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Building Development Monitoring in
Multitemporal Remotely Sensed Image Pairs

with Stochastic Birth-Death Dynamics
Csaba Benedek, Xavier Descombes and Josiane Zerubia Fellow, IEEE

Abstract—In this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely

sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data,

prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues:

(1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously

exploits low level change information between the time layers and object level building description to recognize and separate changed

and unaltered buildings. (2) To answering the challenges of data heterogeneity in aerial and satellite image repositories, we construct a

flexible hierarchical framework which can create various building appearance models from different elementary feature based modules.

(3) To simultaneously ensure the convergence, optimality and computation complexity constraints raised by the increased data quantity,

we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel non-uniform

stochastic object birth process, which generates relevant objects with higher probability based on low-level image features.

Index Terms—Building extraction, change detection, Marked Point Processes, Multiple Birth and Death Dynamics

✦

1 INTRODUCTION

F OLLOWING the evolution of built-up regions is a key

issue of aerial and satellite image analysis. Although the

topic has been extensively studied since the 80’s, it has had

to continuously face the challenges of the quickly evolving

quality and quantity of remotely sensed data, the richness of

different building appearances, the data-heterogeneity in the

available image repositories and the various requirements of

new application areas.

1.1 Input Data

Numerous methods in the bibliography address building ex-

traction at a single time instance [1], [2], [3]. It is common

to use multiview inputs [4], [5] to exploit 3-D information

in building modeling. Detection in densely populated areas

can be efficient by working on stereo- or lidar-based Digital

Elevation/Surface Models (DEM/DSM), where the silhouettes

of the building footprints can be separated from the ground

planes by the estimated height data [2], [6], [7], [8]. Other

benefits are provided by multiple sensor inputs such as fusion

of aerial images with color infrared (CIR) [9], or laser data

[10]. However, several image repositories from city suburbs
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and smaller settlements lack stereo or special sensor informa-

tion. We address this case in the paper: building identification

becomes here a challenging monocular object recognition task

based on purely optical data [11].

1.2 Multitemporal Information

Remote sensing image databases often contain multitemporal

image samples from the same geographical areas. Exploiting

the temporal information, change recognition and classifica-

tion are nowadays important aspects of urban scene analy-

sis. Several recent building change detection approaches [7],

[12] assume that a topographic building database is already

available for the earlier time layer, thus the process can be

decomposed into old model verification and new building

exploration phases. On the other hand, when dealing with

image repositories without any meta data, the task requires

automatic building detection for each image.

In this paper, we solely use as input a registered pair of

(2-D) images taken at several years time difference. Applying

conventional stereo-matching algorithms in this case may face

several difficulties. First, the scene content, the viewpoints

and the image qualities of the two views may be significantly

different, which can corrupt feature matching algorithms (e.g.

corner point tracking) needed for 3-D structure extraction.

Moreover, several databases contain images which are created

by mosaicking separately taken aerial photos, and the compo-

nents undergo different geometric corrections.

In the proposed approach we apply a 2-D building and

change detection technique [13] which is less influenced by

the above effects than stereo based approaches. Moreover, at a

higher processing level, the proposed footprint extraction step

may also contribute to 3-D building reconstruction [2], [6].
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Change detection methods frequently rely on the assumption

that changes occur very rarely, thus they can be identified

through outlier detection using global image statistics [14].

However, in dynamically improving (sub-)urban areas this

hypothesis is often invalid, and there is a need for solutions

which are insensitive to the quantity of differences.

An object oriented change detection technique is introduced

in [13] and applied to the extraction of damaged buildings after

natural disasters. This method follows the Post Detection Com-

parison (PDC) approach, as independent building detection

processes are applied for the two images, followed by object

level comparison. However, the object detection phase can be

corrupted by image noise, irregular structures or occlusions by

vegetation [13] which may present missing or only partially

extracted buildings to the object matching module. Moreover,

this comparison may be affected by further intensity artifacts

caused by shadows or altered illumination conditions.

Following another approach, several low level change detec-

tion methods have been proposed for remote sensing [15], [16],

which work without using any explicit object models. They

extract image regions which have been altered in an irregular

way based on an appropriately selected set of features, such as

color difference, texture or block correlation. Although these

techniques are usually considered as preprocessing filters,

there have not been many attempts given to justify how they

can support the object level investigations. We take a step

forward in this paper, and exploit interaction between object

extraction and local textural image-similarity information in

a unified probabilistic model. It will be shown that we can

obtain additional evidences for the presence of new, modified

or demolished buildings through detecting changes in relevant

low level feature domains. As for unchanged buildings, the

images of the two time instances provide multiple views of

the same objects, which may increase the detection accuracy

compared to relying on a single time layer.

1.3 Object and Configuration Models

Another important issue is related to modeling the building

entities. The conventional bottom-up techniques [17] construct

the objects from primitives, like roof blobs, edge parts or

corners. Although these methods can be fast, they may fail

if the primitives cannot be reliably detected. To increase

robustness, it is common to follow the Hypothesis Generation-

Acceptance (HGA) scheme [3], [18]. Here the accuracy of

object proposition is not crucial, as false candidates can be

eliminated in the verification step. However, objects missed by

the generation process cannot be recovered later, which may

result in several false negatives. On the other hand, generating

too many object hypotheses (e.g. applying exhaustive search)

slows down the detection process significantly. Finally, con-

ventional HGA techniques search for separate objects instead

of global object configurations, disregarding population-level

features such as overlapping, relative alignment, color similar-

ity or spatial distance of the neighboring objects [2].

To overcome the above drawbacks, recent inverse methods

[19] assign a fitness value to each possible object config-

uration, and an optimization process attempts to find the

configuration with the highest confidence. This way, flexible

object appearance models can be adopted, and it is also

straightforward to incorporate prior shape information and

object interactions. Marked Point Processes (MPP) [19] are

good candidates for addressing these challenges, since they can

efficiently model the geometry of objects and deal with an un-

known number of entities [6], [20], [21]. However, this inverse

approach needs to perform a computationally expensive search

in a high dimensional population space, where local maxima

of the fitness function can mislead the optimization. Due to the

large databases, the optimization issue plays a particular role in

remote sensing applications. In previous techniques [6], [20],

[21] the optimization has been performed using a Reversible

Jump Markov Chain Monte Carlo (RJMCMC) scheme, with

implementations where each iteration perturbs one or a couple

of objects, and the rejection rate, especially for the birth move,

induces a heavy computation time. Besides, one should be

very careful when decreasing the temperature, because at low

temperature, it is difficult to add objects to the population.

Taking a different approach, we adopt here the Multiple

Birth and Death Dynamic technique (MBD) [22] for the

change detection purposes. Unlike following a discrete jump-

diffusion scheme like in RJMCMC, the MBD optimization

method defines a continuous time stochastic evolution of the

object population, which aims to converge to the optimal

configuration. The evolution under consideration is a birth-

and-death equilibrium dynamics on the configuration space,

embedded into a Simulated Annealing (SA) process, where

the temperature of the system tends to zero in time. The final

step is the discretization of this non-stationary dynamics: the

resulting discrete process is a non-homogeneous Markov chain

with transition probabilities depending on the temperature,

energy function and discretization step. In practice, the MBD

algorithm evolves the population of buildings by alternating

purely stochastic object generation (birth) and removal (death)

steps in a SA framework. In contrast to the above RJMCMC

implementations, each birth step of MBD consists of adding

several random objects to the current configuration, which is

allowed due to the discretization trick. Using MBD, there is

no rejection during the birth step, therefore high energetic

objects can still be added independently of the temperature

parameter. Thus the final result is much less sensitive to the

tuning of the SA temperature decreasing process, which can

be achieved faster. Due to these properties, in selected remote

sensing tasks (bird and tree detection) [22] the optimization

with MBD proved to be around ten times faster than RJMCMC

with similar quality results. In addition, MBD has already been

applied in different application areas, such as cell counting

[23] and video surveillance [24].

Another key point is the probabilistic approach for ob-

ject proposal. In several previous MPP applications [6], the

generation of object candidates followed prior (e.g. Pois-

son) distributions. On the contrary, we apply a data driven

birth process to accelerate the convergence of MBD, which

proposes relevant objects with higher probability based on

various image features. In addition, we calculate not only

a probability map for the object centers, but also estimate

the expected object appearances through low-level descriptors.
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This approach uses a similar idea to the Data Driven MCMC

scheme of image segmentation [25]. However, while in [25]

the importance proposal probabilities of the moves are used

by a jump-diffusion process, we should embed the data driven

exploration steps into the MBD framework.

