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ABSTRACT:

In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists

of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW) method is applied

for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The

logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier,

which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model

of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational

inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the

prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the

probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A

benchmark data set consisting of aerial images and digital surfaced model (DSM) released by ISPRS for 2D semantic labeling is used

for performance evaluation. The results demonstrate the effectiveness of the proposed method.

1. INTRODUCTION

Building detection from aerial and satellite images has been a

main research issue for decades and is of great interest since it

plays a key role in building model generation, map updating, ur-

ban planning and reconstruction (Davydova et al., 2016). Various

methods have been developed and difference data sources such

as aerial images, digital surface/eleviation models, LIDAR data,

multi-spectral images, synthetic aperture radar images, have been

used for building detection. In this section we briefly review rele-

vant methods in the literature on building detection. Decades ago

the initial endeavor for building detection was relying on group-

ing of low level image features such as edge/line segments and/or

corners to form building hypotheses (Ok, 2013). For instance, a

generic model of the shapes of building was adopted in (Huer-

tas and Nevatia, 1988) and shadows cast by buildings were used

to confirm building hypotheses and to estimate their height. A

computational techniques for utilizing the relationship between

shadows and man-made structures to aid in the automatic extrac-

tion of man-made structures from aerial imagery is described in

(Irvin and McKeown, 1989). An approach to perceptual grouping

for detecting and describing 3-D objects in complex images was

proposed in (Mohan and Nevatia, 1989) and was illustrated by ap-

plying it to the task of detecting and describing complex buildings

in aerial images. The vertical and horizontal lines identified us-

ing image orientation information and vanishing point calculation

were used in (McGlone and Shufelt, 1994) to constrain the set of

possible building hypotheses, and vertical lines are extracted at

corners to estimate structure height and permit the generation of

three dimensional building models from monocular views. Due

to the neglected performance evaluation in building detection, a

comprehensive comparative analysis of four building extraction

systems was presented in (Shufelt, 1999) and he concluded that

none of the developed systems were capable of handling all of

the challenges in building detection. Most of these initial meth-

ods rely heavily on the adopted low level features and assumption

of a specific type of building hypothesis. However due to the un-

certainty in low level features, their performance is not likely to

be perfect.

Due to the popularity of space-borne VHR sensors in a wide va-

riety of remote-sensing-related applications, multi-spectral infor-

mation have motivated new approaches based on machine learn-

ing techniques for building detection. For instance, multi-spectral

classification and texture filtering were combined in (Zhang,

1999) within a two-level framework to optimize building detec-

tion in satellite images. In the first level, a fused image was clas-

sified using ISODATA clustering. A filtering method based on

a modified co-occurrence matrix was applied in the second level

to improve the classification results of the first level. Later on,

morphological transformations to build a differential morpholog-

ical profile was proposed for building detection in (Pesaresi and

Benediktsson, 2001) and (Benediktsson et al., 2003). A com-

bined fuzzy pixel-based and object-based approach for classifi-

cation of urban land cover from high-resolution multi-spectral

image data was proposed in (Shackelford and Davis, 2003).

This method was demonstrated using pan-sharpened multispec-

tral IKONOS imagery from dense urban areas. A system was

developed in (Ünsalan and Boye, 2005) to detect houses and res-

idential street networks in multispectral satellite images, which

produced a highly successful detection rate (94.8%) for house

detection. However, because of the assumptions on buildings,

it is applicable only to the buildings in North America. With-

out assumptions on building structure, a generic method for the

detection of man-made objects in high resolution optical remote

sensing images was developed in (Inglada, 2007) by SVM clas-

sification of geometric image features such as geometric invari-

ants and FourierMellin descriptors. Nevertheless, this approach
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is not designed to detecting building regions instead the patches

of a particular size corresponding to building. A novel decision

fusion approach to building detection in VHR optical satellite im-

ages is proposed in (Senaras et al., 2013). The method combines

the detection results of multiple classifiers under a hierarchical

architecture, called Fuzzy Stacked Generalization (FSG). How-

ever, this method assumes statistical stability of the training and

test data. A new approach based on an adaptive fuzzy-genetic al-

gorithm was proposed in (Sumer and Turker, 2013) for building

detection using high-resolution satellite imagery. This approach

combines a hybrid system of evolutionary techniques with a tra-

ditional classification method (Fishers linear discriminant) and an

adaptive fuzzy logic component. Nevertheless it is by no mean-

s determinist that genetic algorithms can find a global optimum

solution.

