
1

Building DNN Acoustic Models for Large

Vocabulary Speech Recognition
Andrew L. Maas, Peng Qi, Ziang Xie, Awni Y. Hannun, Christopher T. Lengerich, Daniel Jurafsky, Andrew Y. Ng,

Abstract—Deep neural networks (DNNs) are now a central
component of nearly all state-of-the-art speech recognition sys-
tems. Building neural network acoustic models requires several
design decisions including network architecture, size, and train-
ing loss function. This paper offers an empirical investigation on
which aspects of DNN acoustic model design are most important
for speech recognition system performance. We report DNN clas-
sifier performance and final speech recognizer word error rates,
and compare DNNs using several metrics to quantify factors
influencing differences in task performance. Our first set of exper-
iments use the standard Switchboard benchmark corpus, which
contains approximately 300 hours of conversational telephone
speech. We compare standard DNNs to convolutional networks,
and present the first experiments using locally-connected, untied
neural networks for acoustic modeling. We additionally build
systems on a corpus of 2,100 hours of training data by combining
the Switchboard and Fisher corpora. This larger corpus allows us
to more thoroughly examine performance of large DNN models
– with up to ten times more parameters than those typically
used in speech recognition systems. Our results suggest that a
relatively simple DNN architecture and optimization technique
produces strong results. These findings, along with previous work,
help establish a set of best practices for building DNN hybrid
speech recognition systems with maximum likelihood training.
Our experiments in DNN optimization additionally serve as a
case study for training DNNs with discriminative loss functions
for speech tasks, as well as DNN classifiers more generally.

I. INTRODUCTION

DEEP neural network (DNN) acoustic models have driven

tremendous improvements in large vocabulary contin-

uous speech recognition (LVCSR) in recent years. Initial

research hypothesized that DNNs work well because of un-

supervised pre-training [1]. However, DNNs with random

initialization yield state-of-the-art LVCSR results for several

speech recognition benchmarks [2], [3], [4]. Instead, it appears

that modern DNN-based systems are quite similar to long-

standing neural network acoustic modeling approaches [5],

[6], [7]. Modern DNN systems build on these fundamental

approaches but utilize increased computing power, training

corpus size, and function optimization heuristics. This paper

offers a large empirical investigation of DNN performance on

two LVCSR tasks to understand best practices and important

design decisions when building DNN acoustic models.

Recent research on DNN acoustic models for LVCSR

explores variations in network architecture, optimization tech-

niques, and acoustic model training loss functions. Due to

system differences across research groups it can be difficult,

for example, to determine whether a performance improvement

Department of Computer Science, Stanford University, Stanford, CA, 94305
USA e-mail: amaas@cs.stanford.edu.

is due to a better neural network architecture or a different op-

timization technique. Our work aims to address these concerns

by systematically exploring several strategies to improve DNN

acoustic models. We view the acoustic modeling DNN com-

ponent as a DNN classifier and draw inspiration from recent

DNN classification research on other tasks – predominantly

image classification. Unlike many other tasks, DNN acoustic

models in LVCSR are not simply classifiers, but are instead

one sub-component of the larger speech transcription system.

There is a complex relationship between downstream task

performance, word error rate (WER), and the proximal task of

training a DNN acoustic model as a classifier. Because of this

complexity, it is unclear which improvements to DNN acoustic

models will ultimately result in improved performance across

a range of LVCSR tasks.

This work empirically examines several aspects of DNN

acoustic models in an attempt to establish a set of best

practices for creating such models. Further, we seek to un-

derstand which aspects of DNN training have the most impact

on downstream task performance. This knowledge can guide

rapid development of DNN acoustic models for new speech

corpora, languages, computational constraints, and language

understanding task variants. Furthermore, we not only ana-

lyze task performance, but also quantify differences in how

various DNNs transform and represent data. Understanding

how DNNs process information helps us understand under-

lying principles to further improve DNNs as classifiers and

components of large artificial intelligence systems. To this end,

our work serves as a case study for DNNs more generally as

both classifiers and components of larger systems.

We first perform DNN experiments on the standard Switch-

board corpus. We use this corpus to analyze the effect of

DNN size on task performance, and find that although there

are 300 hours of training data we can cause DNNs to over-

fit on this task by increasing DNN model size. We then

investigate several techniques to reduce over-fitting including

the popular dropout regularization technique. We next analyze

neural network architecture choices by comparing deep convo-

lutional neural networks (DCNNs), deep locally untied neural

networks (DLUNNs), and standard DNNs. This comparison

also evaluates alternative input features since convolutional

approaches rely on input features with meaningful time and

frequency dimensions.

To explore DNN performance with fewer constraints im-

posed by over-fitting, we next build a baseline LVCSR system

by combining the Switchboard and Fisher corpora. This results

in roughly 2,100 hours of training data and represents one of

the largest collections of conversational speech available for

ar
X

iv
:1

40
6.

78
06

v2
 [

cs
.C

L
]

 2
0

Ja
n

20
15

2

academic research. This larger corpus allows us to explore

performance of much larger DNN models, up to ten times

larger than those typically used for LVCSR. Using this larger

corpus we also evaluate the impact of optimization algorithm

choice, and the number of hidden layers used in a DNN with a

fixed number of total free parameters. We analyze our results

not only in terms of final task performance, but also compare

sub-components of task performance across models. Finally,

we quantify differences in how different DNN architectures

process information.

Section II outlines the steps involved in building neural

network acoustic models for LVCSR, and describes previous

work on each step. This process outline contextualizes the

questions addressed by our investigations, which we present

in Section III. Section IV describes the neural network ar-

chitectures and optimization algorithms evaluated in this pa-

per. Section V presents our experiments on the Switchboard

corpus, which focus on regularization and network dense

versus convolutional architectural choices. We then present

experiments on the combined Switchboard and Fisher corpora

in Section VII which explore the performance of larger and

deeper DNN architectures. We compare and quantify DNN

representational properties in Section IX, and conclude in

Section X.

II. NEURAL NETWORK ACOUSTIC MODELS

DNNs act as acoustic models for hidden Markov model

(HMM) speech recognition systems using the hybrid HMM ap-

proach. A hybrid HMM system largely resembles the standard

HMM approach to speech recognition using Gaussian mixture

model (GMM) acoustic models. A full overview of LVCSR

systems is beyond the scope of this work, so we instead refer

to previous articles for an overview of HMM-based speech

recognition systems [8], [9], [10], [11], [12].

Our work focuses on the acoustic modeling component of

the LVCSR system. The acoustic model approximates the

distribution ppx|yq which is the probability of observing a

given short span of acoustic features, x, conditioned on an

HMM state label, y. The acoustic input features represent

about 25ms of audio in most LVCSR systems. The HMM

state labels y for LVCSR are senones – clustered, context-

dependent sub-phonetic states. A hybrid HMM system uses a

neural network to approximate ppx|yq in place of a GMM.

