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ABSTRACT 

Not withstanding its great success and wide adoption in Bag-of-
visual Words representation, visual vocabulary created from 
single image local features is often shown to be ineffective largely 
due to three reasons. First, many detected local features are not 
stable enough, resulting in many noisy and non-descriptive visual 
words in images. Second, single visual word discards the rich 
spatial contextual information among the local features, which has 
been proven to be valuable for visual matching. Third, the 
distance metric commonly used for generating visual vocabulary 
does not take the semantic context into consideration, which 
renders them to be prone to noise. To address these three 
confrontations, we propose an effective visual vocabulary 
generation framework containing three novel contributions: 1) we 
propose an effective unsupervised local feature refinement 
strategy; 2) we consider local features in groups to model their 
spatial contexts; 3) we further learn a discriminant distance metric 
between local feature groups, which we call discriminant group 
distance. This group distance is further leveraged to induce visual 
vocabulary from groups of local features. We name it contextual 
visual vocabulary, which captures both the spatial and semantic 
contexts. We evaluate the proposed local feature refinement 
strategy and the contextual visual vocabulary in two large-scale 
image applications: large-scale near-duplicate image retrieval on a 
dataset containing 1.5 million images and image search re-ranking 
tasks. Our experimental results show that the contextual visual 
vocabulary shows significant improvement over the classic visual 
vocabulary. Moreover, it outperforms the state-of-the-art Bundled 
Feature in the terms of retrieval precision, memory consumption 
and efficiency.  
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1. INTRODUCTION 

Due to the fast development of Internet applications and the 
popularity of digital sets such as digital cameras, digital video 
recorders, mobile phones, etc., the amount of multimedia data 
available in Internet has been explosively increasing. For example, 
in video and photo sharing websites such as YouTube, Flicker, 
etc., there are billions of images and millions of hours of digital 
videos. Moreover, these numbers keep increasing everyday. Thus, 
the multimedia research community is facing challenging 
problems including scalable machine learning, feature extraction, 
indexing and efficient multimedia information retrieval.  

The traditional textual information retrieval is successful in 
processing the large-scale textual information. For example, the 
Google and Bing search engines could answer users’ textual 
queries responsibly and accurately from billions of web-pages. In 
the textual information retrieval, the text words, which are 
compact and descriptive, are used as the basic features for 
documents. Inspired by the success of text words, researchers are 
trying to identify basic visual elements from images, namely the 
visual words and visual vocabulary [1, 2], which could function 
just like the text words. With descriptive and compact visual 
words, lots of popular algorithms for textual information retrieval 
can be leveraged for computer vision and multimedia tasks, such 
as visual search or recognition. Moreover, the problems caused by 
large-scale multimedia data might be successfully conquered. 

Traditionally, visual words are created by clustering a large 
number of local features such as SIFT [3] in unsupervised ways. 
After clustering, each cluster center is taken as a visual word, and 
a corresponding visual vocabulary is generated. With the visual 
vocabulary, image can be transformed as Bag-of-visual Words 
(BoW) representation [1, 2], which is similar as the Bag-of-Words 
representation in information retrieval. This is simply finished by 
extracting image local features and quantizing them with their 
nearest visual words. Attribute to its scalability and simplicity, 
BoW representation has been very popular in computer vision and 
visual content analysis in recent years. It has shown promising 
results for a wide variety of applications such as object 
recognition [4-19], image and video annotation [20, 21], video 
event recognition [22-24], etc. In addition, combining visual 
vocabulary and the framework of traditional information retrieval 
i.e., the inverted file structured indexing and TF-IDF (Term 
Frequency Inverted Document Frequency) weighting [1, 2], has 
been illustrated as one of the most promising solutions for the 
large-scale image and video retrieval [1, 2, 25-29].  

Not withstanding its demonstrated success, visual vocabulary is 
often proven not as effective as the textual words [1, 11, 20, 25,  
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(a)                                          (b) 

Figure 1. The traditional visual word is not descriptive enough. 

26]. For example, Figure 1(a) shows the visual words extracted 
from two images. The identical visual words between them are 
connected with red lines. It is clear that, although these two 
images contain different visual objects, lots of visual words are 
still matched between them. Therefore, it can be inferred that the 
traditional BoW representation [2] is noisy and non-descriptive. 
The ineffectiveness of the traditional visual vocabulary might be 
largely due to its three innate shortcomings, which will be detailed 
in the following. 

 
Figure 2. The commonly used Difference-of-Gaussian detector 

detects some noisy and unstable local features in image. 

First, many image local features detected by the commonly used 
detector i.e., the Difference-of-Gaussian (DoG) [3] are not 
informative and stable enough. In the toy example shown in 
Figure 2, lots of local features are detected in the cluttered 
background. Additionally, resizing and stretching the image, 
cause obvious variation to the number of the detected local 
features. This implies that some unstable local features may not 
survive the simple affine transformations. It can be inferred that, 
under the framework of classic visual word generation, these 
defects will result in many noisy visual words. Moreover, in near-
duplicate image retrieval [1, 2, 26], where the images are 
commonly edited by resizing, cutting, etc., the performance of 
classic visual word, which is generated based on the detected 
image local features will be degraded. 

Second, generated from single image local descriptors, classic 
visual vocabulary is not able to capture the rich spatial contextual 
information among the local features.  However, several previous 
works have verified that modeling these visual contexts could 
greatly improve the performance of many visual matching and 
recognition algorithms [1, 7-10, 19, 25, 26]. This is also the 
reason that a post geometric verification step [1, 26] is needed to 
improve the accuracy for vision tasks. An example illustrating this 
defect is shown in Figure 3.  