Methods based on graphical models are quite popular for building

detection as well. An MRF model was used in (Krishnamachari

and Chellappa, 1996) to group these lines to delineate buildings

in aerial images. First straight lines are extracted from images

by using an edge detector followed by a line extractor. Then an

MRF model is formulated on these extracted lines with a suit-

able neighborhood. The probabilistic model is chosen to support

the properties of the shapes of buildings. In the end, the energy

function associated with the MRF is minimized, resulting in the

grouping of lines. However, no quantitative results were provided

for evaluation. Similarly, a stochastic image interpretation model,

which combines both 2-D and 3-D contextual information of the

imaged scene, was proposed in (Katartzis and Sahli, 2008) for the

identification of building rooftops. However, the approach is on-

ly applicable to building rooftops with low inclination. A graph-

based approach was developed in (Kim and Muller, 1999) for

building detection. The whole process of building detection is di-

vided into four small stages of line extraction, line-relation-graph

generation, building hypothesis generation, and building hypoth-

esis verification. This method is yet limited to certain building

shapes. Another method for building detection based a graphical

method was proposed by (Sirmacek and Unsalan, 2009), where

the vertices in the graph are SIFT Keypoints. A multiple subgraph

matching method was applied to detection individual building by

matching graphs corresponding to a template and a test image.

Nevertheless this method is applicable only to urban areas with

well-separated buildings. A different method based on graphi-

cal modeling of buildings was proposed by in (Cui et al., 2012),

where the vertices in the graph are the intersections of line seg-

ments. The graph was then adapted to the buildings by filtering

the edges by considering the region properties. Then all cycles

are search by an algorithm and the most probable cycle were

considered as the best building candidate. A novel system was

developed by (Izadi and Saeedi, 2012) for automatic detection

and height estimation of buildings with polygonal shape roofs in

singular satellite images and it employs image primitives such as

lines, and line intersections, and examines their relationships with

each other using a graph-based search to establish a set of rooftop

hypotheses. The height of each rooftop hypothesis is estimated

using shadows and acquisition geometry.

Another category of methods for building detection is based on

active contour model. For example, a method based snake that

combines the regional features of an image with context was pro-

posed in (Peng and Liu, 2005) using the direction of the cast

shadows. However, it is not applicable to complex buildings in

urban areas. Similarly a modified ChanVese model based level

set method was proposed in (Cao and Yang, 2007) for detect-

ing man-made objects in aerial images. A three-stage level set

evolution strategy was used to minimize the proposed model en-

ergy with a fractal error and texture edge descriptor. Unfortu-

nately the method extracts only the boundaries of the man-made

regions instead of the building outlines. A variational framework

for building detection was proposed in (Karantzalos and Para-

gios, 2009) by an integration of multiple competing shape priors

that is pose/affine invariant through an explicit estimation of the

transformation. However, this method is limited to prior building

shape models. A new model, based on level set formulation, is

introduced in (Ahmadi et al., 2010) to detect buildings in aerial

images using active contour models. All building boundaries are

detected by introducing certain points in the buildings vicinity.

However, the number of building and background classes must

be precisely known a priori to achieve the best results.

There are still a large number of relevant works to this paper. The

above introduction is by no means comprehensive. In this paper,

we introduce a method for building detection by classifying the

pixels comprising building through a logistic regression classifier

that is learned by a Bayesian method. In the following sections,

the steps comprising the entire method are presented in detail and

the method is evaluated using a benchmark data set consisting

of aerial images and digital surfaced model (DSM) released by

ISPRS for 2D semantic labeling.

