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RESEARCH ARTICLE

Building damage assessment after the earthquake in Haiti using two
post-event satellite stereo imagery and DSMs

Jiaojiao Tiana*, Allan A. Nielsenb and Peter Reinartza

aRemote Sensing Technology Institute, German Aerospace Center (DLR), Wessling, Germany;
bDepartment of Applied Mathematics and Computer Science, Technical University of Denmark,

Lyngby, Denmark

(Received 1 September 2014; accepted 17 December 2014)

In this article, a novel after-disaster building damage monitoring method is presented.
This method combines the multispectral imagery and digital surface models (DSMs)
from stereo matching of two dates to obtain three kinds of changes: collapsed buildings,
newly built buildings and temporary shelters. The proposed method contains three basic
steps. The first step is to focus on the DSMs and orthorectified images preparation. The
second step is to segment the panchromatic images in obtaining small homogeneous
regions. In the last step, a rule-based classification is built on the change information
from iteratively reweighted multivariate alteration detection (IR-MAD) and height to
extract the three kinds of changes. To further improve the accuracy of the results, a
region-based grey-level co-occurrence matrix texture measurement is used. The pro-
posed method is applied to monitor building changes after the 2010 Haiti earthquake,
and the obtained results are further evaluated both visually and numerically.

Keywords: building damage; change detection; digital surface models; segmentation

1. Introduction

Building damage assessment is very important after natural or man-made disaster events, like
earthquakes and conflicts. There is a demand for updating existing databases and providing
rapid mapping of urban changes after disasters. Remote sensing techniques are providing
many possibilities for change monitoring (Singh 1989, Coppin et al. 2004). A popular
technique to obtain the changes after a disaster is to compare the pre-event very high-
resolution (VHR) imagery with the post-event VHR imagery and has been explored since a
long time (Gamba and Casciati 1998, Turker and San 2003). In recent years, many more
studies have been performed in order to generate change maps using different kinds of data
and methods (Brunner et al. 2010, Dell’Acqua et al. 2010, Rastiveis et al. 2013). However,
collapsed or damaged buildings can be hardly distinguished from intact ones in high-dense
building areas. This is due to the fact that changed buildings still share similar radiometric
information with unchanged buildings and roads. Moreover, after earthquakes, building
changes are mixed with many other changes, including changes influenced by the earthquake,
like road damages, and changes not influenced by the earthquake, like seasonal changes.

In order to overcome these problems, height information from digital surface model
(DSM) has been employed in disaster monitoring in many applications. Knudsen and
Olsen (2003) used the DSM from LiDAR data in extracting the building boundaries,
which can be compared with existing pre-event building footprint data to generate a
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change map. Another possibility is to directly use two DSMs from LiDAR to calculate the
height changes (Murakami et al. 1999). But due to the high cost of LiDAR data, and low
availability of building footprint data, these methods can be hardly applied in not
highly developed areas for disaster assessment. Turker and Cetinkaya (2005) and Tong
et al. (2012) tried to use the DSM from stereo imagery, but the test area they used was
much simpler with large buildings in regions with low building density. For a damaged
building area like in Port-au-Prince, Haiti, where very dense and complex building heights
are present (as shown in Figure 1), these methods are not adequate. In ideal cases with
very good DSM representations, a direct DSM subtraction could already generate a
reliable change map. But the accuracy of the detection results is highly dependent on
the DSM quality, which often contain insufficient height information if generated from
spaceborne imagery (d’Angelo et al. 2008).

In many cases, no proper pre-event high-resolution satellite/airborne images, DSMs or
vector (geographic information system) data of buildings are available for comparing and
evaluating the damages. Hussain et al. (2011) extracted buildings in Port-au-Prince area
by using GeoEye-1 imagery and LiDAR data. However, due to the lack of pre-event data,
no change detection has been performed.

Several automatic change detection techniques using DSM data additionally
to multispectral information have been developed in our previous work and can be
used in this context (Chaabouni-Chouayakha et al. 2013, Tian et al. 2011, 2014a,
2014b, Tian 2013). But these methods have to be further developed in order to cope
with the challenges shown in Figure 1. Therefore, in this article, we present a new
approach for monitoring collapsed buildings and newly built constructions with
examples from the earthquake in Haiti by using two pairs of post-event stereo
imagery. One was acquired directly after the earthquake and the other was acquired
half a year later. After half a year, many of the collapsed buildings were removed or
rebuilt, and some quickly built buildings and temporary shelters/tents are con-
structed. These temporary living places are always located in parks or on squares
after cutting down some trees or cleaning several small collapsed buildings.
Therefore, the appearance of these temporary shelters may not lead to large height
change, but to spectral and texture change. The monitoring of the removed buildings
can provide better destroyed building assessment, and the monitoring of newly built
buildings and temporary shelters can also help government management and city
planning.