In this paper, we propose a novel multitemporal MPP

(mMPP) model and an efficient bi-layer MBD (bMBD) op-

timization algorithm for the 2-D building change detection

problem in remotely sensed image pairs. The present approach

has been partially introduced in [26], [27], and further demon-

strating figures and experimental results are provided in [28].

Due to its modularity, the method could be easily adapted

to different object level change detection applications, for

instance tree or road detection. On the other hand, we attempt

to focus on the task specific issues as well. We present a broad

feature library, which can be appropriate for the detection of a

large set of buildings, expecting various image properties. For

this reason, in the following section we provide an overview on

the state-of-the art methods for monocular building extraction.

1.4 Related Works in Monocular Building Detection

A SIFT key point based method has been presented in [29] for

urban area extraction and building detection. This technique

assumes that the building structures in a given image can

be efficiently characterized by a couple of template buildings

(here two templates: a bright and a dark one) which are used

for training. However, images containing a high variety of

buildings may need a huge template library, where the overlap

between the building and background domains in the descrip-

tor space may be hard to control. A recent model based on

Gabor filters (Gabor) [30] represents building positions in the

image as joint probability density functions of four different

local feature vectors, and performs data and decision fusion

in a probabilistic framework to detect building locations. It is

important to note that in [29] and [30] the goal is building

localization, but the roof outlines are not extracted, which

makes it difficult to apply the method for change detection.

A stochastic MRF framework is introduced in [1] for detect-

ing building rooftops from single images, which combines 2-D

and 3-D information. This approach is based on hierarchical

grouping of extracted edge segments to form continuous

lines, junctions and finally closed curve hypotheses. However,

several restrictions are applied for buildings: it is assumed that

they have uniform height, they are composed of planar surfaces

with parallel sides, and each building casts its shadow on a

locally flat surface. Similarly to [18], [31] the method needs

a reasonable edge map, because missing large side parts and

false edges inside and around the buildings may corrupt the

edge grouping process. Edge based building detection is also

applied in [32] as a part of a complete scene interpretation

process. This approach deals with different object categories,

and implements multi-level interactions within a scene and

between different object types as well.

Combining roof color, shadow and edge information has

been suggested in [3] in a two-step process which we refer

to later as the Edge Verification (EV) approach. In EV,

color and shadow are used first for coarse built-in candidate

area estimation; thereafter, fitting the building rectangles and

verification of the proposals are based purely on the Canny

edge map of the obtained candidate regions. As a drawback,

this sequential approach is sensitive to the failure of each

individual feature. A corrupted edge image causes unreliable

corner detection and edge mask stretching, meanwhile, without

shadow and color information, the building search area should

be extended for the whole image, increasing the processing

time and the appearance of false edge patterns.

Segment-Merge (SM) techniques follow an approach dif-

ferent from edge based methods, as they consider building

detection as a region level or image segmentation problem

[17], [33], [34]. In [34] the authors assume that buildings

are homogenous areas w.r.t. either color or texture, which

can be used for training-based background subtraction. Hence,

elementary constraints for shape and size are used to group

the candidate regions into building objects. This method can

fail, if the background and building areas cannot be efficiently

separated with the chosen color or texture descriptors, thus

several building and background parts are merged in the same

regions of the oversegmented map. On the other hand, for

homogenous buildings (see BEIJING, Fig. 4) or salient roof

colors (see BUDAPEST red roofs, Fig. 26, top) region features

are often more robust than weak or ragged edge maps.

Beside probabilistic models [2], [6], variational techniques

[35], [36] have been proposed recently for building extraction

through energy minimization. Similarly to our method, the

Recognition-Driven Variational (RDV) framework of [35] is

based on data and prior term decomposition. However, they

focus principally on the prior shape modeling issue and use

a simplified image-dependent model part, which assumes that

the building and background regions can be roughly separated

through considering them as locally homogenous intensity

classes. In cases where this data term cannot detect probable

building regions, the algorithm naturally fails.

From another point of view, the prior models of [2],

[35] contain libraries of complete object shapes, while other

approaches [1], [6] construct the objects from elementary

building blocks (rectangles or line segments), and the higher

level shape information is encoded by interaction constraints of

the nearby components. While global description of RDV [35]

can be efficient if all objects of the scene can be characterized

by a restricted number of prototype shapes, the algorithm fails

to detect the boundaries accurately, if a given building cannot

be sufficiently represented by any shape from the database,

using any possible planar projection. On the other hand, the

constructive approach - which we follow in the current paper

- is preferable if the prior models of the buildings are partially

unknown or largely diverse.

As for image data modeling, the above overviewed methods

are based on image- or scene-specific hypotheses, such as

unique roof colors [29], shadows [1], [3], strong edges [1],

[3], [18], [31], [32], homogeneous roofs [17], [33], [34], or

a limited number of 2-D [29] or 3-D [2] building templates.

The obvious limitations of these techniques come from the

nature of the varying image data, and the lack of adaptivity

to different circumstances. To develop more generic models,

besides the extraction of the descriptors, feature integration
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Fig. 1. Definition of the rectangle parameters

and selection should be addressed at the same time. Therefore

we construct a framework which can combine the features in

a flexible way depending on availability, accommodating an

extended set of images and situations.

2 PROBLEM DEFINITION

The input of the proposed method consists of two co-registered

aerial or satellite images which were taken from the same area

with several months or years of time difference. Thus a single

photo is available at each time instance, and we cannot exploit

additional meta-information such as maps or topographic

building databases. We expect the presence of registration or

parallax errors, but we assume that they only cause distortions

of a few pixels. We consider each building to be constructed

from one or many rectangular building segments, which we

aim to extract by the model described in the following. As

output we provide the size, position and orientation parameters

of the detected building segments, and give information which

objects are new, demolished, modified/rebuilt or unchanged.

Let us denote by S the common SW×SH pixel lattice of the

input images and by s ∈ S a single pixel. Let u be a building

segment candidate assigned to the input image pair, which is

jointly characterized by geometric and temporal attributes. We

consider the center of each building, c = [cx, cy] as a point in

[0, SW ]×[0, SH ] ⊂ R2, which can be projected to S by simple

discretization: c → [⌊cx⌋, ⌊cy⌋]. Let the rectangle Ru ⊂ S be

the set of pixels corresponding to u. Apart from the center, Ru

is described by the eL, el side lengths, and θ ∈ [−90◦,+90◦]
orientation parameters as shown in Fig. 1.

For purposes of dealing with multiple time layers, we assign

to each u an index flag, ξ(u) ∈ {1, 2, ∗}, where ‘∗’ indicates

an unchanged object (i.e. present in both images), while ‘1’

and ‘2’ correspond to building segments which appear only

in the first or second image respectively. We will denote the

set of all the possible object records u=(cx, cy , eL, el, θ, ξ)

by H. The output of the proposed model is a configuration of

building segments, ω ∈ Hn, where n, the number of objects

is also unknown.

The method exploits rough preliminary knowledge about the

object sizes, which will be introduced in two steps for easier

interpretation. In the first part of the discussion, we assume

that the side length parameters of the building segments in

the scene have the same order of magnitude and can be

constrained by eL(u) ∈ [emin
L , emax

L ] and el(u) ∈ [emin
l , emax

l ].
Later in Section 5 we present a multi-scale extension of the

process, which enables us to handle of image inputs which

contain buildings with significantly different sizes.

3 FEATURE SELECTION

In this section, we introduce different image features for build-

ing and change recognition. Since the proposed model obtains

the optimal object configuration through stochastic birth-death

iterations, two essential questions should be answered based on

the image data. First, how can we efficiently generate relevant

objects during the birth process? Secondly, how can it be

ensured that the adequate objects survive the death step? To

keep focus on both challenges, we utilize low level and object

level features in parallel.

Low level features are extracted around each pixel as typical

color, texture and local similarity between the time layers.

They are principally used in the birth step, to estimate where

the buildings might be located, what they might look like, and

where changes should be expected. As a consequence, objects

are generated with higher probability in the estimated built-up

regions, considering the estimated appearance models.

On the other hand, object level features evaluate a building

hypothesis for each proposed oriented rectangle. The choice

of preserving or killing an object in the death step strongly

depends on object descriptors, thus their accuracy is crucial.

3.1 Low level features for building detection

We begin the discussion with low level features extracted

from individual images. For the purposes of built-in area

estimation, at each pixel s we calculate a pair of birth

probabilities, P
(1)
b (s) and P

(2)
b (s), which give the likelihood

of s being an object center in image 1, and 2, respectively.

The nomination refers to the fact that in the birth step the

frequency of proposing an object at s will be proportional to

the local birth probabilities. On the other hand, we also assign

expected orientation µ
(i)
θ (s), and side length values µ

(i)
L (s)

resp. µ
(i)
l (s) to the image pixels, which help in estimating

the θ, eL and el parameters of objects centered at s based on

various descriptors from the ith image (i ∈ {1, 2}). Since the

calculation of birth, orientation and mean side length maps

are the same for both time layers, we simplify the notation by

ignoring the image index in the following part of this section.