2. METHOD

2.1 Overview of the method

The overview of the proposed method is shown in Figure 1. It

consists of three step: Bag-of-Words (BoW) feature extraction,

Bayesian learning via variational inference, and pixel labeling via

a fully connected CRF model. For the purpose of building char-

acterization, an effective bag-of-Words (BoW) method is applied

for feature extraction in the first step. After that, a classifier of

logistic regression is learned in this feature space via a Bayesian

method. Due to the presence of hyper prior in the probabilis-

tic model of logistic regression, approximate inference methods

have to be applied for prediction. In order to be fast, a variational

inference method based the mean field theory is applied for in-

ference. In the end, a fully connected CRF model is applied for

labeling the building pixels, where the inference is performed by

the mean field method.

2.2 BoW feature extraction

The Bag-of-Words (BoW) method has a large number of suc-

cessful applications in various fields. In this paper we follow

our previous work (Cui et al., 2015) on BoW method for image

classification. The framework of BoW feature extraction is com-

posed of four steps as shown in the second column in Figure 1,

namely local feature extraction, dictionary learning, feature cod-

ing, and feature pooling. Assume we have a data set of N images

Ii, i = 1, ..., N , the first step is to sample a collection of patch-

es from the images in the database. This can be done by dense

sampling or sparse detection. The second step is to extract local

descriptor vectors x
j
i ∈ R

D, j = 1, ...,M from all patches. The

third one is learning a dictionary D = (d1, ...,dK) ∈ R
D×K

with K words using all local features. Normally, this is done

by a time consuming unsupervised learning method, such as k-

means clustering or a Gaussian mixture model. The elements di

in a dictionary are the centers of the clusters. The next step is to

find a dictionary-based representation v = [v1, ..., vK ] for each

previously extracted local descriptor x. This can be done using
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BoW feature extraction

Local feature

 extraction

Random 

codebook

Feature coding

Feature pooling

Bayesian learning

Variational 

inference

Bayesian inference Dense CRF inference

Dense CRF

Inference

Input images Output building masks

Figure 1. The workflow of the proposed method for building detection. It consists of three steps: BoW feature extraction, Bayesian

learning, and Dense CRF for building pixel labeling.

hard feature assignment or soft assignment. Hard assignment as-

signs a single label, i.e., the index of the nearest neighbor in the

dictionary, to each local descriptor x. Formally, it is defined as:

vk(x) =

{

1 if k = argmini ‖x− di‖
2

0 otherwise
(1)

Thus, the final descriptor representation v = [v1, ..., vK ] has

only one non-zero element. The last step is to do the sum-

pooling 1 of all local descriptors extracted from one image vi =
sum(vj

i , ...,v
j
i ).

This method for image classification can be easily extended and

applied to pixel classification that is the goal of this paper. To this

purpose, we first extract local features as described in our previ-

ous work (Cui et al., 2015). Then we calculate a BoW feature

representation of a local neighborhood surrounding each pixel.

These BoW feature vectors are considered as the a characteriza-

tion of building pixels and used in the next steps for learning a

logistic regression.

2.3 Bayesian logistic regression

Logistic regression is a widely used statistical model for the ap-

proximation to the underlying functional relation between a fea-

ture vector x and a binary response variable y ∈ {−1, 1}. For-

mally the probabilistic model is defined as

p(y = 1|x,w) =
1

1 + exp(−wTx)
= σ(wT

x) (2)

where σ(·) is the logistic sigmoid function. w is the model pa-

rameters that is going to be inferred by the Bayesian method.

Consequently, the probability that y = −1 is p(y = −1|x,w) =
1 − p(y = 1|x,w). Thus, the model can be universally written

as p(y|x,w) = σ(ywTx).

Given a training data D consisting of inputs X = {x1, ...,xN}
and their corresponding target values y = {y1, ..., yN}, the data

likelihood is

p(y|X,w) =

N
∏

i=1

σ(yiw
T
xi). (3)

1Sum-pooling is equivalent to computing the histogram in the case of

hard feature assignment.