Figure 1. Example of the changes in high-dense building area (left: 6 days after earthquake, right:
half year after earthquake).
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As mentioned before, the DSMs generated from stereo data show lower quality than
DSMs from LiDAR data, especially in high-dense building areas. The aim of this article
was therefore also to generate a robust damage assessment map by fusing the height
change information from spaceborne DSMs with lower quality together with texture
information from orthorectified satellite images.

For this purpose, we adopt a region-based change detection method (Tian 2013)
and further improve the workflow for disaster monitoring. To eliminate the influence
from vegetation and shadows, these regions are extracted with multispectral informa-
tion and labelled before performing a mean shift segmentation. In the region-based
change detection procedure, we use iteratively reweighted multivariate alteration
detection (IR-MAD) to combine the change vectors from images and DSM, and
finally the units are classified into collapsed buildings, newly built buildings and
temporary shelters. These temporary shelters are relatively difficult to detect correctly
due to their small size and low height. In order to refine this class changes, we use a
region-based texture measurement to further refine the result. After presenting the used
data-sets, the methodology is described in detail followed by the experiments, result
evaluation, validation and finally discussion.

2. Data-sets

A very strong earthquake in Haiti (Corbane et al. 2011, Voigt et al. 2011) struck the
city of Port-au-Prince on 12 January 2010 and induced heavy damages to buildings.
For the investigation, a dense city area within Port-au-Prince is chosen. Two dates of
GeoEye-1 stereo images with 0.5-m resolution are used. One was obtained 6 days
after the earthquake, and the area chosen contains many collapsed buildings. The
second data were acquired on 18 August 2010, when several collapsed buildings are in
the process of reconstruction. In addition, in the later data-set, many regions with
high-density shelters can be found, which were built as temporary habitations for the
local residents.

A reference airborne LiDAR point cloud data have been obtained from
OpenTopography website. These data were originally provided by the Rochester Institute
of Technology (RIT) and Kucera International under subcontract to ImageCat, Inc.
(OpenTopography 2011).

The investigated changes in this test region are composed of three classes. The first
class comprises the collapsed buildings during the earthquake. After half year, the remains
have been cleared away. The second class consists of newly built buildings. Some
reconstruction work is supposed to have been carried out after the earthquake. The last
class is temporary shelters. Since many buildings are destroyed, it is difficult to rebuild
enough buildings for the local residents in a short period. Thus, many temporary shelters
can be found in the images from Date 2.

Change detection in this test region is quite challenging. As shown in Figure 2, in this
densely structured city urban region, many buildings do not exhibit clearly visible roof
edges and are often connected with their neighbouring buildings. Moreover, buildings in
the test region are mainly of small size and show low height values. All these mentioned
characteristics challenge the efficiency and accuracy of automatic (but also manual)
building change detection methods.
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3. Methodology

There are three main steps in our approach. The first step is image preprocessing, in
which the DSM generation and image preparation are described. Second, in order to
perform the region-based change detection, the original regions are generated based on
mean shift segmentation from orthorectified panchromatic images. Finally, changes are
classified as collapsed buildings, newly built buildings and temporary shelters by
fusing change information from DSM and orthorectified original images.

3.1. Pre-processing

Height information from DSM is essential for building monitoring. In the preproces-
sing step, the DSMs here are generated from satellite stereo imagery by the semi-
global matching (SGM) method (Hirschmüller 2008), which shows robustness and
high matching density. It has been implemented in several versions, among which we
use the one developed by d’Angelo et al. (2008, 2011). The DSMs generated from
January and August are further coregistered to remove any shift in three dimensions
(Tian 2013). In this coregistration procedure, LiDAR data that have been mentioned in
the last section are used as reference. DSMs from Date 1 and Date 2 are coregistered
to the LiDAR-DSM. These two prepared DSMs are displayed in Figure 3a and b,
respectively.