Later on, we will denote the time stamp again by a superscript

index in parentheses wherever necessary.

3.1.1 Local Gradient Orientation Density

The first feature exploits the fact that regions of buildings

should contain edges in perpendicular directions. This prop-

erty can be robustly characterized by local Gradient Orienta-

tion Density Functions (GODF) [37]. Let ∇gs be the intensity

gradient vector at pixel s with magnitude ||∇gs|| and angle

ϑ∇
s . Let Wl(s) be the rectangular l × l sized window around

s, where l is chosen as Wl(s) can cover an average building

from the training set narrowly. For each s we calculate the

weighted ϑ∇
s density of Wl(s):

λs(ϑ) =
1

Ns

∑

r∈Wl(s)

1

h
· ||∇gr|| · k

(
ϑ− ϑ∇

r

h

)
(1)

where Ns =
∑

r∈Wl(s)
||∇gr||, and k(.) is a kernel function

with a bandwidth parameter h. We use uniform kernels for
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Fig. 2. Kernel density estimation of the local gradient ori-
entation histogram around two selected pixels: a building

center s and an empty site r.

quick calculation. If Wl(s) covers a building, the λs(ϑ)
function has two peaks, located at a distance of 90◦ from

each other in the ϑ-domain (see Fig. 2). This property can be

measured by correlating λs(ϑ) with an appropriately matched

bi-modal density function:

α(s,m) =

∫
λs(ϑ)η2 (ϑ,m, dλ) dϑ (2)

where η2(.) is a mixture of two Gaussians with mean values

m, resp. m+ 90◦, and deviation dλ for both components (dλ
is a parameter of the process set by training). Offset ms and

value αs of the maximal correlation can be obtained as:

ms = argmax
m∈[−90◦,0]

{
α(s,m)

}
αs = α

(
s,ms

)

Pixels with high αs are more likely to be centers of

buildings, which can be encoded in a gradient-based birth

map P gr
b (s) = αs/

∑
r∈S αr. For the sample image in Fig.

3, a thresholded P gr
b map is shown in Fig. 3(b).

Furthermore, let us observe that offsets ms and ms + 90◦

estimate the dominant gradient directions in the Wl(s) region.

Thus, for a building with center s, we expect its θ parameter

around a mean orientation value µθ(s), defined as:

µθ(s) =

{
ms if λs(ms) > λs(ms + 90◦)
ms + 90◦ otherwise

(3)

For this reason if the birth step proposes an object u at pixel

s, its orientation is set as θ(u) = µθ(s) + ηθ , where ηθ
is a random value, generated for each object independently

according to a zero-mean Gaussian distribution with a small

deviation parameter σθ .

3.1.2 Roof color filtering and shadow evidence

Several types of roofs can be identified by their typical colors

[3]. Let us assume that based on a roof color hypothesis, we

extract an indicator mask ̺co(s) ∈ {0, 1} (e.g. by thresholding

a chrominance channel), where ̺co(s) = 1 marks that s has

roof color. Many roof pixels are expected around building cen-

ters, thus for each s we calculate the accumulated ̺co−filling

factor in its neighborhood: Γs =
∑

r∈Wl(s)
̺co(r). The color

birth map value is obtained as P co
b (s) = Γs/

∑
r∈S Γr. Note

(a) Input image (b) Thresh. P
gr
b (s) map

(c) Color mask (̺co(s) = 1) (d) Thresh. P sh
b (s) map

Fig. 3. Building candidate regions obtained by the low
level (b) gradient (c) color and (d) shadow descriptors

that due to color overlapping between the roofs and the

background [3], the ̺co(s) mask often only contains a part of

the building segments (e.g. only red roofs are detected in Fig.

3(c)). Particularly, in grayscale images, the overlap between

intensity domains of the classes is usually too large for any

reasonable separation.

A supplementary evidence for the presence of buildings

can be obtained through their cast shadows [1], [3]. In

several types of remote sensing scenes, a binary shadow

mask ̺sh(s) can be derived by filtering pixels from the dark-

blue color domain [38]. The relative alignment of shadows

to the buildings is determined by the global Sun direction,

which can be set with minor user interaction or calculated

automatically [3]. Consequently, we can identify the building

candidate areas as image regions lying next to the shadow

blobs opposing the Sun direction (see Fig. 3(d) and later Fig.

10). As for the shadow based birth map, we use a constant

birth rate P sh
b (s) = psh0 within the obtained candidate regions

and a significantly smaller constant on the outside. It is also

important to note that for building detection only the cast

shadows (i.e. shadows on the ground) are relevant, while self

shadows (i.e. weakly or not illuminated building parts) should

be ignored. However, as pointed out in [39], in most cases

cast and self shadows have different intensity values, since

the shadowed object parts are mostly illuminated by secondary

light sources such as reflections from surrounding buildings.

3.1.3 Roof homogeneity

As illustrated in Fig. 3, the P gr
b (s) and P sh

b (s) birth maps

usually give a quite coarse estimation of the built-up regions,

which is hardly appropriate for building separation and size es-

timation. Although we may obtain notably accurate footprints

through roof color filtering (Fig. 3(c)), it can only be used

for a limited subset of the images and objects. On the other

hand, in high resolution images provided by satellites such as

Ikonos and Quickbird, a significant part of the roof tops can

be identified as homogeneous blobs in the coarsely detected
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(a) BEIJING image part (b) Detected shadows
Bright: ̺sh(s) mask

(c) PBC: pre. candidate
regions (foreground)

(d) HBC: large homo-
genous regions of PBC

(e) GHBC: grad. orient.
based clusters of HBC

(f) Building rectangles
based on GHBC

Fig. 4. Preliminary building estimation based on roof

homogeneity. Missing and false alarms – denoted by (∗)
in image (f) – are eliminated later in the process.

building candidate regions. In this section we investigate

how roof homogeneity can be exploited for building region

detection and refinement.

The feature extraction algorithm consists of the following

steps (illustration for the BEIJING image is shown in Fig. 4):

• Candidate Region Filtering: for a given input

image (Fig. 4(a)) obtain the coarse preliminary building

candidate (PBC) regions based on the gradient and/or

shadow features, as explained in Sec. 3.1.1 and 3.1.2 (Fig.

4(b)-(c)).

• Intensity based segmentation: we (over)-

segment the PBC regions of the input image into

homogenous components, and ignore the blobs smaller

than 20% of the expected mean building area. This step

results in the homogenous building candidate (HBC)

region map (Fig. 4(d)).

• Orientation based clustering: we re-cluster

the HBC map based on the µθ(s) dominant local gradient

orientation values obtained in the regions of interest,

and call the result GHBC image as shown in Fig. 4(e).

Each uniform component of GHBC is considered in the

following as a building segment candidate.

• Candidate parameter estimation: we

estimate the center and the bounding box (Fig.

4(f)) parameters for each building segment candidate

through morphological box fitting techniques.

Let us denote the candidate rectangles (Fig. 4(f)) obtained in

the previous filtering process by Ri, i = 1 . . . t, and let c(Ri)
be the center of Ri. Then, for each pixel, we determine the

closest rectangle Rmin
s = argmini ||s− c(Ri)|| and calculate

the homogeneity birth value as:

P ho
b (s) = kR

( ||s− c(Rmin
s )||

hR

)
(4)

with a kR(.) kernel function, and hR bandwidth parameter.

s

−90 −60 −30 0 30 60 90ϑ
 

 

λ1

s
(ϑ)

λ2

s
(ϑ)

−90 −60 −30 0 30 60 90ϑ
 

 

λ1

r
(ϑ)

λ2

r
(ϑ)

W (s)
l

W (r)
l

r

s

W (s)
l

W (r)
l

r

s

Fig. 5. Comparing the λ(.) functions in the two image

layers regarding two selected pixels. s corresponds to an
unchanged point and r to a built-up change.

Besides marking the candidate regions of the building

centers, the {Ri|i = 1 . . . t} set provides local estimations for

the side length parameters: µL(s) = eL(Rmin
s ) and µl(s) =

el(Rmin
s ). Of course, we can only assume this information

to be reliable in pixel positions with high homogeneity birth

factors. Thus, for an object u proposed at s, we set the side

length values with a probability proportional to P ho
b (s) as:

eL(u) = µL(s) + ηL(s), el(u) = µl(s) + ηl(s)

where ηL(s) and ηl(s) are independent zero mean Gaussian

random variables. Note that side length estimates can be sim-

ilarly extracted from the color feature map. This preliminary

calculation is particularly significant if the object sizes show a

large variety, since sampling the side length parameters of the

proposed objects according to a prior distribution with a wide

support can slow down the speed of the iterative birth-death

process critically.