The model is explicitly conditioned on the input data X although

they are not random variables. The prior on the model parameters

w is assumed to be an isotropic gaussian

p(w|α) = N (w|0, α−1
I) = (

α

2π
)D/2 exp

(

−
α

2
w

T
w
)

(4)

α is a hyper-parameter in the prior. To be a fully Bayesian treat-

ment, all parameters including unknown quantities of interest and

nuisance parameters are considered as random variables and are

assumed to be following certain distributions. Therefore we as-

sume a hyper-prior Gamma distribution p(α) = Γ(α|c, d) on α.

Thus, the joint distribution of all the parameters {w, α} and the

data X = {xi, yi} is

p(w, α,y) = p(y|X,w)× p(w|α)× p(α) (5)

which can be verified through the graphical model shown in

Figure2. Bayesian inference in this case revolves around two

                 N

y W α 

c

d

Figure 2. Graphical model for Bayesian logistic regression.

Circles denote random variables and shaded circles represent

observations while squares denote deterministic variables.

steps: the computation of the marginal posterior distribution

p(w|y) and the computation of predicative distribution p(y∗|y)
for a new test data x∗ based on the posterior distribution. In prin-

ciple, the marginal posterior distribution p(w|y) can be comput-

ed by integrating out α in the full posterior distribution p(w, α|y)
that is yet hard to compute because of the model evidence p(y).
Accordingly the predicative distribution can be computed by in-

tegrating over the model parameters w, as given in

p(y|x∗,X,y) =

∫

p(y|x∗,w)× p(w|X,y)dw (6)

Unfortunately, both integral involved in computing the marginal
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posterior and the predicative distribution are not trackable. There-

fore, one has to resort to approximation to the posterior, which

can be solved mainly in two ways: deterministic and stochas-

tic approximation. The stochastic methods, mainly referring to

various Markov Chanin Monte Carlo (MCMC) method, rely on

a large number of samples drawn indecently from the posterior

distribution p(w, α|y). In most cases, this is computationally

very intensive and it is hard to ensure the independence between

samples. Thus, in this paper, we concentrate on deterministic

variational approximation based on the mean field theory.

2.4 Variational inference

The goal of variational inference (Blei et al., 2016) is to approxi-

mate a (posterior) distribution. The key idea is to solve this prob-

lem with optimization. A family of distributions over the latent

variables, parameterized by free variational parameters, is select-

ed. The optimization finds the member of this family, i.e., the

setting of the parameters, that is closest in the Kullback-Leibler

divergence to the conditional distribution of interest. The fitted

variational distribution then serves as a proxy for the exact condi-

tional distribution. All inferences involved in prediction are com-

puted using the variational distribution instead of the posterior

distribution. One widely used family of distributions is the fac-

torized distributions, which leads to the well-known mean field

inference. Thus we assume that the posterior distribution can be

approximated as q(w, α) = q(w)× q(α).

The variational distribution are found by maximizing the varia-

tional lower bound

L(q) =

∫∫

q(w, α) ln
p(y|X,w)× p(w|α)× p(α)

q(w, α)
dwdα

(7)

However, the data log likelihood does not have a conjugate prior

in the exponential family and will be approximated by the use

of a lower bound of the logistic sigmoid function (Jaakkola and

Jordan, 2000), which is

σ(x) ≥ σ(ξ) exp[(x− ξ)/2− λ(ξ)(x2 − ξ2)],

λ(ξ) = −
1

2ξ
[σ(ξ)−

1

2
]

(8)

with one additional parameter ξ for each observation. Thus, by

replacing the sigmoid function in the likelihood in (3) with this

lower bound, we can obtain a lower bound in (9) of the data log-

likelihood.

ln p(y|X,w) ≥ lnh(w, ξ)

=

N
∑

i=1

lnσ(ξi) + yiw
T
xi/2− ξi/2− λ(ξi)([w

T
xi]

2 − ξ2i )

(9)

Substituting the new lower bound as the data log-likelihood in

(9), one can obtain a new lower bound of the variational lower

bound in (7).