As can be seen from Figure 3, roads and buildings can be roughly separated
according to their height information. However, we cannot get a clear boundary due
to the high building density. Thus, direct height subtraction will not be sufficient in
detecting building changes, due to low sharpness in building representation. Thus, in the
following step, more information from the satellite images is extracted and adopted for
change detection. To guarantee that all corresponding pixels represent the same geo-
graphical location, the panchromatic and multispectral images are orthorectified based
on the generated DSMs and shifted correspondingly using the shift values from DSM
coregistration.

Figure 2. Panchromatic images of the test area: (a) 6 days after the earthquake; (b) half year after
the earthquake (1000 × 1000 pixels).
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3.2. Segmentation

As illustrated above, the generated DSMs are indicating elevation values in the
building region, but one of the main disadvantages of these spaceborne DSMs is the
blurred boundaries of buildings. To overcome this problem, the original satellite
images can be introduced to the change detection workflow. Poli and Soille (2012)
have proven that segmentation results from VHR images can be used to improve the
DSM quality generated from stereo imagery. In this article, the segmentation aims to
produce small units that have different spectral or textural characters from the areas
nearby. Based on these units (segments), change features and change probabilities can
be further analysed. The segmentation is carried out based on the orthorectified
panchromatic images that are prepared as described in the last section. The mean
shift algorithm from EDISON library (Comaniciu and Meer 2002) is adopted to obtain
potentially small change units due to its good performance. Figure 4 shows an
example of how segmentation improves the DSM quality. Figure 4a and b is the
orthorectified panchromatic image and the initially generated DSM. Figure 4d is the
reference DSM from LiDAR (LiDAR-DSM). After segmentation, we calculate the
average elevation values for each segment. The refined DSM is shown in Figure 4c.
As can be seen, the building boundaries are much sharper than before and buildings
are better represented. To study the improvement in detail, the profile comparisons of
two buildings are shown in Figure 5. These two buildings have been marked in
Figure 4a with yellow lines. In Figure 5, the elevation values of the original DSM,
refined DSM and reference LiDAR-DSM are plotted with colours red, blue and green,
respectively. Figure 5a depicts that although the original DSM matches better with the
LiDAR-DSM in height along the selected profile, the refined DSM presents the
building boundaries better. Since we take average values for each segment, the
obtained height can be little higher or lower than the reference DSM. But this kind
of small height difference will not significantly influence the final change detection
results. The improvement in the refined DSM distinguishes better for a certain build-
ing, as is shown in the right part of Figure 5b, the refined DSM and the LiDAR-DSM
match well in the stepwise height distribution.

Figure 3. Generated DSMs of the test area: (a) 6 days after the earthquake; (b) half year after the
earthquake.

International Journal of Image and Data Fusion 159

D
ow

nl
oa

de
d 

by
 [

D
L

R
-B

ib
lio

th
ek

en
] 

at
 0

7:
35

 2
2 

Ju
ne

 2
01

5 



Figure 4. DSM quality improvement: (a) panchromatic image; (b) original generated DSM;
(c) refined DSM; and (d) reference DSM from LiDAR.

Figure 5. Profile comparisons of building A (a) and building B (b) along the yellow lines in
Figure 4a (red: original DSM; blue: refined DSM; green: reference LiDAR-DSM).
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As only building changes are of interest in this work, small segments in the vegetation
or shadow regions bring unnecessary computational burden and may also introduce errors
to the building change detection results. In the segmentation procedure, we therefore
additionally use the land-cover classes: shadow and vegetation derived from multispectral
images. These shadow and vegetation regions are first labelled (shown in black colour in
Figure 6b) as separated segments and will not be further segmented and analysed.

The change detection workflow is described in Figure 7. Since the boundary of the
collapsed buildings is better displayed in Date 1 image and the boundary of newly built

Figure 6. Segmentation results (b) of a subtest region (a).

Image1 

(Date1)

Image2

 (Date2)

DSM1 

(Date1)

DSM2 

(Date2)

Change Map

Refinement

Seg1 

(Date1)

Temporary 

shelters

Seg2 

(Date2)

Collapsed

buildings

Newly 

built 

buildings

Figure 7. Building change detection and classification workflow.
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buildings or shelters is shown only in Date 2 imagery, the segmentation procedure has
been applied to both data, respectively. The extracted changes are further analysed and
combined to generate the final change result.

3.3. Change classification

IR-MAD has been introduced by Nielsen (2007) to highlight changes, which has been
proven to be an effective linear change detection method. This method mainly aims at
establishing a reliable background estimation method of no change, thus to identify the
real changes and reduce false alarms.