3.2 Low level change feature

Up to this point, we have used various descriptors to estimate

the location and appearance of the buildings in the individual

images. However, the gradient orientation statistics also offers

a tool for low level region comparison, which can be directly

involved in the scenario model. Let us consider the λs(.)
orientation density introduced in Sec. 3.1.1. Matching the

λ
(1)
s (.) and λ

(2)
s (.) functions from the two time layers can be

interpreted as low level similarity checking of the areas around

s in the two images, based on “building-focused” textural

features (see Fig 5), which are independent of illumination

and coloring effects and robust regarding parallax and regis-

tration errors. For measuring the dissimilarities, we use the

Bhattacharyya distance:

b(s) = − log

∫ √
λ
(1)
s (ϑ) · λ(2)

s (ϑ)dϑ (5)

Choosing an appropriate b0 threshold [14], the binarized

pixel level change mask is obtained as:

̺ch(s) =

{
1 if b(s) > b0
0 if b(s) ≤ b0

(6)
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(a) Input image 1 (b) Input image 2 (c) Changed regions of image 2

Fig. 6. Low level change detection: (a) and (b) input images, (c) Bhattacharyya change mask ̺ch

As shown in Fig. 6, the above comparison separates efficiently

the image regions which contain the changed and unchanged

buildings, respectively. Knowing that l2 is the area of window

Wl(s), the probability of change around pixel s is derived as:

Pch(s) =
∑

r∈Wl(s)

̺ch(r)/l
2 (7)

Considering the change feature, we can exploit an additional

information source for scene interpretation, which is indepen-

dent of the object recognizer.

3.3 Integration of the different birth maps

Since the main goal of the combined birth map in each image

is to keep focus on all building candidate areas, we derive

it with the maximum operator from the birth maps of the

features. For example, when gradient, color and shadow are

simultaneously used, we obtain the final field as Pb(s) =
max

{
P gr
b (s), P co

b (s), P sh
b (s)

}
∀s ∈ S. For input, without

shadow or color information, we can ignore the corresponding

feature in a straightforward way, or exchange the P co
b (s)

component to the homogeneity birth value, P ho
b (s).

In the birth step of the bMBD process, the birth maps

of both time layers, P
(1)
b (s) and P

(2)
b (s), and the change

map Pch(s) are utilized in parallel. We propose an unchanged

object at s with a probability proportional to (1 − Pch(s)) ·
maxi∈{1,2} P

(i)
b (s), while at the same location, the likelihood

of generating a changed building segment is Pch(s) · P (i)
b (s)

for image i.

3.4 Object-Level Features

Besides efficient object generation, the second key point of

the applied birth-death dynamics based approach is to validate

the proposed building segment candidates. In this section, we

construct a ϕ(i)(u) : H → [−1, 1] energy function, which

calculates a negative building log-likelihood value of object

u in the ith image (hereafter we ignore the i superscript).

By definition, a rectangle with ϕ(u) < 0 is called attractive

object, and we aim to construct the ϕ(u) function so that

attractive objects correspond exclusively to the true buildings.

The process consists of three parts: feature extraction,

energy calculation and feature integration. First, we define

different f(u) : H → R features which evaluate a building

hypothesis for u in the image, so that ‘high’ f(u) values

correspond to efficient building candidates. In the second step,

we construct energy subterms for each feature f , by attempting

to satisfy ϕf (u) < 0 for real objects and ϕf (u) > 0 for false

candidates. For this purpose, we project the feature domain

to [−1, 1] with a monotonously decreasing function shown in

Fig. 8: ϕf (u) = Q
(
f(u), df0 , D

f
)

where

Q(x, d0, D) =

{ (
1− x

d0

)
, if x < d0

exp
(
−x−d0

D

)
− 1, if x ≥ d0

(8)

Observe that the Q function has two parameters: d0 and

D. While Df performs data-normalization, df0 is the object

acceptance threshold concerning feature f : u is attractive

according to the ϕf (u) term iff f(u) > df0 .

Finally, we must consider, that the decision based on a single

feature f can lead to a weak classification, since the buildings

and the background may overlap in the f -domain. Therefore,

in the third step (Sec. 3.4.2), the joint energy term ϕ(u) must

be appropriately constructed from the different ϕf (u) feature

modules.

3.4.1 Feature Models

We begin with gradient analysis. Below the edges of a

relevant rectangle candidate Ru, we expect the magnitudes of

the local gradient vectors (∇gs) to be high and the orientations

to be close to the normal vector (ns) of the closest rectangle

side (Fig. 7). The fgr(u) feature is calculated as:

fgr(u) =
1

#∂̃Ru

∑

s∈∂̃Ru

∇gs · ns (9)

where ‘·’ denotes scalar product, ∂̃Ru is the dilated edge mask

of rectangle Ru, and #∂̃Ru is the number of pixels in ∂̃Ru.

The dilation of the Ru mask outline is necessary to tolerate

slightly imperfect edge alignment and minor registration errors

between the images. The data-energy term is calculated as:

ϕgr(u) = Q(fgr(u), dgr, Dgr).
The calculation of the roof color feature is shown

in Fig. 9. We expect the image points to have dominantly

roof colors inside the building footprint Ru, while the Tu

object-neighborhood (see Fig. 9) should contain a majority

of background pixels. Hence we calculate the internal f co
in (u)

and external f co
ex (u) filling factors, respectively, as:

f co
in (u) =

1

#Ru

∑

s∈Ru

̺co(s); f co
ex (u) =

1

#Tu

∑

s∈Tu

[
1−̺co(s)

]
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(a) Object candidate (b) Gradient map (c) Masked gradient map

Fig. 7. Utility of the gradient feature

−1

0

1

xd
0

Q(.)

Fig. 8. Plot of the Q(x, d0, D) function

Here #X denotes the area of X in pixels and ̺co(s) is the

color mask value by s. We prescribe that u should be attractive

according to the color term if it is attractive both regarding the

internal and external subterms. Thus the color energy term is

obtained as:

ϕco(u) = max [Q(f co
in (u), d

co
in , D

co
in ),Q(f co

ex (u), d
co
ex, D

co
ex)]

We continue with the description of the shadow term.

This step is based on the binary shadow mask ̺sh(s), extracted

in Sec. 3.1.2. Using the shadow direction vector ~vsh (opposite

of the Sun direction vector) we identify the two sides, ~AB
and ~BC , of the rectangle Ru which are supposed to border

on cast shadows, where A, B and C denote the corresponding

vertices as shown in Fig. 10. (Note that if ~vsh is parallel to one

of the rectangle sides, we have only one shadow-object edge).

Then, we check the presence of shadows in parallelograms

(A,A+ εsh, B + εsh, B) and (B,B + εsh, C + εsh, C). Here

εsh is a scalar so that ||εsh · ~vsh|| approximates the shadow

(a) Red roof (b) Color mask

Fig. 9. Utility of the color roof feature

Fig. 10. Utility of the shadow feature

object candidate u estimated symmetry dark side histogram

bright side histogram

0 0.2 0.4 0.6 0.8 1

Fig. 11. Utility of the roof homogeneity feature

Fig. 12. Floodfill based feature for roof completeness

width of the shortest buildings in the scene. The union of the

two parallelograms forms the T sh
u shadow candidate region as

shown in Fig. 10. Thereafter, similarly to the color feature,

expect low shadow presence f sh
ex (u) in the Ru internal and a

high one f sh
ex (u) in the T sh

u external region:

f sh
in (u) =

1

#Ru

∑

s∈Ru

[
1−̺sh(s)

]
; f sh

ex (u) =
1

#T sh
u

∑

s∈T sh
u

̺sh(s)

As for the energy term:

ϕsh(u) = max
[
Q(f sh

in (u), d
sh
in , D

sh
in ),Q(f sh

ex (u), d
sh
ex, D

sh
ex)

]

Note that this approach does not require accurate building

height information, since we do not penalize it, if shadow

blobs of long buildings exceed the T sh
u regions.

The roof homogeneity feature can also be exploited

at object level. Fig. 11 shows an example of how to describe

two-sided roofs. After extracting the symmetry axis of the

object candidate u, we can characterize the peakiness of the

dark (d) and bright (b) side histograms by calculating their

kurtosis fho
d (u), and fho

b (u), respectively. Denoting by gs the

gray value of pixel s, and by Rd
u and Rb

u the dark and bright

regions of Ru object rectangle, we get:

fho
d (u) =

∑
Rd

u

g4s
(∑

Rd
u

g2s

)2 ; fho
b (u) =

∑
Rb

u

g4s
(∑

Rb
u

g2s

)2 (10)

If the roof parts are homogeneous, the fho
d (u) and fho

b (u)
kurtosis values should be high. However, as shown in Fig.