Previous approaches [1, 7-10, 19, 25, 26] to this spatial context 
modeling problem predominantly try to identify the combination  

 
Figure 3. The two images show different semantics. However, 

their visual word histograms are identical. Traditional BoW 

representation loses the spatial context in images. 

of visual words with statistically stable spatial configurations. 
This may be achieved, for example, by using feature pursuit 
algorithms such as AdaBoosting [30], as demonstrated by Liu et 

al. [9]. Visual word correlogram and correlation [10], which are 
leveraged from the color correlogram [10], are utilized to model 
the spatial relationships between visual words for object 
recognition in [10]; In recent work [26], visual words are bundled 
and the corresponding image indexing and visual word matching 
algorithms are proposed for large-scale near-duplicate image 
retrieval. Proposed as descriptive visual word pairs in [7, 25], 
Visual Phrase captures the spatial information between two visual 
words and presents better discriminative ability than the 
traditional visual vocabulary in object categorization tasks. 
Generally, considering visual words in groups rather than single 
visual word could effectively capture the spatial configuration 
among them. However, the quantization error introduced during 
visual vocabulary generation may degrade the matching accuracy 
of visual word combination. As illustrated in Figure 4, after 
quantization, local features that should be matched in the 
descriptor space may fail to match, and this error may be 
magnified with general visual word combinations [7-9, 25, 26]. 

 
Figure 4. The quantization errors are magnified when 

combining several visual words together, resulting in the 

ineffectiveness of the generated combinations. (Refer to the 

color pdf for a better review) 

Third, to generate the visual vocabulary from single local image 
descriptors, most previous methods employ a general distance 
metric, such as Euclidean distance or L1-norm, to cluster or 
quantize the local features. This is unsatisfactory since it largely 
neglects the semantic contexts of the local features. With a 
general distance metric, local visual features with similar semantic 
relationship may be far away from each other, while the features 
with different semantics may be close to each other. For instance, 
as illustrated in Figure 5, with unsupervised clustering, the local 
features with similar semantics can be clustered into different 
visual words, while the local features with different semantics can 
be assigned into the same visual words. This defection results in 
some incompact and non-descriptive visual words, which are also 
closely related with the mismatches occurred between images. For 
instance in Figure 5, the non-descriptive visual words (i.e., the 
black points) are matched between two images with different 
semantics, i.e., bicycle and motorbike. There have been some 
previous works attempting to address this phenomenon by posing  
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Figure 5. The semantic contextual information is lost in 

unsupervised visual vocabulary generation, resulting in lots of 

noisy visual words and mismatched visual words. 

supervised distance metric learning [7, 8, 12, 20]. In [12], the 
classic visual vocabulary is used as the basis, and a semantically 
reasonable distance metric is learned to generate more effective 
high-level visual vocabulary. However, the generated visual 
vocabulary is small-scale problem oriented. In a recent work [20], 
the authors capture the semantic context in each object category 
by learning a set of reasonable distance metrics between local 
features. Then, semantic-preserving visual vocabularies are 
generated for different object categories. Experiments on large-
scale image database demonstrate the effectiveness of the 
proposed algorithm in image annotation. However, the codebooks 
in [12] are created for individual object categories, thus they are 
not universal and general enough, which limits their applications. 
Generally, although promising progress has been made, most of 
those methods are small-scale problems oriented [7, 8, 12], or do 
not take the spatial contexts into consideration [12, 20]. 

Figure 6. The discriminant group distance measures the 

spatial context weighted Mahalanobis distance between two 

local feature groups. 

We address these three challenges discussed in a unified 
framework by casting the problem as refining local feature and 
learning a discriminant group distance between local feature 

groups. In contrast to previous methods, we propose an 
unsupervised local feature refinement strategy to filter the 
unstable local features in images. Further, we take groups of local 
features into consideration instead of treating the local features 
independently. In this way, the spatial contextual information 
between local features can be modeled and the magnified 
quantization error of directly combining visual words can be 
depressed. Based on the spatial configuration of the local features 
within the feature group, we define the spatial contextual 

similarity between two local feature groups (see Figure 6). 

Inspired by the metric learning framework of Globerson and 
Roweis [31], we propose to learn a spatial context weighted 
Mahalanobis distance metric, namely the discriminant group 
distance between local feature groups, by collapsing groups of 

local features with same semantic labels (see Figure 6). Due to the 
weight introduced from the spatial contextual similarity, the 
metric learning will put more efforts on those local feature groups 
with same semantic label but small spatial contextual similarities. 
This is in contrast to the original formulation of [31], where all 
training examples are treated equally. 

 
Figure 7. The proposed framework 

The learned group distance is further applied to create visual 
vocabulary form local feature groups, namely the contextual 

visual vocabulary, which incorporates both spatial and semantic 
level contextual information. This process is illustrated in Figure 7. 
We hence develop a more descriptive Bag-of-Contextual-visual-
Words (BoCW) representation for large-scale image applications. 
Its superiority, when compared with previous approaches, is 
demonstrated in two applications: large-scale near-duplicate 
image retrieval and image search re-ranking. The contribution of 
our work can be summarized as: 1) we propose an effective local 
feature refinement strategy to obtain stable local features; 2) we 
consider local feature groups instead of single local features and 
define a spatial context weighted discriminant group distance; 3) 
finally, we combine the spatial and semantic contexts in forming 
the novel contextual visual vocabulary. 

