
ORIGINAL PAPER

Building damage from the 2011 Great East Japan

tsunami: quantitative assessment of influential factors

A new perspective on building damage analysis

Natt Leelawat • Anawat Suppasri • Ingrid Charvet • Fumihiko Imamura

Received: 20 August 2013 /Accepted: 7 February 2014 / Published online: 28 February 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Based on the classification provided by the Ministry of Land, Infrastructure,

Transport and Tourism (MLIT), the damage level of buildings impacted by the 2011 Great

East Japan tsunami can be separated into six levels (from minor damage to washed away).

The objective of this paper is to identify the significant predictor variables and the direction

of their potential relationship to the damage level in order to create a predicting formula for

damage level. This study used the detailed data of damaged buildings in Ishinomaki city,

Miyagi prefecture, Japan, collected by MLIT. The explanatory variables tested included

the inundation depth, number of floors, structural material, and function of the building.

Ordinal regression was applied to model the relationship between the ordinal outcome

variable (damage level) and the predictors. The findings indicated that inundation depth,

structural material, and function of building were significantly associated with the damage

level. In addition to this new type of model, this research provides a valuable insight into

the relative influence of different factors on building damage and suggestions that may help

to revise the classification of current standards. This study can contribute to academic

tsunami research by assessing the contribution of different variables to the observed

damage using new approaches based on statistical analysis and regression. Moreover,
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practical applications of these results include understanding of the predominant factors

driving tsunami damage to structures, implementation of the relevant variables into the

proposed, or alternative model in order to improve current damage predictions by taking

into account not only inundation depth, but also variables such as structural material and

function of building.

Keywords 2011 Great East Japan tsunami � Building damage level � Ordinal
regression � Prediction

1 Introduction

According to the International Disaster Database (2013), the 2011 Great East Japan

earthquake and tsunami caused the highest estimated damage, USD 201 billion, among

other natural disasters during 1990–2012. At 14:49 JST on March 11, 2011, a M9.0

earthquake was recorded, and triggered large and powerful tsunami waves which attacked

Japan. The East coast of Japan suffered extensive damage and the destruction of more than

400,000 buildings (National Police Agency 2011).

The objective of this study is to provide a quantitative assessment of the influence from

the factors that appear to be determinant on tsunami damage, namely the inundation depth,

the coastal topography, the number of floors, the structural material, and the function of

buildings (Suppasri et al. 2012a, c, 2013, 2014; etc.). Such an assessment allows for the

ranking of such factors by order of importance in their contribution to the damage level. In

addition, it is possible to suggest a relationship between the significant variables and the

estimated damage level.

In Sect. 2, a review of the literature on tsunami damage prediction is carried out,

highlighting the usual damage factors considered. In Sect. 3, the study area is presented,

followed by a description of the ordinal regression methodology (Sect. 4). Section 5 covers

the data collection and analysis. Finally, the results, their applicability, and their impli-

cations are discussed in Sect. 6.

2 Literature review

2.1 Building damage due to tsunami inundation depth

Shuto (1993) studied the relationship between a range of tsunami inundation depths and

building damage using the information from historical tsunamis. For example, it was found

that if the tsunami inundation depth is higher than 2-m wooden houses may collapse, for an

inundation depth of 8 m, reinforced concrete buildings may collapse. Subsequent studies

confirmed such results: Ruangrassamee et al. (2006) found from the data of the 2004 Indian

Ocean tsunami that a 2-m inundation depth can destroy a wooden house, and Reese et al.

(2007) found this same inundation depth would destroy unreinforced brick buildings. After

Shuto (1993), the damage criteria for each structural material against a range of tsunami

inundation depths have been investigated further (Suppasri et al. 2013). Suppasri et al.

(2014) also studied the damage criteria by using coastal topography categorizing into ria

coast and plain coast while Charvet et al. (2014) categorized by the geographical
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environment into plain, terrain (i.e., ‘‘a narrow coast backed up by high topography’’), and

a river. Table 1 summarizes the research related to building damage criteria on structural

and inundation depth. Table 2 summarizes the research related to building damage criteria

on coastal topography and inundation depth. In addition, ‘‘tsunami fragility’’ was intro-

duced as a new measure for estimating tsunami damage to buildings (Koshimura et al.

2009b). Some studies proposed fragility curves for structural destruction from tsunami for

many events such as the 1993 Okushiri tsunami in Japan (Koshimura et al. 2009a; Ko-

shimura and Kayaba 2010; Suppasri et al. 2012b), the 2004 Indian Ocean tsunami (study

area: Sri Lanka) (Muora and Nakazato 2010), Banda Ache, Indonesia (Koshimura et al.

2009c) and Phuket and Phang Nga, Thailand (Suppasri et al. 2011), the 2009 American

Samoan tsunami (Gokon et al. 2011), the 2010 Chilean tsunami (study area: Dichato,

Chile) (Mas et al. 2012), and the 2011 Great East Japan tsunami (study area: Miyagi

prefecture, whole of Japan and Ishinomaki city) (Suppasri et al. 2012c, 2013, 2014,

respectively).

2.2 Vulnerability of buildings as estimated by the Papathoma tsunami vulnerability

assessment method (PTVA)

The Papathoma tsunami vulnerability assessment method (PTVA) was developed by Pa-

pathoma et al. (2003). Based on the importance of characteristics of buildings identified by

previous field surveys of tsunami events and calculations and using a multi-criteria eval-

uation method, Papathoma et al. (2003) set weight factors for various criteria according to

their relative importance as follows: (1) ‘‘building material’’ (weight factor 7), (2) ‘‘row’’

(weight factor 6), (3) ‘‘surrounding’’ (weight factor 5), (4) ‘‘condition of ground floor’’

(weight factor 4), (5) ‘‘number of floors’’ (weight factor 3), (6) ‘‘sea defense’’ (weight

factor 2), and (7) ‘‘natural environment’’ (weight factor 1) (Papathoma et al. 2003). They

formulated the vulnerability of each building (BV) as follows:

BV ¼ ð7� aÞ þ ð6� bÞ þ ð5� cÞ þ ð4� dÞ þ ð3� eÞ þ ð2� f Þ þ ð1� gÞ ð1Þ

In Eq. (1), a is the standardized score (i.e., raw score of the building/maximum raw

score) of building material; b is the standardized score of row of the building; c is the

standardized score of number of floors; d is the standardized score of building surround-

ings; e is the standardized score of ground floor; f is the standardized score of sea defense

in front of the building; and g is the standardized score of width of the intertidal zone in

front of the building. PTVA-3 is a revised version of PTVA, which has been tested at

Maroubra, Sydney (Dall’Osso et al. 2009a, b).