A neural network does not explicitly model the distribution

ppx|yq required by the HMM. Instead, we train neural net-

works to estimate ppy|xq, which allows us to view the neural

network as a classifier of senones given acoustic input. We

can use Bayes’ rule to obtain ppx|yq given the neural network

output distribution ppy|xq,

ppx|yq “
ppy|xqppxq

ppyq
. (1)

The distribution ppyq is the prior distribution over senones,

which we approximate as the empirical distribution of senone

occurrence in the training set. This is easy to obtain as it

is simply a normalized count of senones in the training set.

We usually can not tractably estimate probability of acoustic

features, ppxq. This represents the probability of observing a

particular span of acoustic features – a difficult distribution

to model. However, because our acoustic features x are fixed

during decoding the term ppxq is a constant, albeit unknown,

scaling factor. As a result we drop the term and instead provide

the HMM with an unscaled acoustic model score,

ppy|xq

ppyq
. (2)

This term is not a properly formed acoustic model probability,

but it is sufficient to perform HMM decoding to maximize

a combination of acoustic and language model scores. The

decoding procedure introduces an acoustic model scaling term

to empirically adjust for the scaling offset introduced by using

un-normalized probabilities.

Using neural networks as acoustic models for HMM-based

speech recognition was introduced over 20 years ago [5], [7],

[13]. Much of this original work developed the basic ideas

of hybrid HMM-DNN systems which are used in modern,

state-of-the-art systems. However, until much more recently

neural networks were not a standard component in the highest

performing LVCSR systems. Computational constraints and

the amount of available training data severely limited the pace

at which it was possible to make progress on neural network

research for speech recognition. Instead, Gaussian mixture

models were the standard choice for acoustic modeling as

researchers worked to refine the HMM architecture, decoding

frameworks, and signal processing challenges associated with

building high-performance speech recognizers.

While GMMs and their extensions produced gains on

benchmark LVCSR tasks over the span of many years, the

resulting systems became increasingly complex. Many of

the complexities introduced focused purely on increasing the

representational capacity of GMM acoustic models. In parallel

to this effort, there was a resurgence of interest in neural

networks under the new branding of deep learning within the

machine learning community. Work in this area focused on

overcoming optimization issues involved in training DNNs by

applying unsupervised pre-training to obtain a better initial-

ization for supervised learning tasks [14], [15].

DNNs provided an interesting path forward for acoustic

modeling as neural networks offer a direct path to increasing

representational capacity, provided it is possible to find a

good set of DNN parameters. Early experiments with DNNs

used fairly small phoneme recognition tasks using monophone

recognition systems and small datasets like TIMIT [16]. In

2011 researchers demonstrated that DNNs can also be applied

to LVCSR systems with context-dependent triphone states,

rather than monophone states. This innovation, coupled with

the larger representational capacity of DNNs as compared to

GMMs, yielded substantial reductions in WER on multiple

challenging LVCSR tasks [17], [18]. Within two years DNN

acoustic models showed gains on challenging tasks within the

LVCSR systems of Microsoft, Google, and IBM [2].

Several factors are attributed to the success of modern DNN

approaches as compared to previous work with hybrid acoustic

models. Specifically the large total number of network param-

eters, increased number of hidden layers, and initialization

by pre-training were thought to drive performance of mod-

3

ern hybrid HMM systems. Researchers quickly established

that hybrid HMMs work much better when using context-

dependent triphones in place of monophones [1]. Initializing

DNN weights with unsupervised pre-training was initially

thought to be important for good performance, but researchers

later found that purely supervised training from random initial

weights yields nearly identical final system performance [19].

Using DNNs with many hidden layers and many total pa-

rameters has generally found to be beneficial [20], but the

role of hidden layers and total network size is not generally

understood.

Having defined our hybrid HMM system and how we use

the neural network output ppy|xq within the complete LVCSR

system, we next focus on how we build neural networks to

model the senone distribution ppy|xq. To better understand the

detailed aspects related to building and using neural network

acoustic models for LVCSR we break the process into a series

of modeling and algorithmic choices. This set of steps allows

us to better contextualize previous work, and further convey

what aspects of the process are not yet fully understood. We

define the process as five steps:

1) Label Set. The set of labels for our acoustic model

are defined by the baseline HMM-GMM system we

choose to use. Early work in neural network acoustic

models used context-independent monophone states. Re-

cent work with DNN acoustic models established that

context-dependent states are critical to success [17],

which is generally true of modern LVCSR systems.

Several variants of context-dependent states exist, and

have been tried with DNN acoustic models. In this work

we use context-dependent triphone senones created by

our baseline HMM-GMM system.

2) Forced Alignment. Our training data originally contains

word-level transcriptions without time alignments for

words. We must assign a senone label to each acoustic

input frame in each training utterance. We use a forced

alignment of the ground-truth transcriptions to generate

a sequence of senone labels for each utterance which is

consistent with the word transcription for the utterance.

Generating a forced alignment is a standard step of

training any HMM-based system. The standard approach

to hybrid speech recognition creates a forced alignment

of the training data using an HMM-GMM system [11].

The aligned data is then used to train a neural network

acoustic model. Previous work found that using a trained

HMM-DNN system to realign the training data for a

second round of DNN training produces small gains

in overall system performance [21]. This process has

more recently been generalized to yield an HMM-

DNN training procedure which starts with no forced

alignment but repeatedly uses a DNN to realign the

training data [22]. In our experiments we used a single

forced alignment produced by the baseline HMM-GMM

system as this the most standard approach when building

DNN acoustic models.

3) Neural Network Architecture. The size and structure

of neural networks used for acoustic modeling is by

far the largest difference between modern HMM-DNN

systems and those used before 2010. Modern DNNs

use more than one hidden layer, making them deep.

As a general property, depth is an important feature for

the success of modern DNNs. Several groups recently

found replacing the standard sigmoidal hidden units with

rectified linear units in DNNs leads to WER gains and

simpler training procedures for deep architectures [23],

[24], [25].

Neural networks with only a single hidden layer perform

worse than their deeper counterparts on a variety of

speech tasks, even when the total number of model

parameters is held fixed [21], [20], [26]. Whether deeper

is always better, or how deep a network must be to

obtain good performance, is not well understood both

for speech recognition and DNN classification tasks

more generally. The total number of parameters used

in modern DNNs is typically 10 to 100 times greater

than neural networks used in the original hybrid HMM

experiments. This increased model size, which translates

to increased representational capacity, is critical to the

success of modern DNN-HMM system. It is not clear

how far we can push DNN model size or depth to

continue increasing LVCSR performance.

Size and depth are the most fundamental architectural

choices for DNNs, but we can also consider a variety

of alternative neural network architectures aside from a

series of densely-connected hidden layers. DCNNs are

an alternative to densely-connected networks which are

intended to leverage the meaningful time and frequency

dimensions in certain types of audio input features.

Recent work with DCNNs found them to be useful

first on phoneme recognition tasks but also on LVCSR

tasks when used in addition to a standard DNN acoustic

model [27], [28], [29]. DCNNs change the first and

sometimes second hidden layers of the neural network

architecture, but otherwise utilize the same densely-

connected multilayer architecture of DNNs.