The remainder of this paper is organized as follows. Section 2 
illustrates our proposed local feature refinement strategy and local 
feature group detector. Section 3 formulates the learning problem 
for the discriminant group distance and presents the details of 
inducing the contextual visual vocabulary. Section 4 presents and 
discusses our experimental results in two image applications, 
followed by the conclusions and future work in Section 5. 

2. LOCAL FEATURE GROUP 

DETECTION 

To extract the local feature groups, we firstly use the DoG 
detector [3] to detect the interest points and extract local features 
in images. According to [3], from each interest point, three kinds 
of information can be extracted, i.e., the scale information S, the 
local feature descriptor D (i.e., the SIFT [3]), and the orientation  
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Figure 8. Extracted information from local feature P(S, O, D) 

information O. As illustrated in Figure 8, each local feature is a 
triple (S, O, D), where S and O stand for the scale and orientation 
of the interest point, and D represents the 128-dimensional SIFT 
descriptor [3], which describes the appearance information of the 
local feature.   

2.1 Local Feature Refinement 

In the local feature refinement, we intend to extract the most 
stable and informative local features, and filter the noisy and 
unstable ones as much as we can. Although SIFT is designed to be 
invariant to scale, rotation, and small viewpoint changes [3], as 
shown in Figure 2, after the transformation such as stretching, 
resizing, etc., the number of extracted local features is decreased. 
It is reasonable to infer that, the unstable local features which are 
sensitive to these transformations may not survive. Therefore, in 
order to find stable local features in an image that are resistant to 
affine transformation such as resizing, rotation, etc., we first 
generate new images by performing these transformations to the 
original image, then extract local features from these images, and 
finally find the repeated local features across these images.  

Suppose the coordinate of a pixel in the original image is [x, y], 
then the image transformation can be denoted as: 

1 2 5

3 4 6

ˆ

ˆ

a a ax x

a a ay y

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
                            (1) 

where [ ˆ ˆ,x y ] denotes the coordinate of the pixel in the new image 

after transformation. In Eq. 1, the affine transformation of the 
original image is controlled by six parameters, i.e., a1, a2, a3, a4, 
a5, and a6. It should be noted that introducing more complicated 
transformations means more strict requirements for the stability. 
However, more affine transformations also slow down the local 
feature extraction. In this paper, we only use two transformations: 
horizontal stretching (a1=0.8, a2=0, a3=0, a4=1, a5=0, a6=0), and 
vertical stretching (a1=1, a2=0, a3=0, a4=0.8, a5=0, a6=0). As 
illustrated in Figure 9 (a), we first extract local features on the 
original image and the new images. Then, for each detected local 
feature in the new image, we compute their corresponding 
coordinates in the original image with Eq. 2, i.e., 

1

1 2 5

3 4 6

ˆ

ˆ

a a ax x

a a ay y

− ⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= −⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

                      (2) 

Therefore, for each transformed new image, we map all its 
extracted local features back to the original image to get a feature 
map, e.g. the ones in the Figure 9 (b). Finally, we detect the 
repeated local features across different feature maps. For each 
local feature A in the original image, we first find its most similar 
local feature B from a small neighbor region in each feature map. 
The similarity is computed with Eq. 3 as:  

( )( , )sim A B A B A B= ×i                           (3) 

where, A and B are two 128-dimensional SIFT descriptors. If the 
similarity between this local feature A and the corresponding local  

 
Figure 9. An example of the local feature refinement 

feature B in each feature map is larger than a threshold, this local 
feature A will be kept as a stable feature. The threshold is 
experimentally set as 0.8 in our experiments. An example of the 
refined local feature is illustrated in Figure 9 (c).  

This local feature filtering strategy presents two advantages: 1) it 
is unsupervised, only based on its own information of the image 
and needs no training data; 2) it effectively decreases the number 
of local features in each image, hence improves the efficiency and 
memory consumption of the image applications. We will further 
test this algorithm in Section 5. 

2.2 Local Feature Group Extraction 

As shown in Figure 6, each local feature group contains several 
local features. We denote the local feature as P(S, O, D), and the 
local feature group as: G{P(1), P(2),…, P(n)}, where n is the number 
of local features contained in a group. In our formulation, the 
discriminant group distance is defined between two groups 
containing the same number of local features to simplify the 
computation. 

Different algorithms can be utilized to detect the local feature 
groups. To make a tradeoff between efficiency and effectiveness, 
we define the local feature group as the co-occurred local features 
within a certain spatial distance threshold. In general, the 
following factors should be properly considered to generate local 
feature groups: 1) The local feature group should be scale 
invariant; 2) the local feature group should be repeatable; 3) the 
number of local features contained in each group should be small; 
and 4) the extraction should be efficient, both in terms of 
computational and memory consumption. 

In order to satisfy the first requirement, we use the scale 
information [3] of local feature as the basis to compute the spatial 
distance related to the co-occurrence between local features. As 
for the second and third requirements, according to Liu, et al. [9], 
if too many local features or visual words are combined (i.e., 
combinations with higher orders), the repeatability of the 
combination will decrease. In addition, if more local features are 
contained in each group, there would be more possible feature-to-
feature matches between two groups. This may make the 
computation of the corresponding spatial contextual similarities to 
be time consuming. We shall detail this in Section 3. Therefore, to 
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meet the second, third and forth requirements, we fix the 
maximum number of local features in each local feature group as 
3. But it should be noted that our proposed framework does not 
hinder to use larger number of local features in a feature group. 