Moreover, previous studies (Papathoma and Dominey-Howes 2003; Papathoma et al.

2003) show the importance of building physical parameters and their surroundings in

analyzing building damage by tsunami, thus such parameters will also be considered in this

study. Also, we included other parameters (i.e., inundation depth, coastal topography,

function of the building) following Koshimura et al. (2009b), Shuto (1993), and Suppasri

et al. (2012a, b, 2013, 2014) in our study.

3 Study area

Following the 2011 Great East Japan Earthquake and Tsunami, among the 251,301

buildings surveyed by the Ministry of Land, Infrastructure, Tourism and Transport (MLIT),

more than 25 % (63,605 buildings) were in Ishinomaki city. According to the damage and
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Table 1 Summary of building damage criteria (structural material and inundation depth)

Author(s) Event Structural

material

Inundation

depth (m)

Damage

Shuto (1993) Historical tsunami in

Japan

Wood 1.0 Partial damaged

Wood 2.0 Demolished

Reinforced

concrete

&4 Demolished

Stone & 2 Demolished

Ruangrassamee

et al. (2006)

2004 Indian Ocean

tsunami

Wood 2.0 Collapsed

Reinforced

concrete

2.0 Secondary member

damaged (e.g., wall, roof)

Reinforced

concrete

3.0 Primary member damaged

(e.g., columns, beams)

Reinforced

concrete

7.0 Completely destroyed

Reese et al.

(2007)

2006 Java tsunami Unreinforced

brick

2.0 Collapsed

Reese et al.

(2011)

2009 South Pacific

tsunami

Reinforced

concrete

2.0 Secondary member

damaged (e.g., wall, roof)

Reinforced

concrete

3.0 Primary member damaged

(e.g., columns, beams)

Reinforced

concrete

7.0 Complete destroyed

Valencia et al.

(2011)

2004 Indian Ocean

tsunami

Reinforced

concrete

2.0 Secondary member

damaged (e.g., wall, roof)

Reinforced

concrete

3.0 Primary member damaged

(e.g., columns, beams)

Reinforced

concrete

7.0 Complete destroyed

Matsutomi and

Harada (2010)

2009 American

Samoa tsunami

Wood 1.5 Partially damaged

Wood 2.0 Destroyed

Reinforced

concrete

8.0 Destroyed

Stone, brick,

concrete

block

3.0 Partially damaged

Stone, brick,

concrete

block

7.0 Destroyed

Suppasri et al.

(2012a, c, 2013)

2011 Great East Japan

tsunami (plain coast

in Sendai and

Ishinomaki)

Wood 2.5 Minor damaged

Wood 3.0 Moderate damaged

Wood 4.0 Major damaged

Wood 4.5 Complete damaged

Suppasri et al.

(2012c, 2013)

2011 Great East Japan

tsunami (all Tohoku

region)

Wood 0.5 Minor/moderate damaged

Wood 1 Major damaged

Wood 2 Complete damaged/

collapsed

Wood 3 Washed away
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field survey of Suppasri et al. (2014), while the coastal topography can be separated into ria

and plain coasts, the residential area is located in the plain area inside the bay (see Fig. 1).

Some parts of the city are located along the Sanriku ria coast. According to a visual

inspection from satellite images, the amount of washed-away buildings in the area outside

the breakwaters was found to be as high as 88.4 % while inside the breakwater protected

area, the amount of washed-away buildings was only 42.8 %. (Gokon and Koshimura

2012).

4 Research design and methodology

4.1 Methodology

The present analysis was performed using IBM SPSS version 19. Given the number of

predictor variables to be taken into account and the relative simplicity of linear regression

analysis comparatively to other regression techniques, multiple linear regression was ini-

tially considered as a potential tool for analysis. However, a preliminary inspection of the

data revealed that applying multiple linear regression would violate the associated statis-

tical assumptions: According to Crewson (2006), Osborne and Waters (2002), and Seber

(1977), the variables should follow a normal distribution, and they should also display

homoscedasticity (i.e., the variance of errors needs to be constant), have the mean of errors

equal to zero, and be independent (i.e., no trend in the errors). The basic assumption of

normally distributed data is violated since normal distributions can only be applied to

continuous response variables, so we did not select multiple linear regression. Because our

objective is to estimate the damage level, which can be considered as a categorical

Table 2 Summary of building damage criteria (coastal topography and inundation depth)

Author(s) Event Coastal

topography

Inundation depth

(m)

Damage

Charvet et al.

(2014)

2011 Great East Japan

tsunami (all areas of

Ishinomaki)

Ria 1 Moderate damaged

Ria 1–2 Major damaged

Ria 2–3.5 Collapsed and washed

away

Terrain 1 Moderate damaged

Terrain 1–2 Major damaged

Terrain 2–6 Collapsed and washed

away

River 0–0.5 Moderated damaged

River 1.5–2 Major damaged

Suppasri et al.

(2012c, 2013)

2011 Great East Japan

tsunami (all areas of

Ishinomaki)

Ria 1 Moderate damaged

Ria 2.5–3 Collapsed

Ria 5 Washed away

Plain 0.5 Moderate damaged

Plain 2.5–3 Collapsed

Plain 6 Washed away

80 % probability
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dependent and ordinal outcome, ordinal regression is likely to be the most suitable sta-

tistical technique for our study.

Ordinal regression is a method used to determine the direction of the relationship

between each predictor and a categorical outcome (Chan 2005), taking into account the

ordered (‘‘ordinal’’) nature of such outcome. The strengths of ordinal regression consist in

‘‘identifying significant explanatory variables that influence the ordinal outcome,’’

‘‘describing the direction of the relationship between the ordinal outcome and the

explanatory variables,’’ and ‘‘performing classifications for all levels of the ordinal out-

come, subsequently evaluating the validity of the regression model’’ (Chen and Hughes

2004). Ordinal regression has been often used in medical sciences (Bender and Grouven

1997; Lall et al. 2002; Sutton et al. 2000).

