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Abstract

In this paper we introduce a probabilistic approach of

building extraction in remotely sensed images. To cope

with data heterogeneity we construct a flexible hierarchi-

cal framework which can create various building appear-

ance models from different elementary feature based mod-

ules. A global optimization process attempts to find the opti-

mal configuration of buildings, considering simultaneously

the observed data, prior knowledge, and interactions be-

tween the neighboring building parts. The proposed method

is evaluated on various aerial image sets containing more

than 500 buildings, and the results are matched against two

state-of-the-art techniques.

1 Introduction

Detecting buildings in aerial and satellite images [5, 6, 8]

is a key issue in several remote sensing applications, among

others in cartography, GIS data management and updating,

disaster recovery or illegal built-up region detection. In lack

of stereo based height information [6], building identifica-

tion becomes a hard monocular object recognition task. Due

to the quickly evolving spatial and spectral resolution of the

images, the large variety of camera sensors, image quality,

seasonal and weather circumstances, and the richness of the

different building appearances it is extremely challenging to

develop a widely applicable solution for the problem.

Most of the previous single view techniques are re-

stricted to specific image properties and scene contents.

They expect the fulfillment of various hypothesizes, such

as buildings are homogenous areas either in color or in tex-

ture [7], roofs have unique colors which can distinguish

them from the background [8], or shadows of buildings

are present and can be extracted by color filtering [7, 8].

1The work of the first author was partially funded by an INRIA

postdoctoral fellowship. The authors would like to thank the test data
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High contrast is often necessary to obtain a clear edge map

for contour based detection [5, 8]. Other approaches as-

sume that the building types in a given image set can be

efficiently characterized by a couple of template buildings

[4, 9], or one can apply simplified 3-D building structures

composed of planar surfaces with parallel sides [5]. How-

ever combining the different solutions or adapting them to

altered circumstances is not straightforward, although the

recent remote sensing image databases demand to jointly

handle highly heterogenous data. To ensure generality and

robustness, besides extracting different limited descriptors,

feature integration and selection should be addressed at the

same time. Therefore we construct a method which can

combine the features in a flexible way based on availabil-

ity, enabling adaptation to various image sets.

In this paper we introduce a robust Marked Point pro-

cess (MP) [3] model for the building detection problem. In

Sec. 2, we describe the probabilistic framework of our ap-

proach, while Sec. 3 deals with feature modeling and inte-

gration. Evaluation and discussion are given in Sec. 4: the

performance of the proposed model is compared to two ref-

erence methods through real aerial images containing 567,

also manually validated, objects.

2 Marked Point Process Model

The input of the proposed framework is a single aerial

or satellite image, which is modelled as a 2-D pixel lat-

tice S, and s ∈ S denotes a single pixel. D refers to the

global image data. We assume that the footprint of each

building can be approximated either as a rectangle or as

the union of many slightly overlapping rectangular building

segments, which we aim to extract by the following model.

A building segment candidate u is described by five param-

eters: cx and cy center coordinates, eL, el side lengths and

θ ∈ [−90◦,+90◦] orientation [see Fig. 1(a)].

Let be H the space of u objects. The Ω configuration



(a) (b)

Figure 1. Demonstration of the (a) object rect-
angle parameters and (b) calculation of the
interaction potentials

space is defined as [3]:

Ω =

∞
⋃

n=0

Ωn, Ωn =
{

{u1, . . . , un} ∈ Hn
}

Denote by ω an arbitrary object configuration {u1, . . . , un}
in Ω. We define a ∼ neighborhood relation in H: u ∼ v if

their rectangles intersect.

We introduce a non-homogenous data-dependent Gibbs

distribution on the configuration space: PD(ω) = 1/Z ·
exp [−ΦD(ω)], whereΦD(ω) is called the configuration en-

ergy and Z is a normalizing constant. The energy is divided

into data dependent (AD) and prior (I) parts:

ΦD(ω) =
∑

u∈ω

AD(u) + γ ·
∑

u,v∈ω
u∼v

I(u, v) (1)

where AD(u) ∈ [−1, 1], I (u, v) ∈ [0, 1] and γ is a weight-

ing factor between the two terms. The process searches for

the maximum likelihood configuration estimate obtained as

ωML = argminω∈Ω

[

ΦD(ω)
]

.