 
Figure 10. The utilized local feature group detector 

To detect local feature groups containing two local features, we 
use the detector illustrated in Figure 10. In the figure, a circle with 
radius R is centered at a local feature. A local feature group is 
formed by the centered local feature and another local feature 
within the circle. The radius R is computed with 

centerR S λ= i                                          (4) 

to achieve scale-invariance, where Scenter is the scale of the 

centered local feature, λ is a parameter that controls the spatial 

span of the local feature group, which in turn affects the co-

occurrence relation between local features. A larger λ is necessary 

for identifying stable spatial relations and overcoming the issue of 
potential sparseness of the local feature groups. However, a large

λ also increases the computational cost and is more prone to 

noise. We experimentally set λ as 6, which shows a good tradeoff 

between efficiency and performance. 

The detector illustrated in Figure 10 is also utilized to detect the 
local feature groups containing three local features. A local 
feature group containing three local features is generated by the 
centered local feature and its two nearest local features within the 
circle. For example in the Figure 10, a local feature group (Pcenter, 
Pa, Pb) is generated. Similarly, the radius R is computed with Eq. 

4 to achieve scale-invariance and the parameter λ is set as 6. 

By scanning each local feature with the detector, two collections 
of local feature groups containing two local feature and three local 
features can be generated, respectively. Because of the limited 

local feature number in each image and the properly selected λ , 

this operation is efficient. 

3. FORMULATION OF DISCRIMINANT 

GROUP DISTANCE 

The discriminant group distance is computed as the spatial context 
weighted Mahalanobis distance based on the local features in two 
groups. Note that the discriminant group distance is defined 
between groups containing identical number of local features. 
With n local features in each group, there are n! possible feature-
to-feature matches between two groups. We call each possible 
match as a match order r. As illustrated in Figure 11(a), there are 
2 match orders when n=2. It is reasonable to seek the best match 
order for the group distance computation. The best match order is 
defined as the one that maximizes the spatial similarity, i.e., the 
one in Figure 11(b). Consequently, to define the group distance, 
we first compute the best match order between two groups, and 
hence obtain the corresponding spatial contextual similarity based 
on the spatial relationship of the two feature groups. We shall 

present more details about this in Section 3.1. After that, we 
further learn a weighted Mahalanobis distance metric to model 
the distance between two groups, which will be introduced in 
Section 3.2 and Section 3.3, respectively. 

 
Figure 11. The illustration of match orders and the best match 

order based on the spatial contextual similarity 

3.1 Spatial Contextual Similarity 

We define the spatial context of each local feature group as the 
orientation and scale relationships between the local features 
inside the group. Because each local feature contains two aspects 
of spatial information i.e., the scale and orientation, the spatial 
contextual similarity between local feature groups is defined as:  

( )( , ) ( , ) ( , )max 2I J I J I J

r r
r

SimCxt SimS SimO= +               (5) 

where, SimCxt(I,J) denotes the spatial contextual similarity between 
local feature group I and J. SimSr

(I,J) and SimOr
(I,J) are the scale 

and orientation similarity with the match order r, respectively. 
Recall that each match order denotes a possible feature-to-feature 
match. The SimSr

(I,J) and SimOr
(I,J) are obtained based on the 

spatial and orientation relationships SR and OR contained in the 
two local feature groups, respectively. They are first computed as: 

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

1, 1,

( ) ( ) ( ) ( ) ( ) ( )

( ), 1 ( ), 1
( ), ( ),

log 1 N( )

log 1 N( )

n n
I i j I i j

r r

i j i i j i

n n
J u v J u v

r r

u r i i u r i i
v r j j i v r j j i

SR S S OR O O

SR S S OR O O

= > = >

= = = =
= > = >

⎧ ⎧
= + = −⎪ ⎪

⎪ ⎪
⎨ ⎨
⎪ ⎪= + = −
⎪ ⎪
⎩ ⎩

∑ ∑

∑ ∑
    (6) 

where N(θ) normalizes the angle θ between [0, π]. n is the number 
of local features in each group. The superscript (i) and (j) index 
the local features in group I, and r(i) and r(j) return their matched 
local features in group J with match order r. Since SR and OR are 
defined based on the relative ratio and difference, it is clear that 
they are scale and rotation invariant, respectively. 

Then, with the definition of SR and OR, we compute the SimSr
(I,J) 

and SimOr
(I,J) with match order r, which take values in [0, 1], i.e.,  

( , ) ( ) ( )

{ , } { , }

( , ) ( ) ( )

{ , } { , }

min max

min max

I J K K

r r r
K I J K I J

I J K K

r r r
K I J K I J

SimS SR SR

SimO OR OR

∈ ∈

∈ ∈

=

=
               (7) 

After computing the scale and orientation similarity between two 
local feature groups with all possible match orders, we finally 
obtain the spatial contextual similarity with Eq. 5. The 
corresponding best match order is denoted as r* and i*=r*(i) stands 
for a local feature, which matches the local feature i in the other 
group, under this best match order r*. A toy example explaining 
the best match order is illustrated in Figure 11(b). Intuitively, the 
local features within two feature groups are matched with the best 
match order to ensure the maximum spatial contextual similarity. 
The spatial contextual similarity of each local feature group pair 
and the corresponding best match order is calculated before 
computing their discriminant group distance.  
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3.2 Formulation of the Discriminant Group 