According to previous studies and the available data, the assumed predictor variables

are (1) the inundation depth, (2) the coastal topography, (3) the number of floors, (4) the

structural material, and (5) the function of the building. The dependent variable is the

damage level.

4.2 Dependent variable: damage level

Based on the MLIT classification of damage, the degree of building damage can be

categorized into six levels: (1) minor damage, (2) moderate damage, (3) major damage, (4)

complete damage, (5) collapsed, and (6) washed away. The description and schematically

illustration of each damage level are given in Table 3. Besides damaged buildings, there

were a small number of buildings with no damage.

Fig. 1 Ishinomaki city (Suppasri et al. 2014)
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4.3 Independent variables (predictors)

The assumed independent variables used in this study were chosen based on previous

studies and include: (1) the number of floors (Papathoma and Dominey-Howes 2003), (2)

the inundation depth (Koshimura et al. 2009b; Matsutomi and Harada 2010; Reese et al.

2007, 2011; Ruangrassamee et al. 2006; Shuto 1993; Suppasri et al. 2012a, c, 2013;

Valencia et al. 2011), (3) the coastal topography (Charvet et al. 2014; Suppasri et al. 2014),

(4) the building function (Suppasri et al. 2013, 2014), and (5) the structural material (Pa-

pathoma and Dominey-Howes 2003; Papathoma et al. 2003; Suppasri et al. 2013, 2014).

Table 3 Damage levels, classification descriptions, and condition of buildings categorized by MLIT

Damage

level

Classification Illustration Description Condition

– No damage There is no damage. It is possible to be used

immediately.

1 Minor

damage

There is no significant

structural or non-

structural damage,

possibly only minor

flooding

It is possible to be used

immediately after

minor floor and wall

clean up.

2 Moderate

damage

There are slight damages

to non-structural

components.

It is possible to be used

after moderate

reparation.

3 Major

damage

There are heavy damages

to some walls but no

damages in columns.

It is possible to be used

after major

reparations.

4 Complete

damage

There are heavy damages

to several walls and

some columns.

It is possible to be used

after complete

reparation and

retrofitting.

5 Collapsed There is destructive

damage to walls (i.e.,

more than half of wall

density) and several

columns (i.e., bend or

destroyed)

It lost its functionality

(i.e., system collapse).

It is non-reparable or

consumes great cost of

retrofitting.

6 Washed

away

The building was washed

away. There is only

foundation remained,

total overturned

It is non-repairable/

requires total

reconstruction.
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In Ishinomaki, the tallest damaged building in MLIT’s data has fourteen floors. This

study uses the metric system (i.e., meter) for the inundation depth. The coastal topography

is divided into two types of coast in Ishinomaki city: ria and plain coasts. In this study, the

structural material has been categorized into four types: (1) wood, (2) reinforced concrete,

(3) steel, and (4) masonry. Similar to Suppasri et al. (2014), the buildings were classified

into six functional categories, based on MLIT’s classification system: (1) residential

houses, (2) shared accommodations, (3) commercial facilities, (4) industrial plants, (5)

public facilities, and (6) agriculture–forest–aquaculture facilities. The definition of each

category is given in Table 4, and Fig. 2 schematically illustrates the building function.

5 Data collection and analysis

5.1 Data collection

The detailed data of damage buildings collected during field surveys by MLIT were

obtained from Ishinomaki city. There were 68,596 buildings in the dataset (both ria and

plain coasts). The tsunami inundation depth of each building shown in the MLIT data was

obtained from the Tohoku Earthquake Tsunami Joint Survey Group (2011), the MLIT

Table 4 Function of building and their definitions

Type Group Definition

11 Residential house Residential house

12–19 Shared accommodation Shared accommodation, accommodation with

shop or factory facility included

21–29 Commercial facility Commercial facility or operation/service facility

31–39 Transportation/storage facility Transportation/storage facility or industrial plant

41–49 Public facility Multi-purpose or official work

51–59 Agriculture–forestry–aquaculture

facility

Agriculture, forestry, or aquaculture facility

Fig. 2 Illustration of function of building

456 Nat Hazards (2014) 73:449–471

123



survey, other survey reports, photos and videos or other visual materials, eyewitness

accounts, and other sources.

5.2 Descriptive statistics

Although there were 68,596 buildings in the raw dataset, the information was only com-

plete and usable for 32,429 buildings (47.18 % of the total). The reduction from the

original amount of data still allows for extremely large sample sizes to be analyzed, thus

does not compromise the power of the following analysis (Green 1991). Table 5 shows the

descriptive statistics of inundation depth and the number of floors.

Following the damage level categorization mentioned in Sect. 4, the descriptive sta-

tistics of damage level can be seen in Table 6. While the largest group is damage level 5

(N = 7,821; 23.4 %), the smallest is damage level 4 (N = 477; 1.5 %), and there are 205

buildings (0.6 %) reported to have not suffered any damage.

According to Suppasri et al. (2014)’s categorization, Table 7 shows the descriptive

statistics of coastal topography. 89.7 % of the buildings are located in the plain coast, and

10.3 % are on the ria coast. Table 8 shows the descriptive statistics of structural material.

Wooden buildings form the largest group (84.3 %). As shown in Table 9, among six

functions of building, the largest group is residential houses (65.3 %), followed by shared

accommodation (21 %), commercial facilities (6.6 %), transportation/storage facilities

(4.8 %), and public facilities (1.5 %), and the smallest group is agriculture, forest, and

aquaculture facilities (0.8 %).

5.3 Testing for correlated predictors

Before performing regression analysis, it is necessary to check that all predictor variables

are independent. Indeed, when predictors are highly correlated, multicollinearity can occur

and strongly affect the coefficient estimates of the regression model, making it non-robust

Table 5 Descriptive statistics of floors and inundation depth

Item N Min Max Mean SD

Inundation depth (m) 32,429 0.0 20.4 2.363 2.413

Number of floors 32,428 1 14 1.740 0.566

Table 6 Descriptive statistics of damage level

Damage level N Percent Cumulative percent

No damage 205 0.6 0.6

Damage level 1 4,500 13.9 14.5

Damage level 2 6,215 19.2 33.7

Damage level 3 7,583 23.4 57.1

Damage level 4 477 1.5 58.5

Damage level 5 7,821 24.1 82.6

Damage level 6 5,628 17.4 100.0

Total 32,429 100.0
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to small variations in the predictors (Farrar and Glauber 1967; Katz 2011; Vanichbancha

2006).