Perhaps a larger architectural change from DNNs are

deep recurrent neural networks (DRNNs) which in-

troduce a temporally recurrent hidden layer between

hidden layers. The resulting architecture has outputs

which no longer process each input context window

independently, reflecting the temporal coherence and

correlation of speech signals. DRNNs are a modern

extension of the time-delay neural network first used

for phoneme recognition by [30] and recurrent network

approach of [31]. Modern recurrent network approaches

to acoustic modeling have shown some initial success

on large vocabulary tasks [32], and tasks where limited

training data is available [33], [34], [35], [36]. The long

term impact of DRNNs for HMM-DRNN systems is not

yet clear as both the DRNN and HMM reason about

the temporal dynamics of the input, which may intro-

duce redundancy or interference. Researchers continue

to propose and compare many architectural variants for

acoustic modeling and other speech-related tasks [37].

4) Neural Network Loss Function. Given a training set

4

of utterances accompanied by frame-level senone labels

we must choose a loss function to use when training our

acoustic model. The space of possible loss functions is

large, as it also includes the set of possible regulariza-

tion terms we might use to control over-fitting during

training. The default choice for DNN acoustic models

is the cross entropy loss function, which corresponds to

maximizing the likelihood of the observed label given

the input. Cross entropy is the standard choice when

training DNNs for classification tasks, but it ignores the

DNN as a component of the larger ASR system. To

account for more aspects of the overall system, discrim-

inative loss functions were introduced for ASR tasks.

Discriminative loss functions were initially developed

for GMM acoustic models [38], [39], [40], [41], but

were recently applied to DNN acoustic model training

[4], [3], [42]. Discriminative training of DNN acoustic

models begins with standard cross entropy training to

achieve a strong initial solution. The discriminative loss

function is used either as a second step, or additively

combined with the standard cross entropy function. We

can view discriminative training as a task-specific loss

function which produces a DNN acoustic model to better

act as a sub-component of the overall ASR system.

For whatever loss function we choose, we can ad-

ditionally apply one or more regularization terms to

form the final training objective function. Regulariza-

tion is especially important for DNNs where we can

easily increase models’ representational capacity. The

simplest form of regularization widely applied to DNNs

is a weight norm penalty, most often used with an

ℓ2-norm penalty. While generally effective, developing

new regularization techniques for DNNs is an area of

active research. Dropout regularization [2] was recently

introduced as a more effective regularization technique

for DNN training. Recent work applied dropout regular-

ization for DNN acoustic models, and found it beneficial

when combined with other architectural changes [23].

5) Optimization Algorithm. Any non-trivial neural net-

work model leads to a non-convex optimization problem.

Because of this, our choice of optimization algorithm

impacts the quality of local minimum found during

optimization. There is little we can say in the general

case about DNN optimization since it is not possible to

find a global minimum nor estimate how far a particular

local minimum is from the best possible solution. The

most standard approach to DNN optimization is stochas-

tic gradient descent (SGD). There are many variants

of SGD, and practitioners typically choose a particular

variant empirically. While SGD provides a robust default

choice for optimizing DNNs, researchers continue to

work on improving optimization algorithms for DNNs.

Nearly all DNN optimization algorithms in popular use

are gradient-based, but recent work has shown that

more advanced quasi-Newton methods can yield better

results for DNN tasks generally [43], [44] as well as

DNN acoustic modeling [3]. Quasi-Newton and similar

methods tend to be more computationally expensive per

update than SGD methods, but the improved optimiza-

tion performance can sometimes be distributed across

multiple processors more easily, or necessary for loss

functions which are difficult to optimize well with SGD

techniques. Recently algorithms like AdaGrad [45] and

Nesterov’s Accelerated Gradient (NAG) were applied to

DNNs for tasks outside of speech recognition, and tend

to provide superior optimization as compared to SGD

while still being computationally inexpensive compared

to traditional quasi-Newton methods [46].

Amount of time required for training is an important

practical consideration for DNN optimization tasks.

Several groups have designed and implemented neural

network optimization procedures which utilize graphics

processing units (GPUs) [47], [48], [49], clusters of

dozens to hundreds of computers [50], [51], [52], or

clusters of GPUs [53]. Indeed, training time of neu-

ral networks has been a persistent issue throughout

history, researchers often utilized whatever specialized

computing hardware was available at the time [54],

[55]. Modern parallelized optimization approaches often

achieve a final solution of similar quality to a non-

parallelized optimization algorithm, but are capable of

doing so in less time, or for larger models, as compared

to non-parallelized approaches.

III. QUESTIONS ADDRESSED IN THIS WORK

At each stage of neural network acoustic model design and

training there is a tremendous breadth and depth of prior

work. Researchers often focus on improving one particular

component of this pipeline while holding all other components

fixed. Unfortunately, there is no well-established baseline for

the acoustic model building pipeline, so performance improve-

ments of, for example, a particular architectural variant are

difficult to assess from examining the literature. Our examines

the relative importance of several acoustic model design and

training decisions. By systematically varying several critical

design components we are able to test the limits of certain

architectural choices, and uncover which variations among

baseline systems are most relevant for LVCSR performance.

We specifically address the following questions in this work:

1) What aspects of neural network architecture are most

important for acoustic modeling tasks? We investigate

total network size and number of hidden layers using

two corpora to avoid overfitting as a confounding factor.

We build DNNs with five to ten times the total number

of free parameters of DNNs used in most previous work.

We also compare optimization algorithms to test whether

more modern approaches to stochastic gradient descent

are a driving factor in building large DNN acoustic

models.

We additionally compare a much broader architectural

choice – locally-connected models versus the stan-

dard densely-connected DNN models. Recent work has

found improvements when using DCNNs combined with

DNNs for acoustic modeling, or when applying DCNNs

to audio features with sufficient pre-processing [29]. We

5

use two types of input features to compare DNNs with

DCNNs. We present the first experiments DLUNNs for

acoustic modeling. DLUNNs are a generalized version

of DCNNs which are still locally connected but learn

different weights at each location in the input features

rather than sharing weights at all locations.

2) How can we improve the test set generalization of DNN

acoustic models? Our experiments on DNN architecture

choices reveal that increasing model size easily leads

to overfitting issues. We evaluate several modifications

to DNN training to improve the generalization perfor-

mance of large DNNs. We include dropout, a recently

introduced regularization technique, as well as early

stopping, which has been used in neural network training

for many years. Finally, we propose and evaluate early

realignment, a training technique specific to acoustic

modeling, as a path towards improving generalization

performance.

3) Do large, deep DNNs differ from shallow, smaller

DNNs in terms of phonetic confusions or information

processing metrics? DNN acoustic models are clearly

successful in application but we do not yet understand

why they perform well, or how they might be improved.

We analyze the WER and classification errors made by

large DNN acoustic models to test what improvements

in sub-tasks ultimately lead to overall system WER

improvements. Further, we look at information encoding

metrics to quantify how information encoding changes

in larger or deeper DNNs.