Distance 

Recall that each local feature group contains both the appearance 
(i.e., the SIFT descriptor) and spatial contextual information. Thus, 
the defined group distance should satisfy the following two 
requirements: firstly, it should properly combine the spatial and 
appearance cues; secondly, it should incorporate the semantic 
context between local feature groups. We address these two 
requirements by learning a spatial context weighted Mahalanobis 
distance, which is called discriminant group distance, i.e.,  

* *( ) ( ) ( ) ( )

1

( , )

( , | )

( ) ( )

whe

_____________

r 1_e

A

I J IJ

n k k T k k

IJ I J I Jk

I J

IJ

DGD G G A d

W D D A D D

W SimCxt

=

=

= − −

= −
∑         (8) 

where WIJ denotes the spatial contextual weight that is derived 
from the spatial contextual similarity in Section 3.1. DJ

(k*) is the 
local feature matched with DI

(k) under the best match order 
computed in Section 3.1. A is the 128×128 matrix to be learned 
from the semantic labels of the local feature groups.  

Intuitively, we try to find a good distance metric which makes the 
feature groups with similar semantics contexts close to each other 
and those with different semantics appearing far away. To achieve 
this, suppose we are given a set of M labeled examples: (GI, yI), 
I=1,…,M, where GI and yI denote feature group and label, 
respectively. Following Globerson, et al. [31], for each group GI, 
we define a conditional distribution for all other groups, i.e., 

1 1
( | )

A A
IJ IJ

A
IK

d dA

J I d
I

K I

p G G e e I J
Z e

− −

−
≠

= = ≠
∑
i          (9) 

Since an ideal distance metric would set the distance between pair 
of groups with the same labels to be zero, and distance between 
pair of groups with different labels to be infinity, the ideal 
conditional distribution should be 

0

1
( | )

0

I J

J I

I J

y y
p G G

y y

=⎧
∝ ⎨ ≠⎩

                           (10) 

Therefore, our metric learning should seek a matrix A* such that
*( | )A

J Ip G G is as close as possible to the ideal conditional 

distribution 0( | )J Ip G G . We define the objective function as: 

0,
( ) [ ( | ) || ( | )] . .A

J I J II J
f A KL p G G p G G s t A PSD= ∈∑     (11) 

where PSD stands for the set of Positive Semi-Definite matrices. 

Then, similar to [31], we compute the A* as: * arg min ( ).
A

A f A=  

3.3 Optimization of the Discriminant Group 

Distance 

With the Kullback–Leibler divergence computation, i.e., ( || )KL P Q  

[ ]( ) log ( ) ( ) ,
i
P i P i Q i=∑ Eq. 9, and Eq. 10, we may rewrite Eq. 11 as:   

0 0

,

, , , ,

__
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log ( | ) lo_ g_
A
IJ

J I J I

A

J I J I J I

I J
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J I IJ

I J y y I J y y I J I

f A p G G p G G p G G

p G G d e
−

= = ≠

⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦

= − = +

∑

∑ ∑ ∑ ∑

i
   (12) 

A crucial property of this optimization problem, which is 
manifested by Globerson and Roweis [31], is that the objective 
function is convex with respect to A. Since the optimization of A 

is convex, it would have only a unique minimum point which is 
globally optimal. Thus, it can be optimized with various convex 
optimization methods, and the most important consideration is the 
efficiency of different algorithms. As in [31], we also utilize a 
simple gradient descent method, specifically the projected 
gradient approach. At each iteration, we take a small step in the 
direction of negative gradient of the objective function, followed 
by a projection back in the PSD cone to make sure that A is 
always a PSD. This projection is performed by taking the eigen-
decomposition of A and removing the components with negative 
eigen-values. The gradient of Eq. 12 is given in the following 
equation, more details about its computation can be found in [31]. 

( ) * *( ) ( ) ( ) ( )

0

, 1

( ) ( | ) ( | ) ( )( )
n

k k k k T

IJ J I J I I J I J

I J k

f A W P G G P G G D D D D
=

⎛ ⎞
∇ = − − −⎜ ⎟

⎝ ⎠
∑ ∑ (13) 

We summarize the details of the optimization algorithm in 
Algorithm 1. The learned matrix A will render the final distance 
metric to incorporate the semantic contexts of each local feature 
group. Since each SIFT descriptor D is a 128 dimensional vector, 
the eigen-decomposition operation of the 128×128 matrix A can 
be finished very efficiently. The most time consuming operation is 
to compute the first order gradient in Eq. 13, which is of O(M2) 
computational complexity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.4 Contextual Visual Vocabulary Generation  

The contextual visual vocabulary can be generated through 
clustering the local feature group collection with the learned 
discriminant group distance. As a popular clustering algorithm, 
hierarchical K-means is generally efficient for the visual word 
generation. Additionally, the generated visual words with 
hierarchical K-means are organized in a hierarchical vocabulary 
tree, with which the images could be transformed into BoW 
representations efficiently. However, in K-means clustering, to 
compute the cluster centers of a cluster C with the defined 
distance metric, we have to solve the optimization problem: 

-

* arg min ( , | )
I

I
G

G cluster C

G DGD G G A
∈

= ∑             (14) 

Solving this Eq. 14 in each iteration of the K-means clustering is 
time consuming. Thus, we employ the hierarchical K-centers 

Input: set of labeled local feature groups:  

( , ), 1,..., .I IG y I M=  The maximum iteration time T. The 

weighting parameter α  

Output: the learned matrix A 

Initialization: Initialize 0A , which is a PSD matrix. 