L(q, ξ) =

∫∫

q(w, α) ln
h(w, ξ)× p(w|α)× p(α)

q(w, α)
dwdα

(10)

This lower bound is going to be maximized to seek for the varia-

tional distributions q(w, α). Nevertheless it contains the parame-

ters ξ. Here we adopt an alternating optimization by maximizing

w.r.t either ξ or q(w, α) while fixing the other. While fixing ξ,

the variational distributions can be computed by standard varia-

tional methods for factorized distributions (Bishop, 2006). The

variational distribution for w is given by

ln q(w) = lnh(w, ξ) + Eα[ln p(w|α)] + const

= lnN (w|µw,Σw)
(11)

where

Σ
−1

w = Eα(α)I + 2

N
∑

i=1

λ(ξi)xix
T
i , µw = Σw

N
∑

i=1

yi
2
xi

(12)

Similarly the variational distribution for α is

ln q(α) = ln p(α) + Ew[ln p(w|α)] + const

= lnΓ(α|a, b)
(13)

with

a = c+
D

2
b = d+

1

2
Ew(wT

w) (14)

Thus, the involved expectations are

Eα(α) =
a

b
, Ew(wT

w) = µ
T
wµw + Tr(Σw). (15)

While fixing the variational distributions q(α) and q(w), the pa-

rameters ξ can be obtained by setting the derivative of (10) w.r.t

ξ to zero (Bishop, 2006), giving

(ξi)
2 = x

T
i (Σw + µwµ

T
w)xi. (16)

After obtaining the variational distribution q(w), it can be used

as a proxy for computing the predictive distribution. Then, the

predictive distribution in (6) can be approximated as

p(y = 1|x∗,y) =

∫

p(y = 1|x∗,w)× p(w|X,y)dw

≈

∫

p(y = 1|x∗,w)× q(w)dw

≥

∫

σ(ξ) exp
(

wTx− ξ

2
+ λ(ξ)ξ2 − λ(ξ)[wT

x]2
)

× q(w)dw

(17)

It is worth noting that the integrand is quadratic in w. Thus by

complete the square in exponential function, the integral can be

written as

p(y = 1|x∗,y) =
1

2
ln

|Σ̂|

|Σw|
−

1

2
µ

T
wΣ

−1

w µw +
1

2
µ̂

T
Σ̂

−1

µ̂

+ lnσ(ξ)−
ξ

2
+ λ(ξ)ξ2

(18)

with

Σ̂
−1

= Σ
−1

w + 2λ(ξ)x∗x
T
∗ , µ̂ = Σ̂(Σ−1

w µw +
x∗

2
) (19)

The bound parameter ξ that maximizes ln p(y = 1|x∗,y) is giv-

en by ξ2 = xT
∗ (Σ̂+ µ̂µ̂T )xT

∗ . Therefore, the predictive density

can be computed by iterating over the updates for Σ̂, µ̂, ξ until

p(y = 1|x∗,y) converges (Drugowitsch, 2014).

2.5 Dense CRF inference

After completing the variational inference, one obtains a prob-

ability map with each pixel having two probabilities p(y =
1|x∗,y) and p(y = −1|x∗,y). The label of each pixel can

be determined by assigning the one with maximum probability.

However, there will be a lot of isolated small groups of pixels
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(a) (b) (c)

(a) (b) (c)

Figure 3. Example images and the corresponding DSMs used for performance evaluation.

that are wrongly labeled. Thus, a smoothness constraint should

be considered when labeling the pixels based on the probability

map. Usually a random filed models is applied. In this paper

a fully connected CRF model (Krähenbühl and Koltun, 2011) is

employed. Basic CRF models are composed of unary potentials

on individual pixels or image patches and pairwise potentials on

neighboring pixels or patches. The fully connected CRF uses a

different model structure that establishes pairwise potentials on

all pairs of pixels in the image, enabling greatly refined segmen-

tation and labeling.

Formally, we consider a random field X defined over a set of

variables {X1, X2, ... ,XN}, where each variable takes value

from {-1, 1}. In the fully connected pairwise CRF model, the

energy function is defined as

E(x) =
∑

i

φµ(xi) +
∑

i<j

φp(xi, xj). (20)

where x is a particular labeling of X and i, j range from 1 to N .