We address each of these questions in separate experiments

using the Switchboard 300 hour corpus and a combined

2,100 hour corpus when appropriate for the experiment. In

Section IV we describe the DNN, DCNN, and DLUNN archi-

tecture computations used in this work. Section V addresses

questions of model size and overfitting on the Switchboard

corpus while Section VI uses the same baseline Switchboard

system to compare DCNN and DLUNN architectures to DNNs

and baseline GMMs. Section VII presents experiments using

the larger training corpus to explore issues of model size,

DNN depth, and optimization algorithm. Sections VIII and IX

analyze the performance and coding properties of DNNs

trained on the large combined corpus to better understand how

large DNNs encode information, and integrate into LVCSR

systems.

IV. NEURAL NETWORK COMPUTATIONS

To address the stated research questions we employ three

different classes of neural network architecture. Each architec-

ture amounts to a different set of equations to convert input

features into a predicted distribution over output classes. We

describe here the specifics of each architecture, along with the

loss function and optimization algorithms we use.

A. Cross Entropy Loss Function

All of our experiments utilize the cross entropy classifica-

tion loss function. For some experiments we apply regulariza-

tion techniques in addition to the cross entropy loss function to

improve generalization performance. Many loss functions spe-

cific to speech recognition tasks exist, and are a topic of active

research. We choose to focus only on cross entropy because

training with cross entropy is almost always the first step,

or an additional loss function criterion, when experimenting

with more task-specific loss functions. Additionally, the cross

entropy loss function is a standard choice for classification

tasks, and using it allows our experiments to serve as a case

study for large scale DNN classification tasks more generally.

The cross entropy loss function does not consider each

utterance in its entirety. Instead it is defined over individual

samples of acoustic input x and senone label y. The cross

entropy objective function for a single training pair px, yq is,

´
K
ÿ

k“1

1ty “ ku log ŷk, (3)

where K is the number of output classes, and ŷk is the

probability that the model assigns to the input example taking

on label k.

Cross entropy is a convex approximation to the ideal 0-1

loss for classification. However, when training acoustic models

perfect classification at the level of short acoustic spans is

not our ultimate goal. Instead, we wish to minimize the word

error rate (WER) of the final LVCSR system. WER measures

mistakes at the word level, and it is possible to perfectly

transcribe the words in an utterance without perfectly clas-

sifying the HMM state present at each time step. Constraints

present in the HMM and word sequence probabilities from

the language model can correct minor errors in state-level

HMM observation estimates. Conversely, not all acoustic spans

are of equal importance in obtaining the correct word-level

transcription. The relationship between classification accuracy

rate at the frame level and overall system WER is complex

and not well understood. In our experiments we always report

both frame-level error metrics and system-level WER to elicit

insights about the relationship between DNN loss function

performance and overall system performance.

B. Deep Neural Network Computations

A DNN is a series of fully connected hidden layers which

transform an input vector x into a probability distribution ŷ

to estimate the output class. The DNN thus acts as a function

approximator for the conditional distribution ppy|xq. A DNN

parametrizes this function using L layers, a series of hidden

layers followed by an output layer. Figure 1 shows an example

DNN.

Each layer has a weight matrix W and bias vector b. We

compute vector h1 of first layer activations of a DNN using,

hp1qpxq “ σpW p1qTx ` bp1qq, (4)

where W p1q and bp1q are the weight matrix and bias vectors

respectively for the first hidden layer. In this formulation each

column of the matrix W p1q corresponds to the weights for

a single hidden unit of the first hidden layer. Because the

DNN is fully connected, any real-valued matrix W forms a

valid weight matrix. If we instead choose to impose partial

6

x

hp1q hp2q

¨ ¨ ¨

hpL´1q

ŷ

Fig. 1. A DNN with 5-dimensional input, 3-dimensional hidden layers, and 7-
dimensional output. Each hidden layer is fully connected to the to the previous
and subsequent layer.

connectivity, we are effectively constraining certain entries in

W to be 0.

Subsequent hidden layers compute their hidden activation

vector hpiq using the hidden activations of the previous layer

hpi´1q,

hpiqpxq “ σpW piqThpi´1q ` bpiqq. (5)

In all hidden layers we apply a point-wise nonlinearity

function σpzq as part of the hidden layer computation. Tradi-

tional approaches to neural networks typically use a sigmoidal

function. However, in this work we use rectified linear units

which were recently shown to lead to better performance in

hybrid speech recognition as well as other DNN classification

tasks[23], [24], [25]. The rectifier nonlinearity is defined as,

σpzq “ maxpz, 0q “

#

zi zi ą 0

0 zi ď 0
. (6)

The final layer of the DNN must output a properly formed

probability distribution over the possible output categories.

To do this, the final layer of the DNN uses the softmax

nonlinearity, which is defined as,

ŷj “
exppW

pLqT
j hpL´1q ` b

pLq
j q

řN

k“1
exppW

pLqT
k hpL´1q ` b

pLq
k q

. (7)

Using the softmax nonlinearity we obtain the output vector

ŷ which is a well-formed probability distribution over the N

output classes. This distribution can then be used in the loss

function stated in Equation 3, or other loss functions.

Having chosen a loss function and specified our DNN

computation equations, we can now compute a sub-gradient of

the loss function with respect to the network parameters. Note

that because we are using rectifier nonlinearities this is not a

true gradient, as the rectifier function is non-differentiable at

0. In practice we treat this sub-gradient as we would a true

gradient and apply gradient-based optimization procedures to

find settings for the DNN’s parameters.

This DNN formulation is fairly standard when compared

to work in the speech recognition community. The choice of

rectifier nonlinearities is a new one, but their benefit has been

reproduced by several research groups. Fully connected neural

networks have been widely used in acoustic modeling for over

20 years, but the issues of DNN total size and depth have not

been thoroughly studied.

C. Deep Convolutional Neural Networks

The fully-connected DNN architecture presented thus far

serves as the primary neural network acoustic modeling choice

for modern speech recognition tasks. In contrast, neural net-

works for computer vision tasks are often deep convolutional

neural networks (DCNNs) which exploit spatial relationships

in input data [56], [57]. When using spectrogram filter bank

representations of speech data, analogous time-frequency rela-

tionships may exist. The DCNN architecture allows for param-

eter sharing and exploiting local time-frequency relationships

for improved classification performance. DCNNs follow a con-

volutional layer with a pooling layer to hard-code invariance

to slight shifts in time and frequency. Like fully connected

neural network acoustic models, the idea of using localized

time-frequency regions for speech recognition was introduced

over 20 years ago [30]. Along with the modern resurgence of

interest in neural network acoustic models researchers have

taken a modern approach to DCNN acoustic models. Our

formulation is consistent with other recent work on DCNN

acoustic models [29], but we do not evaluate specialized

feature post-processing or combining DNNs with DCNNs to

form an ensemble of acoustic models. Instead, we ask whether

DCNNs should replace DNNs as a robust baseline recipe for

building neural network acoustic models.

Like a DNN, a DCNN is a feed-forward model which

computes the conditional distribution ppy|xq. The initial layers

in a DCNN use convolutional layers in place of the standard

fully-connected layers present in DNNs. Convolutional layers

were originally developed to enable neural networks to deal

with large image inputs for computer vision tasks. In a

convolutional model, we restrict the total number of network

parameters by using hidden units which connect to only a

small, localized region of the input. These localized hidden

units are applied at many different spatial locations to obtain

hidden layer representations for the entire input. In addition to

controlling the number of free parameters, reusing localized

hidden units at different locations leverages the stationary

nature of many input domains. In the computer vision domain,

this amounts to reusing the same edge-sensitive hidden units

at each location of the image rather than forcing the model to

learn the same type of hidden unit for each location separately.