For iteration 1:t T=  

 Set 1 ( )t t tA A f Aα+ = − ∇ [31] where ( )tf A∇ is computed 

with Eq. 13. 

 Calculate the eigen-values and eigen-vectors of the 

matrix 1tA +  

 1

T

t k k kk
A u uλ+ =∑ , 

Set 1 max( ,0) T

t k k kk
A u uλ+ =∑  

End 

Algorithm1: compute the matrix A 
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clustering instead. Different form K-means, the cluster center of 
K-centers is simply updated as the data point having the maximum 
similarities with the other data points in the same cluster. It is 
computed as 

*

,  ,

arg min ( , | )
I

I J

I J I
G

G G cluster C J I

G DGD G G A
∈ ≠

= ∑      (15) 

According to Eq. 15, we need to store a group-to-group similarity 
matrix for each cluster to update the cluster center. Intuitively, 
once the similarity matrix of a cluster is computed, the clustering 
operation in its corresponding sub-clusters can be finished 
efficiently. Meanwhile, the clustering can be implemented in a 
depth-first way to lower the memory cost. The clustering finally 
produces a hierarchical vocabulary tree, and each cluster center of 
the leaf node is taken as a contextual visual word. Since the 
contextual visual words are generated from local feature groups 
rather than the single local features, each of them preserves rich 
spatial contextual information. Meanwhile, because the distance 
utilized for clustering is more discriminative, the contextual visual 
words have more capacity to represent the image concept than the 
traditional visual words. In addition, after quantizing local feature 
groups into contextual visual words, we also keep their spatial 
cues for verification to remove the mismatches. We compare the 
proposed contextual visual vocabulary with the state-of-the-art 
algorithms in different applications in the Section 4. 

4. EXPERIMENTS AND EVALUATIONS 

4.1 Training Set  

In order to optimize the discriminant group distance to make it a 
generic distance metric, a representative training set is required. 
Since the group distance measures the distance between local 
feature groups rather than the entire images, it would be ideal to 
annotate certain amount of local feature groups to form the 
training set. However, such annotation task is difficult and 
expensive to conduct. As a tradeoff, we first select 1500 image 
categories from the ImageNet [32] dataset, which contains 
visually consistent single objects. Then, to depress the noise from 
the cluttered background, we first run the local feature refinement 
and then extract the local feature groups from the most centered 
patches of each image. The local feature groups extracted from 
the same image category are tagged with the same labels. From 
the selected categories, we manage to get about 1 million local 
feature groups containing two local features and about 0.5 million 
groups containing three local features for training, i.e., the 
discriminant group distance learning. After that, we extract about 
5 million local feature groups containing two local features and 2 
million groups containing three local features for the K-centers 
clustering. With the extracted local feature groups and the learned 
group distance, contextual visual vocabulary sets with different 
sizes are generated by different parameters, i.e., layer number and 
child number in hierarchical clustering. Our experiments are 
conducted on a computer with a 4-core 2.8GHz CPU and 4GB 
memory. The distance metric learning and the contextual visual 
vocabulary generation are finished within two days. 

4.2 Near-duplicate Image Retrieval 

The goal of near-duplicate image retrieval is to locate the near- 
and partial-duplicate images in the image database for a given 
query. In recent years, it has been successfully utilized in 
copyright violation detection and large-scale web image retrieval 
[2, 26, 29]. In this experiment, we test the contextual visual 

vocabulary on two image datasets. The first one is the Ukbench 
dataset [2]. The Ukbench dataset contains 2550 image categories, 
each of which contains 4 near-duplicate images. Examples of the  

 
Figure 12. Examples of the dataset utilized for image retrieval 

Ukbench dataset are illustrated in Figure 12 (a). The other dataset 
is a large-scale image dataset collected with the similar method of 
Wu et al. [26]. We first randomly download about 1.5 million 
web-images from the Internet. Then, we manually download 12 
image categories including “Abbey Road”, “Uncle Sam”, “Energy 
Star”, etc. as the image set with groundtruth. Each category 
contains about 30 near-duplicate images. Some examples of the 
collected near-duplicate images are illustrated in Figure 12 (b). 

The first experiment is carried out on the Ukbench dataset. The 
10200 images are first transformed into Bag-of-Contextual-visual- 
Words (BoCW) representation and then, inverted file is adopted 
for image indexing. The TF-IDF weighting [2] computed with Eq. 
16 is utilized for image retrieval, i.e., 

( )
( )

( )

| |
log

|{ : } |i

J
J i

J

kk

n D
tfidf

n d i d
=

∈∑
i                    (16) 

where, tfidfi
(J) denotes the importance of visual word i to image J, 

ni
(J) is the time of occurrence of visual word i in image J. | |D

denotes the number of images in the database and |{ : } |d i d∈ is 

the number of images containing the visual word i. All the 10200 
images are used as queries. For each query, we compute the score, 
i.e., the 4 × recall at the first four returned images [29]. The 
overall scores of the compared algorithms, i.e., A-1-A-9 are 
presented in Figure 13.  