As the most important advantage, IR-MAD is an unsupervised change detection
method. It considers all of the feature channels generated from the images (DSM, texture,
spectral channels, etc.) of the two dates F = (F1, F2, F3, … Fk)

T and G = (G1, G2, G3, …
Gk)

T. The changes can be expressed by the linear combination of F and G (shown in
Equation (1)). ai and bi are the coefficients calculated by applying canonical correlation
analysis.

F
G

� �
)

aT1F � bT1G
:
:
:

aTk F � bT1G

2
66664

3
77775 (1)

IR-MAD is an iterative scheme to put large weights on areas that show little change
over time. This weight will be included in the calculation of mean, variance and
covariance. The iteration will stop when the largest absolute change in the canonical
correlation reaches a preset value, e.g. 10−6. We use the chi-square distance for all of the
MAD components as the extracted change map.

As shown in Figure 7, besides the multispectral bands of the satellite image, the
change information from panchromatic images and the DSMs is also adopted as change
features. As indicated in the workflow in Figure 7, the generated change map is combined
with the segmentation result from two dates, respectively, to classify the changes. The
changed regions with height decrease are classified as collapsed buildings, the regions that
exhibit height increase are classified as the newly built ones, these regions show high
values in the change map, while the regions that exhibit no changes in height are classified
as temporary shelters. Since many regions belong to the temporary shelters, a texture-
based refinement is performed to improve the overall accuracy.

Grey-level cooccurrence matrix (GLCM) is one of the popular and robust texture
features. It estimates the second-order statistics properties by calculating the frequency of
pixels in different levels cooccurrence in a designed distance within a given window
(Haralick et al. 1973). In many cases, the window size will directly influence the
efficiency of the usage of texture features. In this article, instead of selecting the window
size, we calculate the region-based GLCM features (Bignami et al. 2011). All of the pixels
inside one region are used in the cooccurrence matrix generation. After we get the
cooccurrence matrix, the second-order statistics can be derived from it. Here, we use
the ‘homogeneity’ feature, since it has proven to show a good performance in building
change detection (Matikainen et al. 2010).
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Homogeneity:
XN�1

i;j¼ 0

Pi;j

1þ ði� jÞ2 (2)

in which Pi;j ¼ Vi;jPN�1

i;j¼ 0
Vi;j

;

i is the row number;
j is the column number;
Vi;j is the number of the occurrence in the GLCM matrix at the position (i, j);
Pi;j stands for the normalised value of Vi;j.

4. Experiments

4.1. Results

The proposed method is applied on the Haiti test region. In the change classification
procedure, we take the changed regions with more than 2-m height increase as newly built
buildings. The collapsed buildings are the changed regions with more than 2-m height
decrease. The remaining changed regions are temporary shelters, which have been further
improved by using the GLCM texture. Figure 8 shows the change detection results.
Figure 8a and c shows the detected collapsed buildings and newly built buildings,
respectively. Figure 8b and d shows the temporary shelters detected by using the seg-
mentation results from Date 1 and Date 2, respectively. Many detected changes shown in
Figure 8b and d are similar, but the building shapes are different due to the changes during
this half year. By comparing these two masks, the detected temporary shelters can be
classified to three types: (1) detected in both masks, (2) only shown in the mask of
Figure 8b and (3) only shown in the mask of Figure 8d. As a further refinement, GLCM
homogeneity features are calculated, respectively, based on the regions from these three
classes.

The final change detection result including the collapsed buildings (marked in red),
newly built buildings (marked in blue) and temporary shelters (marked in green) is shown
in Figure 9. This result has been projected to Date 2 panchromatic image. The detected
change areas match well with a visual interpretation of the image.

4.2. Results evaluation

For further evaluation, reference maps have been manually extracted in three small test
regions, as it is difficult to obtain change reference data for the whole test region.
Additionally, in some places, it is even visually difficult to identify building changes
based solely on satellite images. Therefore, three subregions are selected for evaluat-
ing the obtained change detection results numerically, as shown in Figure 10.
Unfortunately, without precise height change reference data, it is very difficult to
evaluate the obtained results, especially for separating the newly built buildings and
newly built temporary shelters. These two classes mainly differ in height, which can
be hardly observed from optical images, as our change reference data are obtained by
manually comparing two orthorectified images. Therefore, in the results evaluation
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procedure, in order to get some meaningful numerical evaluation result, we have
combined these two classes as ‘newly built’.