Figure 2 shows a convolutional hidden layer connected to

input features with time and frequency axes. A single weight

matrix W1 connects to a 3x3 region of the input and we

compute a hidden unit activation value using the same rectifier

nonlinearity presented in Equation 6. We apply this same

procedure at all possible locations of the input, moving one

step at a time across the input in both dimensions. This process

produces a feature map hp1,1q which is the hidden activation

values for W1 at each location of the input. The feature map

itself has meaningful time and frequency axes because we

preserve these dimensions as we convolve across the input

to compute hidden unit activations.

Our convolutional hidden layer has a feature map with

redundancies because we apply the hidden units at each

location as we slide across the input. Following the convo-

lutional layer, we apply a pooling operation. Pooling acts as

7

Time

F
re
q
u
en
cy

W1

W1

x h*
1:c h1:c

max()

Fig. 2. Convolution and pooling first layer architecture. Here the filter size is 5ˆ5, and the pooling dimension is 3ˆ3. Pooling regions are non-overlapping.
Note that the 5ˆ 5 filters applied to each position in the convolution step are constrained to be the same. For max-pooling, the maximum value in each 3ˆ 3

grid is extracted.

a down-sampling step, and hard-codes invariance to slight

translations in the input. Like the localized windows used

in the convolutional layer, the pooling layer connects to a

contiguous, localized region of its input – the feature map

produced by a convolutional hidden layer. The pooling layer

does not have overlapping regions. We apply this pooling

function to local regions in each feature map. Recall that

a feature map contains the hidden unit activations for only

a single hidden unit. We are thus using pooling to select

activation values for each hidden unit separately, and not

forcing different hidden units to compete with one another. In

our work, we use max pooling which applies a max function

to the set of inputs in a single pooling region. Max pooling is

a common choice of pooling function for neural networks in

both computer vision and acoustic modeling tasks [58], [27],

[29]. The most widely used alternative to max pooling replaces

the max function with an averaging function. Results with max

pooling and average pooling are often comparable.

The overall architecture of a DCNN consists of one or more

layers of convolution followed by pooling followed by densely

connected hidden layers and a softmax classifier. Essentially

we build convolution and pooling layers to act as input to

a DNN rather than building a DNN from the original input

features. It is not possible to interleave densely connected

and convolutional hidden layers because a densely connected

hidden layer does not preserve spatial or time-frequency

relationships in their hidden layer representations. The DCNN

architecture contains more hyper-parameters than a standard

DNN because we must select the number of convolutional

layers, input region size for all convolution and pooling layers,

and pooling function. These are additional hyper-parameters

to the choices of depth and hidden layer size common to all

types of deep neural network architectures.

D. Deep Local Untied Neural Networks

DCNNs combine two architectural ideas simultaneously –

locally-connected hidden units and sharing weights across

multiple hidden units. We need not apply both of these ar-

chitectural ideas simultaneously. In a deep local untied neural

network (DLUNN) we again utilize locally-connected hidden

units but do not share weights at different regions of the

input. Figure 3 shows an example DLUNN architecture, which

differs only from a DCNN architecture by using different

weights at each location of the first hidden layer. When

applying a local untied hidden layer to Mel-spectrum time-

frequency input features the hidden units can process different

frequency ranges using different hidden units. This allows

the network to learn slight variations that may occur when a

feature occurs at a lower frequency versus a higher frequency.

In DLUNNs, the architecture is the same as in the con-

volutional network, except that filters applied to different

regions of the input are not constrained to be the same. Thus

untied neural networks can be thought of as convolutional

neural networks using locally connected computations and

without weight-sharing. This results in a large increase in

the number of parameters for the untied layers relative to

DCNNs. Following each locally united layer we apply a max

pooling layer which behaves identically to the pooling layers

in our DCNN architecture. Grouping units together with a max

pooling function often results in hidden weights being similar

such that the post-pooling activations are an invariant feature

which detects a similar time-frequency pattern at different

regions of the input.

E. Optimization Algorithms

Having defined several neural network architectures and the

loss function we wish to optimize, we must specify which

gradient-based algorithm we use to find a local minimum

of our loss function. We consider only stochastic gradient

techniques in our work as batch optimization, which requires

computing the gradient across the entire dataset at each step,

is impractical for the datasets we use. There are several

variants of stochastic gradient techniques, many with different

convergence properties when applied to convex optimization

problems. Because neural network training is a non-convex

8

Time

F
re
q
u
en
cy

W1,(1,1)

W1,(1,2)

x h*
1:c h1:c

max()

Fig. 3. Locally connected untied first layer architecture. Here the filter size is 5ˆ5, and the pooling dimension is 3ˆ3. Pooling regions are non-overlapping.
Unlike the convolutional layer shown in Figure 2, the network learns a unique 5ˆ5 set of weights at each location. The max pooling layer otherwise behaves
identically to the pooling layer in a convolutional architecture.

problem, it is difficult to make general statements about

optimality of optimization methods. Instead, we consider the

choice of optimization algorithm as a heuristic which may lead

to better performance in practice. We consider two of the most

popular stochastic gradient techniques for our neural network

training.

The first optimization algorithm we consider is stochastic

gradient with classical momentum (CM) [59], [60]. This tech-

nique is probably the most standard optimization algorithm

choice in modern neural network research. To minimize a cost

function fpθq classical momentum updates amount to,

vt “ µvt´1 ´ ǫ∇fpθt´1q (8)

θt “ θt´1 ` vt, (9)

where vt denotes the accumulated gradient update, or velocity,

ǫ ą 0 is the learning rate, and the momentum constant

µ P r0, 1s governs how we accumulate the velocity vector over

time. By setting µ close to one, one can expect to accumulate

the gradient information across a larger set of past updates.

However, it can be shown that for extremely ill-conditioned

problems, a high momentum for classical momentum method

might actually cause fluctuations in the parameter updates.

This in turn can result in slower convergence.

Recently the Nesterov’s accelerated gradient (NAG) [61]

technique was found to address some of the issues encountered

when training neural networks with CM. Both methods follow

the intuition that accumulating the gradient updates along

the course of optimization will help speed up convergence.

NAG accumulates past gradients using an alternative update

equation that finds a better objective function value with

less sensitivity to optimization algorithm hyper-parameters on

some neural network tasks. The NAG update rule is defined

as,

vt “ µt´1vt´1 ´ ǫt´1∇fpθt´1 ` µt´1vt´1q (10)

θt “ θt´1 ` vt. (11)

Intuitively, this method avoids potential fluctuation in the

optimization by looking ahead to the gradient along the update

direction. For a more detailed explanation of the intuition

underlying NAG optimization for neural network tasks see

Figure 7.1 in [62]. In our work, we treat optimization algo-

rithm choice as an empirical question and compare CM with

NAG on our acoustic modeling task to establish performance

differences.