A Pearson product–moment correlation coefficient, which is a method to determine the

strength of the relationship between two factors (Chan 2003; Kaiyawan 2010; Katz 2011),

was computed to assess the relationship between the number of floors, the inundation

depth, the coastal topography, the structural material, and the building function. Results are

shown in Table 10. While others had no high correlation, according to Chan (2003), the

correlation coefficient value showed moderate strong relationship (i.e., correlation coef-

ficient value is more than 0.6 (Chan 2003)) between coastal topography and inundation

depth (r = -0.613) at the significance level p\ 0.01, which demonstrates that the rela-

tionship is unlikely to happen by chance (Chan 2003). This result was highly expected

given that the physics of the inland flow is predominantly driven by land and coastal

features. Therefore, coastal topography was eliminated from our analysis.

5.4 Ordinal regression analysis

Next, the data were analyzed using ordinal regression. Similar to logistic regression,

ordinal regression uses a so-called link function to express the relationship between the

linearly related predictors and the mean outcome: Because the logit is the link function

typically considered to be adequate for multinomial distributions (Chan 2005; Gelman and

Table 7 Descriptive statistics of

coastal topography
Coastal topography N Percent

Ria coast 3,331 10.3

Plain coast 29,098 89.7

Total 32,429 100.0

Table 8 Descriptive statistics of

Structural Material
Structural material N Percent

Reinforced concrete 878 2.7

Steel 2,318 7.1

Masonry 1,883 5.8

Wood 27,350 84.3

Total 32,429 100.0

Table 9 Descriptive statistics of

function of building
Function of building N Percent

Residential house 21,165 65.3

Shared accommodation, including accommodation

with shop or factory facility

6,825 21.0

Commercial facility or operation/service facility 2,151 6.6

Transportation/storage facility or industrial plant 1,549 4.8

Public facility (i.e., multi-purpose or official work) 479 1.5

Agriculture, forestry, and aquaculture facility 260 0.8

Total 32,429 100.0
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Hill 2007; Norusis 2010), it was initially selected. The ordinal regression follows the

assumption that all categorical outcomes have the same set of parameters. This assumption

can be verified using the test of parallel lines (i.e., test whether the coefficient estimates for

each variable across categories are all the same) (Chan 2005; Norusis 2010). However, the

test of parallel lines showed significance at level p\ 0.001 for the logit link, thus the

assumption that all categories contain the same set of parameter was not reasonable. The

complementary log–log link (Clog–log) is likely to be a suitable alternative due to its

typical application (i.e., higher categories more probable). Therefore, the Clog–log link

function was tested in a similar fashion, and the null hypothesis (i.e., the location

parameters (slope coefficients) are the same across response categories) could not be

rejected. Hence, the Clog–log link function was selected. The buildings with no damage

were set to be our reference category for the damage level. For the predictor variables,

following Katz (2011)’s suggestion to choose the largest sample size when the hypothesis

does not lead to choose a particular category, residential houses were set to be our ref-

erence category for function of building and wood was set to be our reference category for

structural material.

Here, in order to see the amount of variation in output that can be explained by the

predictor variables, the model-fitting statistic, so-called Pseudo-R2, was calculated (Chen

and Hughes 2004). Based on the methodology from Norusis (2010), the three commonly

used Pseudo-R2 formulas (Cox and Snell 1989; Nagelkerke 1991; McFadden 1974) of the

analysis have been applied. The results showed as follows: RCox and Snell
2

= 0.861; RNage-

lkerke
2
= 0.893; RMcFadden

2
= 0.591. They indicate that at least about 60 % is being

explained by this model. It is normal that RMcFadden
2 tends to be much lower than RCox and

Snell
2 and RNagelkerke

2 (Tabachnick and Fidell 2013). As well as Ganguly et al. (2010), the

model with RMcFadden
2 more than 0.4 is considered as very good-fit. The result of the ordinal

regression analysis is shown in Table 11. All thresholds (except for the damage level 2) are

found to be significant at level p\ 0.001. The results also show that significant explan-

atory variables include inundation depth (p\ 0.001), shared accommodation function

(p\ 0.001), commercial facility function (p\ 0.01), transportation/storage facility

Table 10 Correlational analysis

Inundation

depth

Coastal

topography

Number of

floors

Structural

material

Function of

building

Inundation depth:

Pearson corr.

1

Coastal topography:

Pearson corr.

-0.613** 1

Number of floors:

Pearson corr.

-0.092** 0.118** 1

Structural material:

Pearson corr.

-0.016** -0.057** -0.202** 1

Function of building:

Pearson corr.

-0.012* -0.028** 0.161** 0.353** 1

** Correlation is significant at p\ 0.01 (2-tailed)

* Correlation is significant at p\ 0.05 (2-tailed)
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function (p\ 0.01), reinforced concrete structural material (p\ 0.001), and steel struc-

tural material (p\ 0.001).

Since our link function is Clog–log, the general model is formulated as follows (see

Norusis 2010):

lnð� lnð1� cjÞÞ ¼ ½hj � ðb1x1 þ b2x2 þ b3x3 þ � � � þ bmxmÞ�= expðs1z1 þ s2z2 þ s3z3

þ � � � þ snznÞ

ð2Þ

In Eq. (2), cj is the cumulative probability of damage for the jth category (j = {1,…, 5}), hj
is the threshold for the jth category, xi are the predictors, b1…bm are the m regression

coefficients (m representing the number of predictors), and s1…sn are n coefficients for the

scale component.