12, the homogeneity feature may have false maxima for

incomplete roofs, since parts of a homogeneous roof are homo-

geneous as well. Therefore we characterize roof completeness

in the following way. We derive the Fu floodfill mask of u,

which contains the pixels reached by floodfill propagations

from the internal points of Ru. If the homogeneous roof

is complete, Fu must have low intersection with the NHu,

resp. NVu, ‘horizontal’, and ‘vertical’, neighborhood regions

of Ru (see Fig. 12). Finally, the ϕho(u) energy term can be
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constructed from the kurtosis and completeness descriptors in

a similar manner to the previous attributes.

3.4.2 Feature integration

Usually, the individual features are in themselves inappropriate

for modeling complex scenes, which is illustrated in Fig.

13. For the Ground Truth (GT) buildings (see Fig. 13(b)),

we can follow here the effectiveness of the gradient (Fig.

13(c),(d)), shadow (Fig. 13(e),(f)) and color (Fig. 13(g),(h)))

descriptors, respectively. The gradient and shadow maps are

considerably noisy in the right upper image part, however, the

roofs can be detected here fairly by extracting image regions

with high a* color component values in CIE L*a*b* color

space representation. Conversely, ‘non-red’ buildings in the

bottom-left regions can be efficiently detected by edge and

shadow features.

To answer the challenges of such object or data hetero-

geneity problems, the proposed framework enables flexible

feature integration depending on the available image inputs.

From the feature primitive terms introduced in Sec. 3.4, first

we construct building prototypes. For each prototype we can

prescribe the fulfillment of one or many feature constraints

whose ϕf -subterms are connected with the max operator in

the joint energy term of the prototype (logical AND in the

negative log-likehood domain).

Additionally, several building prototypes can be detected

simultaneously in a given image pair, if the prototype-energies

are joined with the min (logical OR) operator. Thus the final

object energy term is derived by a logical function, which

expresses some prior knowledge about the image and the

scene, and it is chosen on a case-by-case basis. For example,

in the BUDAPEST pair we use two prototypes: the first one

prescribes the edge and shadow constraints, the second one

the roof color, thus the joint energy is calculated as:

ϕ(u) = min
{
max {ϕgr(u), ϕsh(u)}, ϕco(u)

}
. (11)

Similarly, for the BEIJING images (see Fig. 26, bottom) we

use gradient (ϕgr) & shadow (ϕsh) and homogeneity (ϕho) &

shadow (ϕsh) prototypes.

4 CONFIGURATION MODEL AND OPTIMIZATION

In this section we transform the building change detection

task into an energy minimization problem. Following our

definitions from Sec. 2, the u building segment candidates

(i.e. objects) live in a bounded parameter space H. Since we

aim to extract building populations from the images, we need

to propose a configuration space Ω, which is able to deal with

an unknown number of objects:

Ω =

∞⋃

n=0

Ωn, Ωn =
{
{u1, . . . , un} ⊂ Hn

}
(12)

Hereafter we will use the notation ω ∈ Ω for an arbitrary

object configuration, thus ω = ∅, or ω = {u1, . . . , un} for an

n ∈ {1, 2, . . .} and ui ∈ H : ∀i ∈ {1, 2, . . . , n}.

4.1 Configuration Energy

The Marked Point Process framework enables to character-

ize whole populations instead of individual objects, through

exploiting information from entity interactions. Following the

classical Markovian approach, each object may only affect its

neighbours directly. This property limits the number of interac-

tions in the population and results in a compact description of

the global scene, which can be analyzed efficiently. To realize

the Markov-property, one should define first a ∼ neighborhood

relation between the objects in H. In our model, we say that

u ∼ v if their rectangles Ru and Rv intersect.

Let us denote by D the union of all image features derived

from the input data. For characterizing a given ω object

population considering D, we introduce a non-homogenous

data-dependent Gibbs distribution on the configuration space:

PD(ω) =
1

Z
· exp

[
−ΦD(ω)

]
(13)

with a Z normalizing constant: Z =
∑

ω∈Ω exp
[
−ΦD(ω)

]
,

and ΦD(ω) configuration energy:

ΦD(ω) =
∑

u∈ω

AD(u) + γ ·
∑

u,v∈ω
u∼v

I(u, v) (14)

Here AD(u) ∈ [−1, 1] and I (u, v) ∈ [0, 1] are the data

dependent unary and the prior interaction potentials, respec-

tively, and γ > 0 is a weighting factor between the two

energy terms. Thus the Maximum Likelihood (ML) config-

uration estimate according to PD(ω) can be calculated as

ωML = argminω∈Ω

[
ΦD(ω)

]
.

Unary potentials characterize a given building segment

candidate u = {cx, cy, eL, el, θ, ξ} as a function of the local

image data in both images, but independently of other objects

of the population. This term encapsulates the building energies

ϕ(1)(u) and ϕ(2)(u) extracted from the 1st, resp. 2nd, image

(Sec. 3.4) and the low level similarity information between the

two time layers which is described by the ̺ch(.) change mask

(Sec. 3.2).

We remind the reader that our approach marks each building

segment u with an image index flag from the set {1, 2, ∗},

depending on that u appears in one [ξ(u) ∈ {1, 2}] or both

[ξ(u) = ∗] of the input images. In this way, the classification

of the building segment u is straightforward: u is unchanged

iff ξ(u) = ∗; new iff ξ(u) = 2 and ∄v ∈ ω : {ξ(v) = 1, u and

v overlap}; and demolished iff ξ(u) = 1 and ∄v ∈ ω : {ξ(v) =
2, u and v overlap}. Modified buildings are considered as two

objects u1 and u2, so that ξ(u1) = 1, ξ(u2) = 2.

The following soft constraints are considered by the

potential terms in the various cases:

• unchanged building u: we expect low object energies in

both images, and penalize textural differences (i.e. pixels

with ̺ch(s) = 1) under its footprint Ru.

• demolished or modified building in the first image: we

expect low ϕ(1)(u), and ϕ(2)(u) is indifferent. We penal-

ize high similarity under the footprint.

• new or modified building in the second image: we expect

low ϕ(2)(u), and ϕ(1)(u) is indifferent. We penalize high

similarity under the footprint.
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(a) Input (color image) (c) Gradient map (e) Shadow map (g) a* channel in CIE L*a*b* space

(b) Ground Truth (GT) (d) Gradient feature (f) Shadow feature (h) Color mask

Fig. 13. Illustration of the feature maps in the BUDAPEST 2008 image. Gradient and shadow features are relevant in
the left-bottom regions, while the color descriptor is efficient in the top-right image parts. In image (d), the gradient

feature is shown under the GT object borders and the background color is equal to the average gradient value.

Consequently, using the I[.] ∈ {0, 1} indicator function for

an event noted in the subscript [.], the AD(u) potential is

calculated as:

AD(u) = I[ξ(u)∈{1,∗}] · ϕ(1)(u) + I[ξ(u)∈{2,∗}] · ϕ(2)(u)+

+ I[ξ(u)=∗] ·
1

#Ru

∑

s∈Ru

̺ch(s)+

+ I[ξ(u)∈{1,2}] ·
1

#Ru

∑

s∈Ru

(
1− ̺ch(s)

)
(15)

On the other hand, interaction potentials realize prior

geometrical constraints: they penalize intersection between

different object rectangles sharing the time layer (see Fig. 14):

I(u, v) = I[ξ(u)≃ξ(v)] ·
#(Ru ∩Rv)

#(Ru ∪Rv)
(16)

where ξ(u) ≃ ξ(v) relation holds iff ξ(u) = ξ(v), or ξ(u) = ∗,

or ξ(v) = ∗. Since ∀u, v : I(u, v) ≥ 0, the optimal population

should exclusively consist of objects with negative data terms

(i.e. attractive objects): if AD(u) > 0, removing u from the

configuration results in a lower ΦD(ω) global energy (14).

Note also that according to eq. (14), the interaction term plays

a crucial role by penalizing multiple attractive objects in the

same or strongly overlapping positions.

Note that in the introduced probabilistic model, it is also

possible to involve additional prior knowledge about the layout

of settlements, by adding further prior terms to the global

energy function ΦD(ω). For example, in a town, buildings are

usually aligned, hence, we can use the geometric interaction

terms of [6], where the alignment constraint favors small angle

difference and low distance between appropriately matched

corners of neighboring segments, while the paving constraint

favors parallel rectangles that are located side by side inducing

clean arrangements of buildings.