 A-1: 57481 classic visual words without Local Feature Refinement 
(LFR) 

 A-2: 44100 Contextual Visual Words (CVWs) based on feature-
Group-containing-Double-local-Features (GDF) without LFR 

 A-3: 44100 CVWs based on GDF with LFR 
 A-4: 44100 CVWs based on feature-Group-containing-Three-local-

Features (GTF) without LFR 
 A-5: 44100 CVWs based on GTF with LFR 
 A-6: Bundled feature [26] with 758350 classic visual words without 

LFR  
 A-7: Bundled feature [26] with 758350 classic visual words with 

LFR 
 A-8: 90000 CVWs based on GDF with LFR 
 A-9: 122500 CVWs based on GDF with LFR 

(a) Two examples of the Ukbench dataset [2]

(b) Two examples of the collected near-duplicated images
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Figure 13. The comparisons of scores between the six groups 

From the comparison between A-2 and A-4, we can conclude that 
Local Feature Group (LFG) containing three local features (A-4) 
shows better performance than the LFG containing two local 
features (A-2). This illustrates the effectiveness of preserving 
more spatial information in contextual visual vocabulary. It is also 
noticeable that the local feature refinement improves the LFG 
containing two local features (A-2, A-3, A-8, A-9), but is not 
helpful for LFG containing three local features (A-4, A-5). This 
might be because that the local feature refinement makes the local 
features in the image sparse, making it difficult to detect stable 
LFGs containing three features with the detector shown in Figure 
10. Obviously from the comparisons between A-6 and A-7, the 
local feature refinement improves the performance of bundled 
feature. This might be because the unstable noisy local features 
disturb the meaningful spatial configurations in images, thus 
removing them significantly improves the robustness of the 
computed spatial relationship within the bundled feature. From 
the scores of A-9 and A-8, we can conclude that the contextual 
visual vocabulary performs better than the bundled feature with 
more compact vocabulary size i.e., 122500 contextual visual 
words vs. 758350 classic visual words utilized in bundled feature. 

Besides the comparison of score we also compare the memory 
consumption i.e., the size of the index file, of classic visual word, 
bundled feature, and contextual visual word. The sizes of their 
index files after indexing 10200 images are compared in Table 1. 

Table 1. The comparison of the size of the index file  

A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9

35 
MB 

43.5 
MB 

39.5 
MB 

32.7 
MB 

25.4 
MB 

92.6 
MB 

80.3 
MB 

40.4
MB

41.8
MB

Intuitively from the Table 1, the local feature refinement 
decreases the index size of both the contextual visual word and 
the bundled feature. Meanwhile, it can be observed that the 
bundled feature needs larger memory to load the index file for 
image retrieval. This is because for each visual word in an image, 
it needs to store certain numbers of 19-bit “bundled bits [26]”, 
which records the spatial context of visual words in a MSER 
(Maximally Stable Extremal Regions) [33]. The bundled bit 
number equals to the number of bundled features where this visual 
word appears. Thus, in addition to image ID and the visual word 
frequency information, extra space is needed to store the “bundled 
bits”, resulting in the large index file. Differently, for contextual 
visual word based image indexing, we only need to store the 
image ID and visual word frequency for each contextual visual 
word. The spatial information is combined in individual 
contextual visual words, i.e., each contextual visual word contains 
spatial contextual clues. Thus, the contextual visual vocabulary 
based image indexing captures spatial contextual information with 
very compact index size.  The reason why A-2, A-3, A-8, A-9 
show larger index sizes than  A-1 is  because  more  local feature 
groups can be extracted than the local features. As a result, the 

number of contextual visual words in images is generally larger 
than the number of classic visual words.  

The other experiment is carried out on the large-scale image 
dataset to test the performance of contextual visual word in large-
scale image retrieval. The images with ground truth are indexed 
together with the other ones. In the retrieval process, all the 
images with ground truth are used as queries. For each query, we 
compute the Mean Average Precision (MAP), which takes the 
average precision across all different recall levels in the first 40 
returned images. The overall MAPs of the groups A-7, A-8, A-9 
and A-10 are illustrated in Figure 14.  

 A-10: 758350 classic visual words with local feature refinement 

 
Figure 14. The overall MAP obtained by the four algorithms 

with different numbers of indexed images 

From Figure 14, it is clear that, the bundled feature performs 
better than the classic visual word, i.e., the A-10. This is because 
it combines more spatial cues by bundling several visual words 
together. It is also obvious that the A-9 outperforms the bundled 
feature when 0.5 million and 1 million images are indexed. This 
implies the stronger descriptive power of the contextual 
vocabulary. The MAPs corresponding to different image numbers 
clearly show that, augmenting the image database causes the 
performance degradation of both classic visual word and 
contextual visual vocabulary. However, the contextual vocabulary 
still performs better than classic visual word with more compact 
vocabulary size (i.e., 122500 and 90000 contextual vocabularies 
vs. 758350 classic visual words). The reason why we do not test 
the bundled feature in larger image databases (i.e., 1.5 million 
images) is because the index size of bundled feature is large, and 
thus 1 million is the maximum image number that the 4.0GB 
memory of our computer could handle with bundled feature.  

 
Figure 15. Comparisons of efficiency between the classic visual 

word, bundled feature, and contextual visual word 

Besides the comparisons of MAP, the efficiency is compared in 
Figure 15. From the figure, it can be observed that bundled feature 
is time consuming. This is because the online spatial verification 
between two bundled features is carried out during the retrieval 
process [26]. The time consumed by A-8 and A-9 is mainly due to 
the computation of discriminant group distance between local 
feature groups and the contextual visual vocabulary tree. However, 
once the image is transformed into BoCW representation, the 
retrieval operation can be finished efficiently. This is the reason 
why the A-8 and A-9 show similar efficiency with different 
numbers of indexed images. 
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From this experiment, we can conclude that, the contextual visual 
vocabulary shows better performance than the bundled feature [26] 
and the classic visual word. In addition, it is proven better than the 
bundled feature in efficiency and memory consumption. Examples 
of contextual visual vocabulary based near-duplicate image 
retrieval are illustrated in Figure 16. 