If we substitute the significant explanatory variables into Eq. (2), we obtain:

lnð� lnð1� cjÞÞ ¼ fhj � ½bfunc sharedxfunc shared þ bfunc commxfunc comm

þ bfunc tranxfunc tran þ bmat rcxmat rc

þ bmat steelxfunc steel�g= expðdepthzdepthÞ ð3Þ

In Eq. (3), bfunc_shared is the regression coefficient obtained for the shared accommo-

dation building function, bfunc_comm is the regression coefficient for the commercial facility

building function, bfunc_tran is the regression coefficient for transportation/storage facilities,

bmat_rc is the regression coefficient for the reinforced concrete structural material, bmat_steel

is the regression coefficient for the steel structural material, sdepth is the scale component

[i.e., a component used to account for differences in variability for different values of the

predictor variables (Norusis 2010)] coefficient corresponding to inundation depth,

Table 11 Explanatory variables associated with the damage level based on ordinal regression with the

complementary log–log link

Item name Parameter estimate p Result

Threshold (damage level = 1) 1.064 0.000*** Support

Threshold (damage level = 2) 20.016 0.522 Not support

Threshold (damage level = 3) 20.726 0.000*** Support

Threshold (damage level = 4) 21.591 0.000*** Support

Threshold (damage level = 5) 21.652 0.000*** Support

Threshold (damage level = 6) 22.980 0.000*** Support

Inundation depth 20.423 0.000*** Support

Number of floors 20.016 0.188 Not support

Structural material (category = reinforced concrete) 0.392 0.000*** Support

Structural material (category = steel) 0.167 0.000*** Support

Structural material (category = masonry) 0.006 0.807 Not support

Function (category = shared accommodation) 20.072 0.000*** Support

Function (category = commercial facility) 20.090 0.002** Support

Function (category = transportation/storage facility) 20.102 0.003** Support

Function (category = public facility) 20.007 0.898 Not support

Function (category = agriculture facility) 0.069 0.326 Not support

* Significant at level p\ 0.05;** significant at level p\ 0.01; *** significant at level p\ 0.001
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xfunc_shared, xfunc_comm, xfunc_tran, xmat_rc, xfunc_steel are the predictor variables (i.e., each

x representing a different value of the building function and building material categorical

variables), and zdepth is the continuous predictor variable for the scale component as the

thresholds and regression coefficient estimate are shown in Table 12.

5.5 Accuracy of the mean function

In order to evaluate the accuracy of the model, we applied a cross-tabulating method. The

predicted classification and the actual classification are shown in a 5 9 7 classification

table (Table 13), along with the proportion of correct estimations (in bold). The actual

damage-level-1 buildings are estimated correctly for 56.0 % of the buildings (21.9 % are

estimated as damage level 2 and 22.0 % are estimated as damage level 3). 33.0 % are

correct for damage level 2 (35.1 % are estimated as damage level 1 and 31.8 % are

estimated as damage level 3). 68.9 % are correct for damage level 3 (22.0 % are estimated

as damage level 2). 55.9 % are correct for damage level 5 (39.2 % are estimated as damage

level 3). 48.0 % are correct for damage level 6 (48.3 % are estimated as damage level 5).

In general, the model can estimate the actual damage level ± one damage level. However,

the model does not estimate any buildings to be at damage level 4 due to the truly small

samples in actual damage level 4. On the other hand, the actual damage level 4 buildings

are estimated as damage level 5 (60.8 %).

5.6 Relative importance of the predictors

In this section, we aim at finding the explanatory variables which influence the damage

level for each structural material, then for each function of building.

5.6.1 Building material

A number of studies (Matsutomi and Harada 2010; Reese et al. 2007, 2011; Ruan-

grassamee et al. 2006; Shuto 1993; Suppasri et al. 2012a, c, 2013; Valencia et al. 2011)

showed that the range of inundation depths influences the scale of damage differently when

structural material is taken into account (see Table 1). We continued the analysis by using

the same method as applied previously but reduced the scope of data into each specific

building’s structural material in order to check the significant variables which can influence

the damage level. Table 14 shows the results from the ordinal regression analysis applied

to structural material. Similar to our previous results, the inundation depth is the significant

explanatory variable for all structural materials. The number of floors is the significant

Table 12 Summary of predic-

tion model
Damage level Link function Threshold

Hj

Coefficient

1 ln(-ln(1 - c1)) 1.064 bmat_rc = 0.392

bmat_steel = 0.167

bfunc_shared = 20.072

bfunc_shared = 20.090
bfunc_shared = 20.102

sdepth = 20.423

2 ln(-ln(1 - c2)) n/a

3 ln(-ln(1 - c3)) -0.726

4 ln(-ln(1 - c4)) -1.591

5 ln(-ln(1 - c5)) -1.652

6 ln(-ln(1 - c6)) -2.980
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explanatory variables for only steel and wood buildings (p\ 0.001 and p\ 0.01,

respectively). The function of shared accommodation is found to be significant for rein-

forced concrete (p\ 0.05), wood (p\ 0.001), and masonry (p\ 0.05). The commercial

facility function is not a significant explanatory variable for any structural material. The

transportation/storage facility function is found to be significant for only steel building

(p\ 0.05). The public facility function is found to be significant for reinforced concrete

and masonry buildings (p\ 0.05 for both of them). The agricultural facility function is

found to be significant for only reinforced concrete buildings (p\ 0.05). The regression

coefficients, the Pseudo-R-squares, and the accuracy results from the cross-tabulating

method are shown in Table 14.

5.6.2 Building function

We continued the analysis by using the same method as applied previously, this time

reducing the scope of data into each specific building function in order to check the

significant variables which can influence the damage level. The results are shown in

Table 15. It can be seen that inundation depth is always the significant explanatory variable

Table 14 Explanatory variables associated with the damage level based on ordinal regression with the

complementary log–log link for specific structural material

Item name Parameter estimate

Reinforced concrete Steel Wood Masonry

Threshold (damage level = 1) 1.630*** 0.917*** 1.001*** 1.067***

Threshold (damage level = 2) 0.544** 0.050 20.094** 20.029

Threshold (damage level = 3) 20.816*** 20.780*** 20.772*** 20.848***

Threshold (damage level = 4) 21.520*** 21.544*** 21.654*** 21.714***

Threshold (damage level = 5) 22.630*** 22.079*** 21.655*** 21.719***

Threshold (damage level = 6) 24.718*** 24.432*** 22.928*** 23.082***

Inundation depth 20.379*** 20.499*** 20.421*** 20.461***

Number of floors 0.034 0.135*** 20.046** 0.000

Function (shared accommodation) 0.350* 20.098 20.084*** 20.143*

Function (commercial facility) 0.190 20.142 20.076 20.175

Function (transportation/storage facility) 20.260 20.218* 20.038 0.083

Function (public facility) 0.316* 20.161 0.055 20.544*

Function (agricultural facility) 0.478* 20.113 0.016 0.145

RCox and Snell
2 0.947 0.921 0.830 0.901

RNagelkerke
2 0.985 0.953 0.863 0.938

RMcFadden
2 0.905 0.746 0.546 0.715

AccuracyDamageLevel1 (%) n/a 18.0 61.0 32.6

AccuracyDamageLevel2 (%) 100.0 91.7 n/a 79.9

AccuracyDamageLevel3 (%) n/a 16.6 88.4 26.0

AccuracyDamageLevel4 (%) 39.0 n/a n/a n/a

AccuracyDamageLevel5 (%) 29.8 86.7 49.8 56.5

AccuracyDamageLevel6 (%) 0.0 24.2 53.3 42.5

Bold means that value is significant at level p\ 0.05, 0.01, 0.001
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for all functions at level p\ 0.001, while the number of floors is the significant explan-

atory variables for only shared accommodation and transportation/storage facilities. Fur-

thermore, reinforced concrete is found to be significant for shared accommodation