Fig. 14. Calculation of the I(u, v) interaction potentials:
intersections of rectangles are denoted by striped areas

4.2 Bi-layer Multiple Birth and Death Optimization

By fixing the AD(u) and I(u, v) potential terms, the ΦD(ω)
configuration energy is completely defined, and the optimal

ωML building population can be obtained by minimizing

eq. (14). For this purpose, we have developed the bi-layer

Multiple Birth and Death (bMBD) algorithm, the main steps

can be followed in Fig. 15. The bMBD method extends the

conventional MBD technique by handling two time layers, thus

it encapsulates change and object information simultaneously.

Pairs of consecutive birth and death processes are iterated until

convergence is obtained in the global configuration. In the

birth step, multiple object candidates are generated randomly

according to the birth maps P
(i)
b (s), and as a further novelty,

also considering the change probabilities Pch(s) with the ex-

pected parameter maps µ
(i)
θ (s), µ

(i)
L (s) and µ

(i)
l (s) i ∈ {1, 2}.

The death process attempts to eliminate the inappropriate

objects based on the global configuration energy.

5 MULTI-SCALE GENERALIZATION

In Sec. 2, we have used a single size hypothesis for all

buildings in the image. However, in scenes where the sizes
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Bi-layer Multiple Birth and Death (bMBD) algorithm

1) Initialization: calculate the P
(i)
b (s), Pch(s), µ

(i)
θ (s), µ

(i)
L (s) and µ

(i)
l (s) (i ∈ {1, 2}) birth maps, and start with

an empty population ω = ∅.
2) Main program: initialize the inverse temperature parameter β = β0 and the discretization step δ = δ0 and alternate

birth and death steps:

• Birth step: for each pixel s ∈ S, if there is no object with center s in the current configuration ω, pick up
ξ ∈ {1, 2, ∗} randomly, let be

P̂b =

{
Pch(s) · P

(ξ)
b (s) if ξ ∈ {1, 2}(

1− Pch(s)
)
·max {P (1)

b (s), P
(2)
b (s)} if ξ = ∗

and execute the following birth process with probability δP̂b:

– generate a new object u with center s and image index ξ
– set the eL(u) and el(u) side length parameters as follows:

∗ with a probability P̂ h
b (s)/P̂b: set the parameters according to η

(
., µ

(ξ)
L (s), σL

)
resp. η

(
., µ

(ξ)
l (s), σl

)

Gaussian distributions as explained in Sec. 3.1.3. (Notes: (i) If the homogeneity feature is ignored, P̂ h
b (s)

is considered as a constant zero map. (ii) If ξ = ∗, we choose between µ
(1)

L/l and µ
(2)

L/l randomly.)

∗ otherwise: set the parameters randomly between prescribed maximal and minimal side lengths, following
a uniform distribution

– set the orientation θ(u) following the η(., µ
(ξ)
θ (s), σθ) Gaussian distribution as shown in Sec. 3.1

– add u to the current configuration ω

• Death step: Consider the configuration of objects ω = {u1, . . . , un} and sort it from the highest to the lowest
value of AD(u). For each object u taken in this order, compute ∆Φω(u) = ΦD(ω/{u}) − ΦD(ω), derive
the death rate as follows:

dω(u) =
δaω(u)

1 + δaω(u)
, with aω(u) = e−β·∆Φω(u)

and remove u from ω with probability dω(u). Note that according to eq. (14), ∆Φω(u) depends only on
u and its neighbours in ω, thus dω(u) can be calculated locally without computing the global configuration
energies ΦD(ω/{u}) and ΦD(ω).

• Convergence test: if the process has not converged, increase the inverse temperature β and decrease the
discretization step δ by a geometric scheme and go back to the birth step. Convergence is obtained when all
the objects added during the birth step, and only these ones, have been killed during the death step.

Fig. 15. Pseudo code of the bi-layer Multiple Birth and Death (bMBD) algorithm

TABLE 1
Main properties of the test data sets, and applicable

features from Sec. 3 (
√

=Yes, ×=No).

Data Set Type Source
Ch. Usable features
det† co sh gr ho

BUDAPEST Aerial City Council
√ √ √ √ ×

ABIDJAN Satellite Ikonos
√ × × √ √

BEIJING Satellite QuickBird
√ × √ √ √

SZADA Aerial FÖMI‡ √ √ × √ ×
C. D’AZUR Satellite Google Earth × √ √ √ ×
BODENSEE Satellite Google Earth × √ √ √ ×
NORMANDY Satellite Google Earth × √ √ √ ×
MANCHESTER Satellite Google Earth × √ √ √ ×

†indicate if multiple time layers are available for change detection
‡Hungarian Inst. of Geodesy, Cartography and Remote Sensing

of the footprints are notably diverse (see Fig. 17 and 18),

this simplification may prove to be inefficient. Considering

multiple scales concerns the low level feature extraction part

and the Birth step of the bMBD process particularly (see Fig.

15), since the object level features (Sec. 3.4) calculated in the

Death step are normalized either with the object area or with

the perimeter. In this section, we demonstrate a generalization

of the method through providing a multi-scale extension of

the Gradient Orientation Density Function (GODF), λs(.), and

introducing further modifications which are necessary in the

proposed bMBD algorithm. We also note that most of the other

low level features can be handled in a similar manner.

Let us assume that we have J different building size

hypothesizes: ∀u : u ∈ ∪J
j=1Υj where u ∈ Υj iff eL(u) ∈

[emin
L,j , e

max
L,j ] and el(u) ∈ [emin

l,j , emax
l,j ].

We remind the reader that the λs(.) feature has been

calculated over a rectangular image region Wl(s) around pixel

s, where the l window side length has been set according to

the estimated average object size. In the multi-scale extension,

we calculate the local GODF for J different window sizes

(l = l1, . . . , lJ) corresponding to the J size hypotheses. Fig.

16 demonstrates this process with J = 3, l1 = 14, l2 = 24
and l3 = 40 parameter settings. At each scale j = 1 . . . J , we

calculate the P gr
b (s, j) birth probabilities and µθ(s, j) mean

orientation estimates separately, and get the final gradient-

birth-map as P gr
b (s) = maxj P

gr
b (s, j).

A minor modification should also be inserted into the

birth map summarization step: we store at each pixel s the
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Fig. 16. Multi-scale investigations: demonstrating the

dependency of gradient orientation histograms on the l
window size. Maximal α feature can be obtained with

l = 14 for the small building (see on the left) and with

l = 40 for the large building (see on the right)

(a) Input image (b) Detection

Fig. 17. Detection results in case of significantly different

building scales, using the features from Fig. 16

dominant feature term, χ(s) = argmaxχ∈{gr,co,sh,ho} P
χ
b (s).

This indicator is utilized by the modified Birth process. If

we decide to generate a new object u at pixel s based on

P̂b(s), we select its scale j(u) randomly, so that the probability

of choosing scale j is P
χ(s)
b (s, j)/

∑J

i=1 P
χ(s)
b (s, i). Then

we set the orientation θ(u) following the η(., µθ(s, j(u)), σθ)
distribution, and the side lengths eL(u) and el(u) according

to uniform distributions around the expected length values at

scale j(u).

6 PARAMETER SETTINGS

We can divide the parameters of the proposed mMPP method

into three groups corresponding to the prior model, data model

and the bMBD optimization.

The prior model parameters, such as the number of the

examined scales (J in Sec. 5), l (or lj) window sizes for

GODF calculation (see Sec. 3.1.1) and maximal/minimal rect-

angle side lengths at the difference scales, depend on image

(a) Input image (b) Detection

Fig. 18. Detection results in a densely built-in part of the

ABIDJAN image set

Edge Verification method [3]

• Building Candidate Region (BCR) extraction with a mor-

phological approach – shadow and roof color information

exploited solely in preprocessing

• Canny edge detection inside the BCRs

• Roof corner estimation by detection of perpendicular edge-

junctions in the BCRs

• Rectangle fitting for the BCR-edge map around each corner

candidate

• Hypothesis acceptance/rejection

Segment-Merge method [17]

• Building segment estimation by seeded region growing

• Region merging and shadow evidence verification

• Filtering based on geometric and photometric features

• Polygon approximation of the building blocks

Fig. 19. Main steps of the Edge Verification [3] and

Segment-Merge [17] methods used for comparison

resolution and expected object dimensions. They are set based

on sample objects. We used a constant γ = 2 weight between

the data term and the overlapping coefficient in (eq. 14).

The parameters of the data model are estimated based on

training image regions containing Ground Truth building seg-

ments {ugt
1 , ugt

2 , . . . , ugt
n }. Consider an arbitrary f(u) feature

from the feature library (e.g. fgr(u) gradient descriptor). We

remind the reader that each f(u) of our model is a noisy

quality measure and the corresponding energy term is obtained

as ϕf (u) = Q(f(u), df0 , D
f ) (see Sec. 3.4). Here we set the

normalizing constant as Df = maxj f(u
gt
j ) − minj f(u

gt
j ).