Figure 10 shows the panchromatic images in the first and second columns, and the
third and fourth columns display the detection results of collapsed buildings and newly
built constructions, respectively. The detected results are displayed together with the
change reference data. In the figures of third and fourth columns, the green colour
represents true detected, blue colour pixels are the false negatives, and red colour pixels
are the false alarms. Table 1 shows quantitative evaluation results for these three regions.
Since the number of collapsed buildings is small, it is very difficult to rate the results. For
‘newly built’, a true detection rate between 78% and 93% can be reached, but the false
alarm rate is still a little high. Since it is a fully automatic method, it could still be used in
addition to visual interpretation in case of rapid mapping of damages after large earth-
quake events to get hints where the mainly effected regions and even single destroyed
houses are located.

To further evaluate the proposed method, we compare it with the method
described in Tian et al. (2013). In that paper, the change detection map is generated

Figure 8. Original change masks: (a) collapsed building mask; (b) temporary buildings based on
Seg1; (c) newly built building mask; (d) temporary buildings based on Seg2.
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Figure 9. Change detection results: red: collapsed buildings; blue: newly built buildings; green:
temporary shelters.

Figure 10. Change detection result evaluation in three subregions (green: true detected; red: false
alarm; blue: false negative).
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by using the weighted change vector analysis based on height change and texture
change features. The regions map is prepared by merging segmentation results of two
panchromatic images. The final region-based change detection probability map has
values from 0 to 1. By manually giving a threshold T on the probability map, a final
change detection mask can be generated. Only positive changes are of interest in that
paper. Therefore, as a comparison, based on the method used in Tian et al. (2013), we
generate the positive change (newly built) probability map for the three test regions
of Figure 10.

For a fair comparison, a series of change detection masks is generated by using
different threshold values. The numbers of true detected and false detected objects are
counted to evaluate the accuracy of these masks. These numbers are described in
Figure 11, in which the dark grey lines connect values of the true detected object numbers,
while the false detected object numbers are connected with light grey lines. These
numbers can be compared with the results described in Table 1. As described, in the
test region 1, the proposed method is able to correctly detect 15 newly built objects with
only 4 false alarms. In Figure 11, when T = 0.25 is chosen, we get the same number of
true detected newly built objects, but 13 false alarms. Similar results are achieved for test
region 3, the proposed method results in 13 true detected newly built objects and 5 false
detections. In Figure 11, the best combination is 13 true detections and 7 false detections.
In test region 2, the advantage of the proposed method is not as obvious as in the other
two regions.

Table 1. Detection rates of collapsed and newly - built constructions.

True detected (object) False detected (object)

Test regions Classes Number Rate [%] Number Rate [%]

1 Collapsed 2 66.67 1 33.33
Newly built 15 78.95 4 21.05

2 Collapsed 2 66.67 0 0
Newly built 7 77.78 4 33.33

3 Collapsed 1 33.33 1 50.00
Newly built 13 92.86 5 27.78

Figure 11. Performance of exiting method (Tian et al. 2013) for the Haiti data.
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5. Discussion and conclusion

The region-based change detection method developed in this article shows promising
results when applied to monitor changes between two post-event satellite stereo imagery
of the 2010 Haiti earthquake. It has to be mentioned that both segmentation and DSM
generation are very challenging in the Haiti region due to the high density and small size
of the buildings, thus influencing the 3D change detection results. The proposed method
has proven its robustness also in case of locally small changes. Three kinds of changes
can be detected: collapsed buildings, newly built buildings and temporary shelters. All of
these changes are essential for crisis management and scientific research.

The DSM from stereo matching can provide important height information by effi-
ciently separating the collapsed buildings, newly built buildings and temporary shelters.
Panchromatic image-based segmentation can classify the area in homogeneous regions.
Using the average height from these regions can cover some quality drawbacks of the
DSMs. Integration of the region-based GLCM texture in change refinement has also
shown to be able to refine the change detection results especially for temporary shelters.

Monitoring building changes efficiently and accurately is very important for disaster
monitoring. Moreover, the distinguishing of various building change types enriches
information assessment for disaster monitoring and city planning. The initial results are
extracted and presented in this article. However, due to the lack of reference data, the
evaluation has been performed for only two classes. Further evaluation should be pro-
cessed when LiDAR data from both pre- and post-change are available. In addition, the
developed methodology will in future be applied to compare the pre-event images and
post-event images. It may give a rapid assessment of building changes in similar situations
if stereo images are available.
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