 5265 (1%) 5265 (1%)

By number of originating datasets

1 17980 12992 (28%) 5820 (68%)

2–3 6590 6329 (4%) 6329 (4%)

4–9 3442 3424 (1%) 3424 (1%)

10–19 930 929 (0%) 929 (0%)

20+ 167 167 (0%) 167 (0%)

a
Definition of the quality levels: Q0 = no filter; Q1 = impure spectra and spectra having similar counterparts with conflicting identifications are removed;

Q2 = spectra from only one observation are also removed in addition to those removed at Q1.

b
Maximum probability among the originating replicates as estimated by PeptideProphet.
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