The AD(u) unary potential characterizes a proposed

building segment u = {cx, cy, eL, el, θ} depending on the

local image data, but independently of other objects of the

population. Rectangles with negative unary potentials are

called attractive objects. Considering (1) we can observe

that the optimal population should consist of attractive ob-

jects exclusively: if AD(u) > 0, removing u from the con-

figuration results in a lower ΦD(ω) global energy.

On the other hand, we have to avoid configurations

which contain many objects in the same or strongly overlap-

ping positions. Therefore, the I(u, v) interaction potentials

realize a prior geometrical constraint: they penalize inter-

section between different object rectangles [Fig. 1(b)]

I(u, v) =
#{s|s ∈ u, s ∈ v}

#{s|s ∈ u}+#{s|s ∈ v}

where s ∈ u means that pixel s is covered by the rectangle

of object u, and # refers to the cardinality of a set.

To fit the above framework to the building detection task,

we need to handle two key issues. Firstly, an appropri-

ate ΦD(ω) energy function should be constructed where

the ωML configuration efficiently estimates the true build-

ing population. Based on (1) this is primarily related with

the definition of the AD(u) data term, thus we dedicate Sec.

3 to this problem. Secondly, we need to choose an optimiza-

tion technique. We use the Multiple Birth and Death (MBD)

algorithm [3] for this purpose, which evolves the population

of buildings by alternating randomized object generation

(birth) and removal (death) steps in a simulated annealing

framework. Experimental evidences [3] show, that regard-

ing computational complexity, MBD outperforms MCMC-

based [6] relaxation algorithms, see details in [1, 2].

3 Flexible data term construction

This section deals with the construction of the AD(u)
data term. The process consists of three parts: feature ex-

traction, energy calculation and feature integration. First,

we define different f : {u,D} → R features which evalu-

ate a building hypothesis for u in the image, so that ‘high’

f values correspond to efficient building candidates. We

must consider here, that the decision based on a single f
feature can lead to a weak classification, since the buildings

and background may overlap in the f -domain. On the other

hand, f might be an incomplete descriptor i.e. it can be

relevant only for a group of buildings in the population.

In the test image of Fig. 3 three features are used. The

gradient descriptor exploits that below the edges of a

relevant rectangle candidate (Ru), we expect pixels (s) with

large intensity gradient vectors (∇gs) directing to the local

normal vector (ns) of the rectangle. Therefore the Λu gra-

dient descriptor is obtained as
∑

s∈∂̃Ru
∇gs· ns , where ‘·’

denotes scalar product and ∂̃Ru is the dilated edge mask of

rectangle Ru. The process is demonstrated in Fig. 3 (c)-(d).

The shadow feature is based on a preliminary cast

shadow map (Fig. 3(e)). Exploiting that cast shadows are

located next to the Ru object rectangles, one should check

the presence of shadows in a parallelogram T sh
u defined by

Ru and the estimated sun direction vector, d [8] (Fig. 3(f)).

The χu feature is calculated as the minimum of the filling

ratio of shadowed pixels in T sh
u , and the filling ratio of non-

shadowed pixels in Ru.

Several roofs can be identified by their typical colors,

for example pixels of red tiles have high a* color compo-

nent values in CIE L*a*b* color space representation as

shown in Fig. 3(g). Assume that based on a roof color
hypothesis we can derive a binary mask image containing

the estimated roof pixels e.g. by thresholding (Fig. 3(h)).

Thereafter, we define the Cu color feature similarly to the

shadow descriptor, prescribing high ratio of roof pixels in-

side Ru and low ratio in the region around Ru. Parameters

can be set using Ground Truth data and conventional Maxi-

mum Likelihood estimation algorithms.

In the second step, we construct energy subterms for

each f ∈ {Λ, χ, C} feature, so that we attempt to satisfy

ϕf (u) < 0 for real objects and ϕf (u) > 0 for false can-



(a) Input (color image) (c) Gradient map (e) Shadow map (g) a* channel in CIE L*a*b* space

(b) Ground Truth (GT) (d) Gradient feature for GT objects (f) Shadow feature & GT overlaid (h) Color mask & GT overlaid

Figure 2. Feature maps of an image from the CÔTE D’AZUR test set.

didates. For this purpose, we project the feature domain to

[−1, 1] with a monotonously decreasing function:

ϕf (u) =







(

1− f(u)

d
f
0

)

if f(u) < df0

exp
(

−
f(u)−d

f
0

Df

)

− 1 if f(u) ≥ df0

where df0 and Df are parameters. Consequently, object u is

attractive according to the ϕf (u) term iff f(u) > df0 , while

Df performs data-normalization.