(p\ 0.001), commercial facilities (p\ 0.001), and agricultural facilities (p\ 0.05). Steel

is found to be significant for residential houses (p\ 0.01), shared accommodation

(p\ 0.001), and commercial facilities (p\ 0.01); finally masonry is found to be signifi-

cant only for public facilities (p\ 0.01). The regression coefficients, the Pseudo-R-

squares, and the accuracy results from the cross-tabulating method are shown in Table 15.

6 Discussion and conclusion

6.1 Discussion

In line with previous studies (Koshimura et al. 2009b; Matsutomi and Harada 2010; Reese

et al. 2007, 2011; Ruangrassamee et al. 2006; Shuto 1993; Suppasri et al. 2012a, c, 2013;

Valencia et al. 2011), our model includes and ascertains the inundation depth as one of the

significant explanatory variables, together with the structural material (reinforced concrete

and steel). The function of buildings (shared accommodation, commercial facility, and

transportation/storage facility) is also found to be of importance.

Although the number of floors is found not to be one of the significant explanatory

variables when considering the entire dataset, it is found to be significant for wooden and

steel buildings (when the data are categorized by structural material) and for shared

accommodation and transportation/storage facilities (when the data are categorized by

building function) (see Sect. 5.5).

The significance of the number of floors for steel and wood buildings only in relation to

their damage state is likely to be explained by the difference in wall resistance to tsunami

loads. Referring to Table 3, the description of damage (particularly for high damage levels)

is largely based on the amount of damage to walls, proportionally to the size of the

structure (e.g., ‘‘more than half of wall density’’ for level 5): In the case of a reinforced

concrete or masonry building, walls are made of reinforced concrete/brick, whereas the

walls of wood and steel buildings are typically made of weak materials such as ply wood.

In addition, wood and steel buildings typically have less than three stories, whereas the

range of heights for RC buildings is much broader (up to 14 stories) (see Table 16). This

means that for a given inundation depth, the walls of a reinforced concrete/masonry

building will likely resist well the hydrostatic and hydrodynamic wave loads, regardless of

the number of floors, so the damage level will appear not to be strongly dependent on this

variable. On the other hand, under tsunami loading, the walls of wooden and steel buildings

will fail very easily, causing proportionally more damage as the flow depth increases and

reaches higher floors.

Similarly, the significance of the number of floors for shared accommodation and

transportation/storage in relation to their damage state is likely to be a consequence of their

dominant structural material. Indeed, we can see that 87 % of shared accommodations and

84 % of transportation/storage facilities are made of wood and steel (shared accommo-

dation: wood 82 % and steel 5 %; transportation/storage facilities: wood 31 % and steel

53 %), which would cause the walls of such structures to be more vulnerable to tsunami

forces, against only 50 % (wood 31 % and steel 19 %) and 59 % (wood 30 % and steel

29 %) for example for public and agricultural facilities, respectively (see Fig. 3). It should

be noted that residential houses, however, primarily made of wood (95 %), have not
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resulted in a statistically significant influence of the number of floors. This is probably due

to the extremely large counts of 2-story buildings for this function (4 times the number of

single story houses, with an insignificant number of buildings higher than 3 stories) in

comparison with shared accommodation and transportation/storage facilities which display

a greater spread across the range of heights (see Fig. 4). In other words, a variable which is

virtually constant (effectively only takes one value at number of floors = 2), will not

appear as significant whereas a greater spread will allow for the effect of this variable to be

more apparent, which is the case for these specific building functions.

The cross-tabulation results highlight an interesting issue about the classification

standard of the buildings damaged by the tsunami. According to the present findings, the

model estimated 60.8 % of the actual damage-level-4 buildings as damage-level-5 build-

ings, and 34 % as being at damage level 3—which put together is almost the totality of the

amount of damage level 4 observations. A closer examination of the definition of this

damage level in Table 3 reveals that these two levels are likely to have many similar

characteristics: Damage level 4: ‘‘heavy damages to several walls and some columns’’;

Damage level 5: ‘‘destructive damage to walls (more than 50 % of wall density) and

several columns (bend or destroyed).’’ Similarly, ‘‘Possible to be use after a complete

reparation and retrofitting’’ (damage level 4) can easily be seen as ‘‘Possible to be use after

major reparations’’ (damage level 3). Therefore, it is likely that survey teams may have

misclassified a lot of buildings being at damage level 4 as having reached damage level 5,

or under-estimated the damage to being at level 3. In light of these observations, it is

suggested that the damage level classification may need to be reconsidered to avoid

potential judgment errors in future surveys. These levels may need to be combined,

redefined, or described in more details to highlight their differences.

6.2 Conclusions

This study presented the analysis of the detailed damage data of the buildings impacted by

the 2011 tsunami in Ishinomaki by applying ordinal regression to generate a model relating

all available predictor variables to the damage level. The accuracy of the results was

evaluated by cross-tabulation. This is the first attempt in applying this statistical per-

spective to buildings damaged by tsunami which combined all significant parameters in

one equation. Inundation depth, function of building (shared accommodation, commercial

Table 16 Distribution of num-

ber of floors of the building in

each structural material

No. of floor Structural material

Reinforced concrete Steel Masonry Wood

1 59 839 782 8,034

2 325 1,213 1,088 19,199

3 291 239 13 107

4 106 24 0 1

5 56 2 0 0

6 22 1 0 0

7 8 0 0 0

8 4 0 0 0

9 6 0 0 0

14 1 0 0 0
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facility, and transportation/storage facility), and structural material (reinforced concrete

and steel) have been found to be significant exploratory variables that can influence the

damage level of the buildings.