V. SWITCHBOARD 300 HOUR CORPUS

We first carry out LVCSR experiments on the 300

hour Switchboard conversational telephone speech corpus

(LDC97S62). The baseline GMM system and forced align-

ments are created using the Kaldi open-source toolkit1 [63].

The baseline recognizer has 8,986 sub-phone states and 200k

Gaussians. The DNN is trained to estimate state likelihoods

which are then used in a standard hybrid HMM/DNN setup.

Input features for the DNNs are MFCCs with a context of

˘10 frames. Per-speaker CMVN is applied and speaker adap-

tation is done using fMLLR. The features are also globally

normalized prior to training the DNN. Overall, the baseline

GMM system setup largely follows the existing s5b Kaldi

recipe and we defer to previous work for details [4]. For

recognition evaluation, we report on a test set consisting of

both the Switchboard and CallHome subsets of the HUB5

2000 data (LDC2002S09) as well as a subset of the training

set consisting of 5,000 utterances.

A. Varying DNN Model Size

We first experiment with perhaps the most direct approach

to improving performance with DNNs – making DNNs larger

by adding hidden units. Increasing the number of parameters in

a DNN directly increases the representational capacity of the

model. Indeed, this representational scalability drives much of

the modern interest in applying DNNs to large datasets which

might easily saturate other types of models. Many existing

1http://kaldi.sf.net

9

experiments with DNN acoustic models focus on introducing

architecture or loss function variants to further specialize

DNNs for speech tasks. We instead ask the question of whether

model size alone can drive significant improvements in overall

system performance. We additionally experiment with using a

larger context window of frames as a DNN input as this should

also serve as a direct path to improving the frame classification

performance of DNNs.

1) Experiments: We explore three different model sizes by

varying the total number of parameters in the network. The

number of hidden layers is fixed to five, so altering the total

number of parameters affects the number of hidden units in

each layer. All hidden layers in a single network have the

same number of hidden units. The hidden layer sizes are

2048, 3953 and 5984 which respectively yield models with

approximately 36 million (M), 100M and 200M parameters.

There are 8,986 output classes which results in the output

layer being the largest single layer in any of our networks. In

DNNs of the size typically studied in the literature this output

layer often consumes a majority of the total parameters in

the network. For example in our 36M parameter model the

output layer comprises 51% of all parameters. In contrast,

the output layer in our 200M model is only 6% of total

parameters. Many output classes occur rarely so devoting a

large fraction of network parameters to class-specific modeling

may be wasteful. Previous work explores factoring the output

layer to increase the relative number of shared parameters [64],

[65], but this effect occurs naturally by substantially increasing

network size. For our larger models we experiment with the

standard input of ˘10 context frames and additionally models

trained with ˘20 context frames.

All models use hidden units with the rectified linear non-

linearity. For optimization, we use Nesterov’s accelerated

gradient with a smooth initial momentum schedule which we

clamp to a maximum of 0.95 [46]. The stochastic updates are

on mini-batches of 512 examples. After each epoch, or full

pass through the data, we anneal the learning rate by half.

Training is stopped after improvement in the cross entropy

objective evaluated on held out development set falls below a

small tolerance threshold.

In order to efficiently train models of the size mentioned

above, we distribute the model and computation across sev-

eral GPUs using the distributed neural network infrastructure

proposed by [53]. Our GPU cluster and distributed training

software is capable of training up to 10 billion parameter

DNNs. We restrict our attention to models in the 30M - 200M

parameter range. In preliminary experiments we found that

DNNs with 200M parameters are representative of DNNs with

over one billion parameters for this task. We train models

for this paper in a model-parallel fashion by distributing

the parameters across four GPUs. A single pass through the

training set for a 200M parameter DNN takes approximately

1.5 days. Table I shows frame-level and WER evaluations of

acoustic models of varying size compared against our baseline

GMM recognizer.

2) Results: Table I shows results for DNNs of varying

size and varying amounts of input context. We find that

substantially increasing DNN size shows clear improvements

in frame-level metrics. Our 200M parameter DNN halves

the development set cross entropy cost of the smaller 36M

parameter DNN – a substantial reduction. For each increase

in DNN model size there is approximately a 10% absolute

increase in frame classification accuracy. Frame-level metrics

are further improved by using larger context windows. In all

cases a model trained with larger context window outperforms

its smaller context counterpart. Our best overall model in terms

of frame-level metrics is a 200M parameter DNN with context

window of ˘20 frames.

However, frame-level performance is not always a good

proxy for WER performance of a final system. We evaluate

WER on a subset of the training data as well as the final

evaluation sets. Large DNN acoustic models substantially

reduce WER on the training set. Indeed, our results suggest

that further training set WER reductions are possible by

continuing to increase DNN model size. However, the gains

we observe on the training set in WER do not translate to

large performance gains on the evaluation sets. While there

is a small benefit of using models larger than the 36M DNN

baseline size, building models larger than 100M parameters

does not prove beneficial for this task.

3) Discussion: To better understand the dynamics of train-

ing large DNN acoustic models, we plot training and eval-

uation WER performance during DNN training. Figure 4

shows WER performance for our 100M and 200M parameter

DNNs after each epoch of cross entropy training. We find

that training WER reduces fairly dramatically at first and

then continues to decrease at a slower but still meaningful

rate. In contrast, nearly all of our evaluation set performance

is realized within the first few epochs of training. This has

two important practical implications for large DNN training

for speech recognition. First, large acoustic models are not

beneficial but do not exhibit a strong over-fitting effect where

evaluation set performance improves for awhile before be-

coming increasingly worse. Second, it may be possible to

utilize large DNNs without prohibitively long training times

by utilizing our finding that most performance comes from

the first few epochs, even with models at our scale. Finally,

although increasing context window size improves all training

set metrics, those gains do not translate to improved test set

performance. It seems that increasing context window size

provides an easy path to better fitting the training function,

but does not result in the DNN learning a meaningful, gener-

alizable function.

B. Dropout Regularization

Dropout is a recently-introduced technique to prevent over-

fitting during DNN training [2]. The dropout technique ran-

domly masks out hidden unit activations during training, which

prevents co-adaptation of hidden units. For each example

observed during training, each unit has its activation set

to zero with probability p P r0, 0.5s. Several experiments

demonstrate dropout as a good regularization technique for

tasks in computer vision and natural language processing [57],

[66]. [23] found a reduction in WER when using dropout on a

10M parameter DNN acoustic model for a 50 hour broadcast

10

TABLE I
RESULTS FOR DNN SYSTEMS IN TERMS OF FRAME-WISE ERROR METRICS ON THE DEVELOPMENT SET AS WELL AS WORD ERROR RATES ON THE

TRAINING SET AND HUB5 2000 EVALUATION SETS. THE HUB5 SET (EV) CONTAINS THE SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION

SUBSETS. WE ALSO INCLUDE WORD ERROR RATES FOR THE FISHER CORPUS DEVELOPMENT SET (FSH) FOR CROSS-CORPUS COMPARISON.
FRAME-WISE ERROR METRICS WERE EVALUATED ON 1.7M FRAMES HELD OUT FROM THE TRAINING SET. DNN MODELS DIFFER ONLY BY THEIR TOTAL

NUMBER OF PARAMETERS. ALL DNNS HAVE 5 HIDDEN LAYERS WITH EITHER 2,048 HIDDEN UNITS (36M PARAMETERS), 3,953 HIDDEN UNITS (100M
PARAMETERS), OR 5,984 HIDDEN UNITS (200M PARAMS).