Exploiting that the Q transfer function is monotonously de-

creasing with a sole root f(u) = df0 , object u is attractive

in image i (i.e. ϕ
(i)
f (u) < 0) iff f(u) > df0 . Consequently,

increasing df0 may decrease the false alarm rate and increase

the missing alarms corresponding to the selected feature. Since

in the proposed model we can simultaneously utilize several

building prototypes, our strategy for setting df0 is to minimize

the false alarms for each prototype, and eliminate the missing

buildings using further feature tuples.

Finally, regarding the relaxation parameters, we followed

the guidelines provided in [22], and used δ0 = 20000, β0 =
50, and geometric cooling factors 1/0.96.
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(a) Input image (b) SIFT [29] (c) Gabor [30] (d) MRF [1]

(e) Edge Verification [3] (f) Segment-Merge [17] (g) Proposed MPP (h) Ground Truth

Fig. 20. Evaluation of the single view building model. Comparing the proposed MPP model to the SIFT [29], Gabor

[30], MRF [1], Edge Verification (EV) [3], Segment-Merge (SM) [17] methods, and to the Ground Truth. Circles denote
completely missing or false objects. SIFT and Gabor only extract building centers.

7 EXPERIMENTS

The goal of this section is to validate the three key develop-

ments of the paper and compare them to the state of the art:

(i) the proposed multiple feature based building appearance

model, (ii) the joint object-change modeling framework and

(iii) the non-homogeneous object birth process based on low

level features.

We have evaluated our method using eight significantly

different data sets whose main properties are summarized in

Table 1. Four image collections contain multitemporal aerial

or satellite photos from the monitored regions, which enables

testing both the building extraction and the change detection

abilities of the proposed mMPP model. The remaining four

data sets contain standalone satellite images acquired from

Google Earth, which are only exploited in the evaluation of the

building appearance model (Sec. 7.1). To guarantee the hetero-

geneity of the test sets, we have chosen completely different

geographical regions as listed in Table 1. We collected samples

from densely populated suburban areas, and built a manually

annotated database for validation. For parameter settings, we

have chosen in each data set 2-8 buildings (≈ 5%) as training

data, while the remaining Ground Truth labels have only been

used to validate the detection results. Qualitative results are

shown in Fig. 17, 18, 20, 21, 25 and 26.

We perform quantitative evaluation both at object and pixel

levels. On one hand, we measure how many buildings are

recognized or classified incorrectly in the different test sets,

by counting the missing and falsely detected objects (MO and

(a) Input image (c) Edge map (e) Segmentation

(b) Proposed MPP (d) EV method (f) SM method

Fig. 21. Limitations of the EV and SM methods: com-

pared to the proposed model (im. (b)), weak edge map (c)

results in weak EV matching (d); while textured buildings
on the right do not appear as homogenous blobs in the

floodfill map (e), and are ignored by SM detection (f)

FO, respectively), and the missing and false change alarms

(MC, FC). On the other hand, we also investigate how accurate

the extracted object outlines are: we compare the resulting

building footprint masks to the Ground Truth mask, and

calculate the Precision (Pr) and Recall (Rc) values of the pixel

level detection. Finally, the F-score (harmonic mean of Pr and

Rc) can be given both at object and at pixel levels.
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TABLE 2
Numerical object level and pixel level comparison of the SIFT, Gabor, EV, SM and the proposed methods (MPP) on

each test data set (best results in each row are typeset by bold.)

Data Set
Object level performance Pixel level performance

SIFT [29] Gabor [30] EV [3] SM [17] Prop. MPP EV [3] SM [17] Prop. MPP

Name #obj. MO FO MO FO MO FO MO FO MO FO Pr Rc Pr Rc Pr Rc

BUDAPEST 41 20 10 8 17 11 5 9 1 2 4 0.73 0.46 0.84 0.61 0.82 0.71

ABIDJAN 21 8 5 0 1 2 0 2 1 1 0 0.91 0.73 0.84 0.79 0.83 0.74

BEIJING 17 7 2 9 8 2 3 4 2 1 0 0.59 0.26 0.71 0.72 0.93 0.71

SZADA 57 17 26 17 23 10 18 11 5 4 1 0.61 0.62 0.79 0.71 0.93 0.75

CÔTE D’AZUR 123 55 9 12 24 14 20 20 25 5 4 0.73 0.51 0.75 0.61 0.83 0.69

BODENSEE 80 34 9 32 8 11 13 18 15 7 6 0.56 0.30 0.59 0.41 0.73 0.51

NORMANDY 152 69 14 24 14 18 32 30 58 18 1 0.60 0.32 0.62 0.55 0.78 0.60

MANCHESTER 171 NA NA 53 85 46 17 53 42 19 6 0.64 0.38 0.60 0.56 0.86 0.63

Overall F-score∗ 0.663 0.799 0.842 0.798 0.944 0.537 0.668 0.743

∗ MANCHESTER is ignored from the summarization due to weak performance with most of the methods

7.1 Building Segment Description

Although the proposed model handles multiple time layers

simultaneously, the building description module introduced in

Sec. 3.4 works on single image inputs (birth maps and object

energies are calculated in the two images independently). In

this subsection, we evaluate solely the object recognition part,

therefore we use temporarily a simplified data term AD(u) =
ϕ(2)(u), i.e. we detect buildings only in the second image

independently of the first one.

In this section, we present numerical and qualitative compar-

ison results versus single-view building detection techniques

from the state-of-the-art, which were briefly introduced in Sec.

1.4. On one hand, we have evaluated three recent methods

in collaboration with their authors: MRF [1], SIFT [29], and

Gabor [30]. Source codes of SIFT and Gabor have been

provided us for the experiments, while the authors of MRF

have tested their model with our image sets. In addition,

we have also implemented two methodologically orthogonal

methods: the Edge Verification (EV) technique [3] and the

Segment-Merge (SM) model [17], their main steps are listed

in Fig 19. Since EV and SM use similar image features

(gradient, shadow, color, homogeneity) to our framework, by

considering them in the comparison, we can focus purely

on validating the model structures instead of special input-

dependent descriptors. Sample output images of the reference

methods can be found in Fig. 20 and 21.

Quantitative evaluation on the database was performed with

SIFT, Gabor, EV, SM and the proposed MPP models, results

are shown in Table 2. Since SIFT and Gabor extract the

building centers instead of estimating the outline, they are

only involved in the object level comparison. Numerical results

confirm that the proposed model surpasses all references with

10-26% at object level and with 5-18% at pixel level.

Table 3 lists the computational time requirements of the

test images with the different methods. From this viewpoint,

the Gabor technique is dominantly the most efficient, since

its Matlab version outperforms the other C++coded methods.

On the other hand we can observe that the proposed MPP

model is competitive with most reference techniques regarding

the average running time as well. Note that as Table 3

demonstrates, the computational complexity for the different

images depends in parallel on various factors, such as image

size, dominance of the color map, and diversity of the building

side length values.

Apart from the low complexity, a significant advantage of

the Gabor model [30] is that it can deal with various images

by changing only a single scale parameter. Conversely, our

method uses 1-2 free parameters for each feature, thus it

is more dependent on the training set. However, while the

Gabor algorithm is successful in detecting compact shaped

buildings, it faces difficulties with long segments (see BEI-

JING). Some additional problems appear considering dark

buildings (BODENSEE), where the gradient directions point

away from the building center [30]. Both the Gabor and SIFT

methods have better performance on panchromatic satellite

images, while in aerial photos false positives appear due to

many redundant local features extracted in the background. In

general, buildings in rural regions are efficiently detected with

these models, but in densely populated areas, the false alarm

rate increases. On the contrary, inserting various building

hypotheses into our MPP framework is straightforward, thus

it can efficiently deal both with high contrast satellite images

and aerial photos where color is a more dominant feature.

Since our datasets do not contain any metadata about

intrinsic and extrinsic camera parameters, several benefits of

[1] cannot be exploited. Most of the observed artifacts of

[1] (see Fig. 20(d)) derive from the sensitivity of the edge

detection algorithm, which is alleviated by using a strong

assumption: the detected buildings should have a uniform

height. Resolution of the images affects strongly the quality of

the results. The authors confirmed that the minimal resolution,

at which the method is able to operate is only fulfilled in the

HR versions of the Budapest and Côte d’Azur images. They

reported fundamental problems with the remaining images,

partially due to small size, missing color information and low

quality of the edges. Buildings with irregular shapes are not

detected because they do not fulfill a second assumption, that

rooftops are polygons with pairwise parallel sides.