In addition, as mentioned (see Sect. 6.1), the significance of the number of floors is

likely to be explained by the difference in wall resistance to tsunami loads. When the data

are categorized by structural material, we found that the number of floors is found to be

another significant variable for wooded and steel buildings, whose wall resistance is

weaker to tsunami loads than reinforced concrete and masonry buildings. Meanwhile,

when the data are categorized by building function, the number of floors is also significant

for shared accommodation and transportation/storage facilities whose structural material

was indeed mostly made by wood and steel.

Fig. 3 Structural materials for each function of building
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The results of this study can contribute to both academic research and industrial or

governmental practice. In the context of tsunami research, a new approach has been

applied to identify and rank influential variables on the process observed, and a new model

for tsunami damage prediction based on the ordinal regression methodology and the

extensive database from the 2011 Japan tsunami is proposed. In the field, the prediction

model can be applied to predict the damage level when the input variables are known, and

its outputs compared with state-of-the-art predictions. The government, urban and disaster

planners, engineers, architects, insurance companies, and construction businesses may also

take into account such results in the decision making process.

However, it is important to understand the limitations of the aforementioned results to

understand their applicability and highlight avenues for improvement. First, this study used

only the available data, so the predictive capability of the model to future events and

different datasets needs to be improved and evaluated through further analysis. In addition,

the observed damage might be influenced by other variables (such as tsunami flow velocity

and distance from the shoreline) or other external variables (e.g., floating debris, barrier,

and environment). If such data becomes available, it will be possible to include those

variables into future analyses and assess their importance, as well as improving the

accuracy of estimations. Also, even though we chose the reference variables by following

Fig. 4 Histograms for each function of building
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the suggestion of Katz (2011), there may be limitation inherent to the choices we made

regarding the reference variables (i.e., wood and residential house) whose any variability

were not be captured by the model. Finally, despite the large number of points which is

considered sufficient to perform the analysis, all buildings were surveyed in one city. Some

characteristic setting of the area of study may not be generalized to other areas, and

therefore, it is necessary to test this approach with other affected areas and compare results.

Acknowledgments This research was partly funded by the Academy for Co-creative Education of

Environment and Energy Science (ACEEES) of Tokyo Institute of Technology, the Ministry of Education,

Culture, Sports, Science and Technology (MEXT), the Tokio Marine & Nichido Fire Insurance Co., Ltd.

through the International Research Institute of Disaster Science (IRIDeS) at Tohoku University, and the

Willis Research Network under the Pan-Asian/Oceanian tsunami risk modeling and mapping project. The

detailed building damage data used in this study were collected during the damage surveys of the 2011

Tohoku tsunami conducted by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and were

officially provided by Ishinomaki city. The first author also would like to thank Prof. Junichi Iijima and

Iijima Laboratory of Tokyo Institute of Technology, Tsunami Engineering Laboratory of Tohoku Univer-

sity, and Dr. Jing Tang.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the

source are credited.

References

Bender R, Grouven U (1997) Ordinal logistic regression in medical research. J R Coll Phys Lond

31:546–551

Centre for Research on the Epidemiology of Disaster (CRED) (2013) EM-DAT: The international disaster

database. http://www.emdat.net Accessed 31 January 2013

Chan YH (2003) Biostatistics 104: correlation analysis. Singap Med J 44:614–619

Chan YH (2005) Biostatistics 305: multinomial logistic regression. Singap Med J 46:259–269

Charvet I, Suppasri A, Imamura F (2014) Empirical fragility analysis of building damage caused by the 2011

Great East Japan tsunami in Ishinomaki City using ordinal regression, and influence of key geo-

graphical features. Stoch Env Res Risk A. doi:10.1193/053013EQS138M

Chen C, Hughes J Jr (2004) Using ordinal regression model to analyze student satisfaction questionnaires.

IR Appl 1:1–12

Cox DR, Snell EJ (1989) The analysis of binary data, 2nd edn. Chapman and Hall, London

Crewson P (2006) Applied statistics handbook. AcaStat Software, Leesburg

Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009a) A revised (PTVA)

model for assessing the vulnerability of buildings to tsunami damage. Nat Hazards Earth Syst Sci

9:1557–1565

Dall’Osso F, Gonella M, Gabbianelli G, Withycombe G, Dominey-Howes D (2009b) Assessing the vul-

nerability of buildings to tsunami in Sydney. Nat Hazards Earth Syst Sci 9:2015–2026

Farrar DE, Glauber RR (1967) Multicollinearity in regression analysis: the problem revisited. Rev Econ Stat

49:92–107

Ganguly I, Koebel T, Cantrell RA (2010) A categorical modeling approach to analyzing new product

adoption and usage in the context of the building-materials industry. Technol Forecast Soc 77:662–677

Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge

University Press, New York

Gokon H, Koshimura S (2012) Mapping of building damage of the 2011 Tohoku earthquake and tsunami in

Miyagi prefecture. Coast Eng J 54:1250006

Gokon H, Koshimura S, Matsuoka M, Namegaya Y (2011) Developing tsunami fragility curves due to the

2009 tsunami disaster in American Samoa. J Jpn Soc Civ Eng 67:I_1321–I_1325

Green SB (1991) How many subjects does it take to do a regression analysis? Multivar Behav Res

26:499–510

Kaiyawan Y (2010) Principles of statistic and application SPSS (in Thai). Chulalongkorn University Press,

Bangkok

Nat Hazards (2014) 73:449–471 469

123

http://www.emdat.net
http://dx.doi.org/10.1193/053013EQS138M


Katz MH (2011) Multivariable analysis: a practical guide for clinical and public health researchers, 3rd edn.