The unary potential φµ(xi) is computed independently for each

pixel by the previous variational inference of logistic regression,

which is actually a probabilistic distribution over the label as-

signment. The pairwise potentials in the model is defined as the

following line combination of a set of Gaussian similarity func-

tions

φp(xi, xj) = µ(xi, xj)
[

w1 exp
(

−
|pi − pj |

2

2θ2α
−

|Ii − Ij |
2

2θ2β

)

]

+ w2 exp
(

−
|pi − pj |

2

2θ2γ

)]

(21)

where pi, pj are the color vectors and Ii, Ij are the position vec-

tors for pixel i and j and w1, w2 are the weights. There are five

parameters w1, w2, θα, θβ , θγ that should be set or learned. The

maximum a posteriori (MAP) labeling of the random field X is

given by x∗ = argminE(x). An effective inference method

based on the mean field theory using high-dimensional filtering

was proposed in (Krähenbühl and Koltun, 2011), which is used

in this paper for labelling the building pixels.

3. EXPERIMENTS AND EVALUATION

3.1 Data set and setup

The data that we used for performance evaluation is a benchmark

data set consisting of aerial images and digital surfaced model

(DSM) released by ISPRS for 2D semantic labeling 2. It has 16

arial images and corresponding DSM in addition to the ground

truth of buldings. Example images and DSM in this data are

shown in Figure 3.

The BoW features that we used are computed as described in

section 2.2. The local features are the vectorized pixel values in

a 3 × 3 neighborhood (Cui et al., 2015). The codebook used for

feature encoding is a random dictionary, in which the entries are

uniform randomly selected from the entire local feature space.

The size of the codebook is empirically set to 500. 50,000 BoW

features are randomly selected from each image for learning the

logistic regression model by variational inference. The parame-

ters in hyperprior are set to small values, i.e., 1e-4. The weights

in (21) are set to 1.0 and the standard deviations are set to 30.

All these parameters are set by try-and-error. The accuracy mea-

sures used for performance comparison are precision, recall and

F1 score.

3.2 Results and discussion

The results for the 16 images are shown in table 1. The detec-

tion results using the images shown in Figure 3 are shown in the

first row in Figure 4. Compared with the ground truth shown in

the second row in Figure 4, the detection results are quite good.

Visually there is no isolated noisy building pixels, which is the

2http://www2.isprs.org/commissions/comm3/wg4/tests.html

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017 

 ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed.   

doi:10.5194/isprs-archives-XLII-1-W1-159-2017

 

163



(a) (b) (c)

(d) (e) (f)

Figure 4. Example results of building detection: (a)(b)(c) detection results on the images shown in Figure 3; (d)(e)(f) ground truths.

Table 1. Performance evaluation in terms of precision and recall.

Image#
logistic regression + dense CRF

Precision Recall F1 score

1 0.74 0.86 0.80

2 0.73 0.86 0.79

3 0.91 0.79 0.84

4 0.75 0.86 0.80

5 0.59 0.88 0.71

6 0.71 0.91 0.80

7 0.76 0.82 0.79

8 0.72 0.95 0.82

9 0.58 0.84 0.69

10 0.69 0.84 0.76

11 0.92 0.63 0.75

12 0.80 0.81 0.81

13 0.76 0.88 0.82

14 0.81 0.86 0.83

15 0.85 0.85 0.85

16 0.67 0.94 0.78

aver. 0.75 0.85 0.79

desired effect by applying the fully connected CRF model. From

the quantitative results shown in table 1, the average precision,

recall and F1 score are respectively 75%, 85%,and 79%.

4. CONCLUSION

In this paper a method for building detection based Bayesian lo-

gistic regress and a fully connected CRF model is proposed and

demonstrated. It consists of three step: Bag-of-Words (BoW) fea-

ture extraction, Bayesian learning via variational inference, and

pixel labeling via a fully connected CRF model. Due to the p-

resence of hyper prior in the probabilistic model of logistic re-

gression, a variational inference method based on the mean field

theory is applied for learning the model. A benchmark data set

released by ISPRS for 2D semantic labeling is used for perfor-

mance evaluation. The results demonstrate the effectiveness of

the proposed method.
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