We continue the discussion with the EV and SM reference

methods. Both of them follow the deterministic hypothesis

generation-acceptance scheme, where buildings ignored by the
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Fig. 22. Pixel level performance (F-scoore) in case of
different parameter settings

hypothesis generator modules appear automatically as missing

objects. On the contrary, our proposed model uses a stochastic

birth process, where the Pb(s) maps control the frequency of

local object propositions only. This approach is more robust,

since even in the image regions with erroneously low Pb(s)
values, the objects are not completely absent; they merely

appear later during the bMBD iterations or the silhouettes may

be slightly inaccurate.

As in Sec. 1.4, the sequential EV technique is sensitive

to the quality of the individual feature maps used in the

consecutive algorithmic steps. Similarly to [1], the edge mask

exploited in object proposition and verification can be strongly

corrupted or misleading in cases of low contrast, textured

background or large noise (Fig. 20(e)). In addition, examples

in Fig. 21(c) and (d) show that curved or scalloped roof edges

do not fit appropriately to the straight sides of the model

rectangles and result in poor detection on the left part of the

image. For the same reasons, we must expect similar artifacts

by using other edge-critical methods [18], [31].

As for the region based approach, Fig. 20(f) and Fig.

21(e) - (f) illustrate that the SM technique fails in detecting

roofs which are inhomogeneous both in color and texture.

On the other hand, building-like homogeneous blobs may

result in false positive objects, while low contrast buildings

can be merged with the background and missed during the

segmentation process. These problems can also appear using

similar methods [33], [34].

In summary, the tests confirm that the proposed model

surpasses the reference techniques, particularly due to its two

key properties: the stochastic object generation process and

the parallel utilization of multiple features in the building

description module.

Finally, we have tested the sensitivity of the proposed model

against the parameters of various feature extraction steps.

Fig. 22 shows the pixel level F-scores of detection on the

BUDAPEST image, where we perturbated the chrominance

threshold (τcr) of roof color filtering, the shadow darkness

threshold (τsh) and the gradient acceptance threshold (dgr)
with maximum ±30% around the optimal value. Results show

that the performance varies around 10% in these parameter

domains, most significant is the dependence on τcr.

TABLE 3
Computational time of the different w.r.t. image sizes (in

kPixels)

Data Set
Size Computational time (seconds)

(kPix) SIFT Gabor EV SM MPP

BUDAPEST† 280 197.3 14.5 120.4 18.4 25.2

ABIDJAN 148 110.1 7.1 12.0 6.3 10.7

BEIJING 515 391.1 37.2 155.5 12.9 52.2

SZADA 1472 200.9 49.8 30.3 89.1 31.5

C. D’AZUR 723 416.0 57.7 324.3 47.2 68.5

BODENSEE 536 90.0 27.9 30.4 35.1 66.2

NORMANDY 1116 236.7 67.2 109.6 72.3 46.3

MANCHESTER 1073 NA 137.1 132.1 54.0 65.9

Average 733 234.6 37.4 111.8 40.2 42.9

Implementation language: Matlab Matlab C++ C++ C++

†Test of [1] with full resolution (1068kPix) needed 45 minutes

7.2 Joint Object-Change Model

After testing the introduced building detector module in single

images, we continue with the validation of the proposed joint

object-change classification framework. The mMPP model

evaluates a given building segment candidate by simultane-

ously considering its bi-temporal ϕ(1)(u) and ϕ(2)(u) object

energies and the low level change information under the

footprint. This approach is compared to the conventional

Post Detection Comparison (PDC) [13] technique, where the

buildings are separately extracted from the two image layers,

and the change information is a posteriori estimated through

comparing the location, geometry and spectral characteristics

of the detected objects. In the latter case the object-change

decision is sequential, thus less information can be exploited

by the individual object extraction and change classification

steps, respectively. Table 4 confirms, that the PDC method

causes more false change alarms than mMPP.

To understand the reasons for the differences between PDC

and mMPP, a few illustrative examples are shown in Fig.

25. First, the layer-by-layer detector has missed two object

candidates: one in the top of the (a) image (edges are partially

hidden by the trees), and one in the bottom-left corner of the

(b) image (low contrast). These errors result automatically in

false changes by using the PDC approach. However, the joint

mMPP model produces appropriate detection results (images

(c) and (d)), exploiting that both imperceptible buildings are

in certainly unchanged image parts according to the low level

̺ch−change feature, meanwhile the given objects have been

correctly and confidently detected in the other images. On the

other hand, false objects appearing in the background regions

in PDC have been eliminated by the mMPP model, exploiting

that the corresponding local similarity is high again, but the

‘twin’ object cannot be found at the other time instance.

7.3 Feature Based Birth Process

Although the ωML configuration estimate does not depend

on the birth maps, the exploration strategy in the popula-

tion space affects the speed of optimization notably. In the

bMBD algorithm (see Fig. 15) the most significant part of

the computational time corresponds to calculating the AD(u)
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Fig. 23. Evolution of the detection performance over

the iteration steps during optimization on the BUDAPEST

image pair. Object level error is given as a function of the

applied birth steps.

data term for each generated object, since the interaction

potential I(u, v) only needs to calculate the intersection area

of rectangles which can be solved efficiently in an analytical

way. For this reason, the complexity of the approach can be

characterized by the number of object birth steps.

The key objective of the proposed non-uniform Feature

Based Birth (FBB) procedure is to generate relevant objects

with higher probability, so that we need to deal with less

inefficient building segment candidates, and high quality con-

figurations can be reached more quickly. We should note here

that the P
(i)
b (s), Pch(s), µ

(i)
θ (s), µ

(i)
L (s) and µ

(i)
l (s) birth maps

are calculated only once before starting the iterative algorithm,

and using dynamic programming techniques its computational

need is negligible [28] considering the cost of the whole

Simulated Annealing (SA) process.

For evaluation, we compared the convergence speed of

the bMBD optimization using the proposed FBB and the

conventional Uniform Birth (UB) processes. In the UB case,

the P
(i)
b (s) and Pch(s) maps follow a uniform distribution and

the side length/orientation parameters are also set as uniform

random values. In Fig. 23, the object-errors are shown as a

function of the birth steps: the FBB approach reaches the

final error rate with 3 times less birth calls than the UB.

The difference is even more significant at pixel level. As

Fig. 24 shows, with the UB process the pixel level accuracy

rates converge much slower than the object errors; to reach

the 75% DA rate, we need to generate 400, 000 objects with

the UB map, and only 24, 000 building candidates with the

proposed FBB map. This observation means that the appearing

object silhouettes in the uniform approach are usually notably

inaccurate in the beginning, and considerable time is needed

to reach the optimum.

8 CONCLUSION

We have proposed a multitemporal Marked Point Process

(mMPP) framework for building extraction and change mon-

itoring in remotely sensed image pairs taken with significant

time differences. The method incorporates object recognition

and low level change information in a joint probabilistic

approach. A global optimization process attempts to find the

optimal configuration of buildings, considering the observed
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Fig. 24. Evolution of the detection performance over the

iteration steps during the optimization on the BUDAPEST

image pair. Detection Accuracy DA (i.e. pixel level F-

score) is given as a function of the applied birth steps.

Fig. 25. Results on ABIDJAN images (source: DGA c©

France). Left: image from 1996, right: image from 1997.
Top: Post Detection Comparison (PDC) (errors are high-

lighted by circles), Bottom: proposed joint mMPP model

data, prior knowledge, and interactions between the neighbor-

ing building parts. The accuracy is ensured by a Bayesian

object model verification, meanwhile the computational cost

is significantly decreased by a non-uniform stochastic object

birth process, which proposes relevant objects with higher

probability based on low-level image features.
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Fig. 26. Results on BUDAPEST (top, image part - provider: András Görög) and BEIJING (bottom, provider: Liama
Laboratory CAS, China) image pairs, marking the unchanged (solid rectangles) and changed (dashed) objects

TABLE 4

Quantitative evaluation results. #CH and #UCH denote the total number of changed resp. unchanged buildings in the
set. PDC denotes the Post Detection Classification reference method and mMPP refers to the proposed

multitemporal Marked Point Process model. Evaluation rates MO, FO, MC, FC and DA are introduced in Sec. 7.

Missing Obj. (MO) False Obj. (FO) Missing Change (MC) False Change (FC) Pix. lev. F-score

Data Set #CH #UCH PDC mMPP PDC mMPP PDC mMPP PDC mMPP PDC mMPP

BUDAPEST 20 21 3 0 7 2 1 0 9 2 0.72 0.78

BEIJING 13 4 1 0 2 1 0 0 3 0 0.77 0.85

SZADA 50 7 4 2 0 1 3 4 3 0 0.76 0.82

ABIDJAN 0 21 2 0 2 0 0 0 4 0 0.78 0.91
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