Cambridge University Press, New York

Koshimura S, Kayaba S (2010) Tsunami fragility inferred from the 1993 Hokkaido Nansei-oki earthquake

tsunami disaster. J Jpn As Earthq Eng 10:87–101

Koshimura S, Matsuoka M, Kayaba S (2009a) Tsunami hazard and structural damage inferred from the

numerical model, aerial photos and SAR imageries. In Proceedings of the 7th international workshop

on remote sensing for post disaster response, Texas, USA, 22–23 Oct 2009

Koshimura S, Namegaya Y, Yanagisawa H (2009b) Tsunami fragility a new measure to identify tsunami

damage. J Disaster Res 4:479–488

Koshimura S, Oie T, Yanagisawa H, Imamura F (2009c) Developing fragility curves for tsunami damage

estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia. Coast Eng J

51:243–273

Lall R, Campbell MJ, Walters SJ, Morgan K (2002) A review of ordinal regression models applied on

health-related quality of life assessments. Stat Methods Med Res 11:49–67

Mas E, Koshimura S, Suppasri A, Matsuoka M, Matsuyama M, Yoshii T, Jimenez C, Yamazaki F, Imamura

F (2012) Developing tsunami fragility curves using remote sensing and survey data of the 2010 Chilean

tsunami in Dichato. Nat Hazards Earth Syst Sci 12:2689–2697

Matsutomi H, Harada K (2010) Tsunami-trace distribution around building and its practical use. In: Pro-

ceedings of the 3rd international tsunami field symposium, Sendai, Session 3-2

McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers

in economics. Academic Press, New York, pp 105–142

Muora O, Nakazato H (2010). Vulnerability functions for buildings based on damage survey data in Sri

Lanka after the 2004 Indian Ocean tsunami. In: Proceedings of the 7th international conference of

sustainable built environment, ICSBE, Kandy, pp 371-378, 13–14 Dec 2010

Nagelkerke NJD (1991) A note on the general definition of the coefficient of determination. Biometrika

78:691–692

National Police Agency (2011) Damage condition of the 2011 earthquake off the Pacific coast of Tohoku.

http://www.npa.go.jp/archive/keibi/biki/higaijokyo.pdf. Accessed 26 July 2013

Norusis MJ (2010) PASW statistics 18.0 advanced statistical procedures. Prentice Hall Press, Upper Saddle

River

Osborne J, Waters E (2002) Four assumptions of multiple regression that researchers should always test.

Pract Assess Res Eval 8(2). http://ericae.net/pare/getvn.asp?v=8&n=2

Papathoma M, Dominey-Howes D (2003) Tsunami vulnerability assessment and its implications for coastal

hazard analysis and disaster management planning, Gulf of Corinth, Greece. Nat Hazards Earth Syst

Sci 3:733–747

Papathoma M, Dominey-Howes D, Zong Y, Smith D (2003) Assessing tsunami vulnerability, an example

from Herakleio, Crete. Nat Hazards Earth Syst Sci 3:377–389

Reese S, Cousins WJ, Power WL, Palmer NG, Tejakusuma IG, Nugrahadi S (2007) Tsunami vulnerability

of buildings and people in South Java—field observations after the July 2006 Java tsunami. Nat

Hazards Earth Syst 7:573–589

Reese S, Bradley BA, Bind J, Smart G, Power W, Sturman J (2011) Empirical building fragilities from

observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173

Ruangrassamee A, Yanagisawa H, Foytong P, Lukkunaprasit P, Koshimura S, Imamura F (2006) Investi-

gation of tsunami-induced damage and fragility of buildings in Thailand after the December 2004

Indian Ocean tsunami. Earthq Spectra 22:377–401

Seber GAF (1977) Linear regression analysis. Wiley, New York

Shuto N (1993) Tsunami intensity and disasters. In: Tinti S (ed) Tsunamis in the world. Kluwer, Dortrecht,

pp 197–216

Suppasri A, Koshimura S, Imamura F (2011) Developing tsunami fragility curves based on the satellite

remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand. Nat

Hazards Earth Syst Sci 11:173–189

Suppasri A, Koshimura S, Imai K, Mas E, Gokon H, Muhari A, Imamura F (2012a) Damage characteristic

and field survey of the 2011 Great East Japan tsunami in Miyagi Prefecture. Coast Eng J 54:1250005-

1–1250005-30

Suppasri A, Koshimura S, Matsuoka M, Gokon H, Kamthonkiat D (2012b) Remote sensing of planet earth:

application of remote sending for tsunami disaster. In: Chemin Y (ed) Remote sensing of planet earth.

InTech, New York, pp 143–168

Suppasri A, Mas E, Koshimura S, Imai K, Harada K, Imamura F (2012c) Developing tsunami fragility

curves from the surveyed data of the 2011 Great East Japan tsunami in Sendai and Ishinomaki plains.

Coast Eng J 54:1250008-1–1250008-16

470 Nat Hazards (2014) 73:449–471

123

http://www.npa.go.jp/archive/keibi/biki/higaijokyo.pdf
http://ericae.net/pare/getvn.asp?v=8&n=2


Suppasri A, Mas E, Charvet I, Gunasekera R, Imai K, Fukutani Y, Abe Y, Imamura F (2013) Building

damage characteristics based on surveyed data and fragility curves for the 2011 Great East Japan

tsunami. Nat Hazards 66:319–341

Suppasri A, Charvet I, Imai K, and Imamura F (2014) Fragility curves based on data from the 2011 Great

East Japan tsunami in Ishinomaki city with discussion of parameters influencing building damage.

Earthq Spectra. doi:10.1193/053013EQS138

Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F (2000) Methods for meta-analysis in medical

research. Wiley, Chichester

Tabachnick BG, Fidell LS (2013) Using multivariate statistics, 6th edn. Pearson Education, Boston

Valencia N, Gardi A, Gauraz A, Leone F, Guillannde R (2011) New tsunami damage functions developed in

the framework of SCHEMA project: application to European-Mediterranean coasts. Nat Hazards Earth

Syst Sci 11:2385–2846

Vanichbancha K (2006) Data analysis with SPSS for Windows (in Thai). Chulalongkorn University Press,

Bangkok

Nat Hazards (2014) 73:449–471 471

123

http://dx.doi.org/10.1193/053013EQS138

	Building damage from the 2011 Great East Japan tsunami: quantitative assessment of influential factors
	A new perspective on building damage analysis
	Abstract
	Introduction
	Literature review
	Building damage due to tsunami inundation depth
	Vulnerability of buildings as estimated by the Papathoma tsunami vulnerability assessment method (PTVA)

	Study area
	Research design and methodology
	Methodology
	Dependent variable: damage level
	Independent variables (predictors)

	Data collection and analysis
	Data collection
	Descriptive statistics
	Testing for correlated predictors
	Ordinal regression analysis
	Accuracy of the mean function
	Relative importance of the predictors
	Building material
	Building function


	Discussion and conclusion
	Discussion
	Conclusions

	Acknowledgments
	References