Usually, the individual features are in themselves inap-

propriate to describe all buildings of the scene, which is

illustrated in Fig. 2. We have chosen here two sample

buildings segments u and v so that for u, the gradient and

shadow features are efficient, while the roof color is irrel-

evant. The case of v is just the opposite. To handle such

data heterogeneity, the proposed framework enables flex-

ible feature integration. First, from the ϕf (.) primitive

terms introduced previously we construct different build-

ing prototypes. For each prototype we can prescribe the

fulfillment of one or many feature constraints whose ϕf -

subterms are connected with the max operator in the joint

energy term of the prototypes (logical AND in the neg-

ative fitness domain). As well in a given image several

building prototypes can be detected simultaneously if the

prototype-energies are joined with the min (logical OR) op-

erator. In our example, we use two prototypes: the first

prescribes the edge and shadow constraints, the second one

the roof color alone (as it is can detect the red roofs in it-

self accurately), thus the joint energy term is calculated as:

AD(u) = min
{

max {ϕΛ(u), ϕχ(u)}, ϕc(u)
}

.

4 Experiments

We evaluated our method on five aerial data sets ob-

tained from Google Earth and the City Council of Budapest.

To guarantee the heterogeneity of the test sets, we chose

five completely different regions: Côte d’Azur (French Riv-

iera), Normandy (FR), Manchester (UK), Bodensee (GER)

and Budapest (HUN). We collected samples from densely

populated suburban areas, and built a manually annotated

database for the validation, containing 567 buildings.

For comparison, we have selected two methodologically

different reference techniques from the literature: an Edge

Verification (EV) method [8] and a Segment-Merge (SM)

model [7]. We have focused on validating the model struc-

tures instead of special input-dependent descriptors, thus we

have taken care of choosing references which use similar

image features (gradient, shadow, color) to our framework,

but they exploit them in different manners. More precisely,

in EV [8], the shadow and roof color information is only

used to coarsely detect the built-in areas, while the object

verification is purely based on matching the edges of the

building candidates to the Canny edge map extracted over

the estimated built-in regions. On the other hand, the SM

model iterates three steps: (i) building segment estimation

by seeded region growing, (ii) region merging and shadow

evidence verification, and (iii) filtering based on geometric

and photometric features.

For a sample image, Fig. 3 shows detection results with

the three methods (EV, SM and the proposed MP) and the

Ground Truth (GT) configuration. In the quantitative evalu-

ation we counted the number of missing and falsely detected



(a) Edge verification (b) Segment-Merge (c) Proposed MP (d) Ground Truth (GT)

Figure 3. Evaluation (from the CÔTE D’AZUR set): comparing the MP model to the EV technique [8]
and the SM method [7]. Circles denote completely missing or false objects.

objects, results are provided in Table 1 (in the last row, the

error rates are given in percent of the population).

We continue with the discussion. Since both the EV

and SM reference methods follow the deterministic object

generation-acceptance scheme, buildings ignored in the hy-

pothesis generator phase appear automatically as missing

objects (see Fig 3 (a) and (b)). On the contrary, the intro-

duced MP model proposes buildings in a stochastic way,

thus objects can be generated with any position and ap-

pearance parameters. The acceptance depends on the ro-

bust inverse object description in the energy model, while

the computational tractability is ensured by optimized re-

laxation parameters [3] and a non-uniform birth process [2].

Another important observation is that the EV and SM

methods are sequential, thus the failure of each step may

cause a bottleneck for the whole process, e.g. due to a

weak edge map, missing shadows or overlapping color do-

mains. On the contrary, the proposed model uses different

prototype-hypothesizes parallely, thus they may enable to

detect the buildings even in cases of partially missing or ir-

relevant feature information. Results in Fig. 3 and Table 1

confirm the generality of the proposed model and its supe-

riority versus the EV and SM approaches.

5 Conclusion

We have proposed a Marked Point Process framework

for building extraction in a single remotely sensed image.

The method implements a flexible hierarchical feature in-

tegration scheme to characterize different buildings based

on different feature-tupples. The evaluation confirmed the

advantages of the approach in various building datasets.
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