Model Size Layer Size Context Dev CrossEnt Dev Acc(%) Train WER SWBD WER CH WER EV WER

GMM Baseline N/A ˘0 N/A N/A 24.93 21.7 36.1 29.0

36M 2048 ˘10 1.23 66.20 17.52 15.1 27.1 21.2

100M 3953 ˘10 0.77 78.56 13.66 14.5 27.0 20.8
100M 3953 ˘20 0.50 85.58 12.31 14.9 27.7 21.4

200M 5984 ˘10 0.51 86.06 11.56 15.0 26.8 20.9
200M 5984 ˘20 0.26 93.05 10.09 15.4 28.5 22.0

0 2 4 6 8 10
10

15

20

25

30

Epoch

W
E

R

100M Test
200M Test
100M Train
200M Train

Fig. 4. Train and test set WER as a function of training epoch for systems
with DNN acoustic models of varying size. Each epoch is a single complete
pass through the training set. Although the training error rate is substantially
lower for large models, there is no gain in test set performance.

news LVCSR task. Dropout additionally yielded performance

gains for convolutional neural networks with less than 10M

parameters on both 50 and 400 hour broadcast news LVCSR

tasks [28]. While networks which employ dropout during

training were found effective in these studies, the authors

did not perform control experiments to measure the impact

of dropout alone. We directly compare a baseline DNN to

a DNN of the same architecture trained with dropout. This

experiment tests whether dropout regularization can mitigate

the poor generalization performance of large DNNs observed

in Section V-A.

1) Experiments: We train DNN acoustic models with

dropout to compare generalization WER performance against

that of the DNNs presented in Section V. The probability of

dropout p is a hyper-parameter of DNN training. In prelimi-

nary experiments we found setting p “ 0.1 to yield the best

generalization performance after evaluating several possible

values, p P t0.01, 0.1, 0.25, 0.5u. The DNNs presented with

dropout training otherwise follow our same training and eval-

uation protocol used thus far, and are built using the same

TABLE II
RESULTS FOR DNN SYSTEMS TRAINED WITH DROPOUT REGULARIZATION

(DO) AND EARLY REALIGNMENT (ER) TO IMPROVE GENERALIZATION

PERFORMANCE. WE BUILD MODELS WITH EARLY REALIGNMENT BY

STARTING REALIGNMENT AFTER EACH EPOCH STARTING AFTER EPOCH

TWO (ER2) AND EPOCH FIVE (ER5). WORD ERROR RATES ARE REPORTED

ON THE COMBINED HUB5 TEST SET (EV) WHICH CONTAINS

SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS.
DNN MODEL SIZES ARE SHOWN IN TERMS OF HIDDEN LAYER SIZE AND

MILLIONS OF TOTAL PARAMETERS (E.G. 100M)

Model SWBD CH EV

GMM Baseline 21.7 36.1 29.0

2048 Layer (36M) 15.1 27.1 21.2
2048 Layer (36M) DO 14.7 26.7 20.8

3953 Layer (100M) 14.7 26.7 20.7
3953 Layer (100M) DO 14.6 26.3 20.5
3953 Layer (100M) ER2 14.3 26.0 20.2
3953 Layer (100M) ER5 14.5 26.4 20.5

5984 Layer (200M) 15.0 26.9 21.0
5984 Layer (200M) DO 14.9 26.3 20.7

forced alignments from our baseline HMM-GMM system.

2) Results: Table II shows the test set performance of DNN

acoustic models of varying size trained with dropout. DNNs

trained with dropout improve over the baseline model for

all acoustic model sizes we evaluate. The improvement is a

consistent 0.2% to 0.4% reduction in absolute WER on the

test set. While beneficial, dropout seems insufficient to fully

harness the representational capacity of our largest models.

Additionally, we note that hyper-parameter selection was criti-

cal to finding any gain when using dropout. With a poor setting

of the dropout probability p preliminary experiments found no

gain and often worse results from training with dropout.

C. Early Stopping

Early stopping is a regularization technique for neural

networks which halts loss function optimization before com-

pletely converging to the lowest possible function value.

We evaluate early stopping as another standard DNN reg-

ularization technique which may improve the generalization

11

performance of large DNN acoustic models. Previous work by

[67] found that early stopping training of networks with large

capacity produces generalization performance on par with or

better than the generalization of a smaller network. Further,

this work found that, when using back-propagation for opti-

mization, early in training a large capacity network behaves

similarly to a smaller capacity network. Finally, early stopping

as a regularization technique is similar to an ℓ2 weight norm

penalty, another standard approach to regularization of neural

network training.

1) Results: By analyzing the training and test WER curves

in Figure 4 we can observe the best-case performance of an

early stopping approach to improving generalization. If we

select the lowest test set WER the system achieves during

DNN optimization, the 200M parameter DNN achieves 20.7%

WER on the EV subset – only 0.1% better than the 100M

parameter baseline DNN system. This early stopped 200M

model achieves only a 0.5% absolute WER reduction over the

much smaller 36M parameter DNN. This suggests that early

stopping is beneficial, but perhaps insufficient to yield the full

possible benefits of large DNN acoustic models.

D. Early Realignment

We next introduce a potential regularization technique

which leverages the process by which training labels are

created for DNN acoustic model training. Acoustic model

training data is labeled via a forced alignment of the word-

level transcriptions. We test whether re-labeling the training

data during training using the partially-trained DNN leads to

improved generalization performance.

Each short acoustic span xi has an associated HMM state

label yi to form a supervised learning problem for DNN

training. Recall that the labels y are generated by a forced

alignment of the word-level ground truth labels w to the

acoustic signal x. This forced alignment uses an existing

LVCSR system to generate a labeling y consistent with the

word-level transcription w. The system used to generate the

forced alignment is, of course, imperfect, as is the overall

speech recognition framework’s ability to account for vari-

ations in pronunciation. This leads to a dataset D where

supervised training pairs pxi, yiq P D contain labels y which

are imperfect. We can consider a label yi as a corrupted version

of the true label y˚
i . The corruption function which maps

y˚
i to yi is difficult to specify and certainly not independent

nor identically distributed at the level of individual samples.

Such a complex corruption function is difficult to analyze

or address with standard machine learning techniques for

label noise. We hypothesize, however, that the noisy labels

y are sufficiently correct as to make significantly corrupted

labels appear as outliers with respect to the true labels y˚.

Under this assumption we outline an approach to improving

generalization based on the dynamics of DNN performance

during training optimization.