 
Figure 16. Examples of near-duplicate image retrieval based 

on contextual visual word. The most left images are the queries. 

4.3 Topic Word based Image Re-ranking 

Image search re-ranking is getting popular in recent years [34-36]. 
The goal is to resort the images returned by text-based search 
engines according to their visual appearances or tag information 
to make the top re-ranked images more relevant to the query.  

In our experiment, for the images retrieved with a query Q, we 
utilize the Latent Semantic Analysis (LSA) [37] to compute the 
importance of each visual word to Q. The most important ones are 
identified as topic words, which are then utilized for image re-
ranking. Proposed in natural language processing, LSA analyzes 
the relationships between a set of documents and terms they 
contain by producing a set of concepts related to the documents. 

Similarly, for the image set, we build a m n×  sized term-

document matrix M, where n is the number of documents, and 
each m-dimensional vector is a contextual visual word histogram. 
According to LSA, M can be decomposed with Singular Value 
Decomposition, 

TM U V= ∑                                     (17) 

where U and V are orthonormal matrices and ∑ is a k k×  sized 

diagonal matrix. Each diagonal element in∑  represents a latent 

topic found in M. We keep the largest t elements and set the rest 

to zero, resulting in a new matrix ∗∑ . Intuitively, since many 

returned images are related with the query Q and show similar 
visual topics, it is reasonable to keep the most dominant latent 
topics and filter the noisy ones. Hence, t is experimentally set as 

0.1 i k. By replacing ∑  with ∗∑  in Eq. 17, we obtain the matrix

M ∗ , then we compute the importance of each visual word as:  

,1

n

i i jj
w M ∗

=
=∑                                        (18) 

where wi denotes the importance of visual word i to query Q. 
Consequently, the visual words with high importance can be 
selected as the topic words for Q. 

Based on topic words, we utilize the strategy illustrated in Eq. 19 
to compute the rank value of each image. 

( ) ( )

1

TI I

j jj
Rank tfidf w

=
=∑ i                          (19) 

where Rank(I) denotes the rank value of image I. T is the total 
number of the topic words, which is experimentally set as 200. 
tfidfj

(I) , which is computed with Eq. 16, stands for the TF-IDF 
weighting of the topic word j in image I. With Eq. 19, the image 
re-ranking task can be completed by sorting the images based on 
their rank values. 

To conduct this experiment, we first download images from 
Google Image with keywords of location such as “Great Wall”, 
“Eiffel Tower”, etc. From the downloaded images, we select 40 
categories, within which we keep 250 relevant images and 100 
irrelevant ones and disarrange them to lose the initial rank 
information. Finally, we build a dataset containing 14000 images, 
all of which are annotated as positive or negative. Based on the 
collected dataset, we compare three algorithms listed below: 

 A-1: 758350 classic visual words with topic word based re-
ranking. 

 A-2: the state-of-the-art VisualRank [34] 
 A-3: 122500 contextual visual words with topic word based re-
ranking 

 
Figure 17. The comparisons of MAP and efficiency 

The MAP computed in the top 250 re-ranked images is utilized 
for evaluation. The overall MAP of the 40 categories is presented 
in Figure 17(a). The average time required to re-rank 350 images 
is compared in Figure 17(b). 

From the experimental result illustrated in Fig. 17(a), it is clear 
that our contextual visual word outperforms the traditional visual 
word and shows slightly better performance than the state-of-the-
art VisualRank [34]. This demonstrates the effectiveness of the 
proposed contextual visual vocabulary and the proposed re-
ranking algorithm. Moreover, it is necessary to point out that in 
Fig. 17(b), the topic word based image re-ranking with contextual 
visual vocabulary is about 3 times faster than the VisualRank. 
Similar to the image retrieval, the most time consuming operation 
is transforming each image into the BoCW representation. After 
that, the image re-ranking can be finished in about 10 minutes for 
350 images. The VisualRank needs to compute an image-to-image 
similarity matrix based on their contained local features with 
Locality Sensitive Hashing [38]. For each local feature in the 
image, 120 hash functions, i.e., 40 hash tables, each containing 3 
hash functions [34], need to be computed. Therefore for each 
image, VisualRank has to compute about 200000 hash functions, 
making it time consuming. Figure 18 presents some examples of 
the re-ranked images by the topic word based image re-ranking. 
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Figure 18. Some examples of the top and bottom re-ranked 

images based on the proposed algorithm 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose the local feature refinement strategy and 
the discriminant group distance for contextual visual vocabulary 
generation. In contrast to previous methods, we take groups of 
local features into consideration instead of treating the local 
features independently. The advantage is that besides the 
appearance information, rich image local spatial contextual cues 
(i.e., scale and orientation) are preserved in single contextual 
visual word. In addition, with the discriminant group distance, the 
generated contextual visual vocabulary captures more semantic 
contexts. Comparisons with the state-of-the-art algorithms show 
that the proposed vocabulary is promising in large-scale near-
duplicate image retrieval and image search re-ranking. 

Our future work will focus on three aspects. 1) The contextual 
visual vocabulary will be tested in visual recognition tasks. 2) We 
will study to leverage the state-of-the-art distance metric learning 
algorithms in our framework. The benefit of distance metric 
learning will be further tested. 3) In current work, only images 
with single labels are considered. We will extend our algorithm to 
images with multiple labels and multiple objects.  
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