Neural networks exhibit interesting dynamics during opti-

mization. Work on early stopping found that networks with

high capacity exhibit behavior similar to smaller, limited

capacity networks in early phases of optimization [67]. Com-

bining this finding with the generally smooth functional form

of DNN hidden and output units suggests that early in training

a large capacity DNN may fit a smooth output function which

ignores some of the label noise in y. Of course, a large

enough DNN should completely fit the corruptions present in

y as optimization converges. Studies on the learning dynamics

of DNNs for hierarchical categorization tasks additionally

suggest that coarse, high-level output classes are fit first during

training optimization [68].

Realignment, or generating a new forced alignment using

an improved acoustic model, is a standard tool for LVCSR

system training. Baseline LVCSR systems using GMM acous-

tic models realign several times during training to iteratively

improve. While iterative realignments have been helpful in

improving system performance in single-layer ANN-HMM

hybrid models [5], realignment is typically not used with

large DNN acoustic models because of the long training times

of DNNs. However, realignment using a fully trained DNN

acoustic model often can produce a small reduction in final

system WER [2].

We evaluate early realignment which generates a new forced

alignment early in DNN optimization and then continues

training on the new set of labels. Because large capacity DNNs

begin accurately predicting labels much earlier in training,

early realignment may save days of training time. Further, we

hypothesize that a less fully converged network can remove

some label distortions while a more completely trained DNN

may already be fitting to the corrupt labels given by an

imperfect alignment.

1) Experiments: We begin by training an initial DNN using

the same HMM-GMM forced alignments and non-regularized

training procedures presented thus far. After training the DNN

using the initial HMM-GMM alignments for a fixed number

of epochs, we use our new HMM-DNN system to generate a

new forced alignment for the entire training set. DNN training

then proceeds using the same DNN weights but the newly-

generated training set labels. As in our other regularization

experiments, we hold the rest of our DNN training and

evaluation procedures fixed to directly measure the impact

of early realignment training. We train 100M parameter five

hidden layer DNNs and build models by realigning after either

two or five epochs.

In preliminary experiments we found that realignment after

each epoch was too disruptive to DNN training and resulted

in low quality DNN models. Similarly, we found that starting

from a fresh, randomly initialized DNN after realignment per-

formed worse than continuing training from the DNN weights

used to generate the realignment. We found it important to

reset the stochastic gradient learning rate to its initial value

after realignment occurs. Without doing so, our annealing

schedule sets the learning rate too low for the optimization

procedure to fully adjust to the newly-introduced labels. In

a control experiment, we found that resetting the learning

rate alone, without realignment, does not improve system

performance.

2) Results: Table II compares the final test set performance

of DNNs trained with early realignment to a baseline model

as well as DNNs trained with dropout regularization. Realign-

ment after five epochs is beneficial compared to the baseline

12

0 2 4 6 8 10
10

15

20

25

30

Epoch

W
E

R

Baseline Test
Realign Test
Baseline Train
Realign Train

Fig. 5. WER as a function of DNN training epoch for systems with DNN
acoustic models trained with and without label realignment after epoch 2.
A DNN which re-generates its training labels with a forced alignment early
during optimization generalizes much better to test data than a DNN which
converges to the original labels.

DNN system, but slightly worse than a system which realigns

after two epochs of training. Early realignment leads to better

WER performance than all models we evaluated trained with

dropout and early stopping. This makes early realignment

the overall best regularization technique we evaluated on the

Switchboard corpus. We note that only early realignment

outperforms dropout regularization – a DNN trained with

realignment after five epochs performs comparably to a DNN

of the same size trained with dropout.

3) Discussion: Figure 5 shows training and test WER

curves for 100M parameter DNN acoustic models trained with

early realignment and a baseline DNN with no realignment.

We note that just after realignment both train and test WER

increase briefly. This is not surprising as realignment substan-

tially changes the distribution of training examples. The DNN

trained with realignment trains for three epochs following

realignment before it begins to outperform the baseline DNN

system.

We can quantify how much the labeling from realignment

differs from the original labeling by computing the fraction

of labels changed. In early realignment 16.4% of labels are

changed by realignment while only 10% of labels are changed

when we realign with the DNN trained for five epochs.

This finding matches our intuition that as a large capacity

DNN trains it converges to fit the corrupted training samples

extremely well. Thus when we realign the training data with

a fully trained large capacity DNN the previously observed

labels are reproduced nearly perfectly. Realigning with a

DNN earlier in optimization mimics realigning with a higher

bias model which relabels the training set with a smoother

approximate function. Taken together, our results suggest early

realignment leverages the high bias characteristics of the initial

phases of DNN training to reduce WER while requiring

minimal additional training time.

Early realignment also shows a huge benefit to training

time compared to traditional realignment. The DNN trained

with realignment after epoch five must train an additional

three epochs, for a total of eight, before it can match the

performance of a DNN trained with early realignment. For

DNNs of the scale we use, this translates to several days of

compute time. The training time and WER reduction of DNNs

with early realignment comes with a cost of implementing and

performing realignment, which is of course not a standard

DNN training technique. Realignment requires specializing

DNN training to the speech recognition domain, but any

modern LVCSR system should already contain infrastructure

to generate a forced alignment from an HMM-DNN system.

Overall, we conclude that early realignment is an effective

technique to improve performance of DNN acoustic models

with minimal additional training time.

VI. COMPARING DNNS, DCNNS, AND DLUNNS ON

SWITCHBOARD

The experiments thus far modify DNN training by adding

various forms of regularization. We now experiment with

alternative neural network architectures – deep convolutional

neural networks (DCNNs) and deep local untied neural net-

works (DLUNNs).

A. Experiments

We trained DCNN and DLUNN acoustic models using the

same Switchboard training data as used for our DNN acoustic

model experiments to facilitate direct comparisons across

architectures. We evaluate filter bank features in addition to

the fMLLR features used in DNN training because filter bank

features have meaningful spectro-temporal dimensions for

local receptive field computations. All models have five hidden

layers and were trained using Nesterov’s accelerated gradient

with a smoothly increasing momentum schedule capped at

0.95 and a step size of 0.01, halving the step size after each

epoch.

For our DCNN and DLUNN acoustic models we chose a

receptive field of 9 ˆ 9 and non-overlapping pooling regions

of dimension 1ˆ3 (time by frequency). Our models with two

convolutional layers have the same first layer filter and pooling

sizes. The second layer uses a filter size of 3 ˆ 3 and does

not use pooling. These parameters were selected using results

from preliminary experiments as well as results from previous

work [28].

In the DCNNs one convolutional layer was used followed

by four densely connected layers with equal number of hidden

units, and similarly for the DLUNNs. Map depth and number

of hidden units were selected such at all models have approx-

imately 36M parameters. For DCNNs, the convolutional first

layer has a map depth of 128 applied to an input with ˘10

frame context. The following dense hidden layers each have

1,240 hidden units. Our 2 convolutional layer DCNN uses 128

feature maps in both convolutional layers and 3 dense layers

with 1,240 hidden units each. All DLUNNs use 108 filters at

each location in the first layer, and 4 hidden layers each with

1,240 hidden units.

The filter bank and fMLLR features are both 40-

dimensional. We ran initial experiments convolving filters

13

TABLE III
PERFORMANCE COMPARISON OF DNNS, DEEP CONVOLUTIONAL NEURAL NETWORKS (DCNNS), AND DEEP LOCAL UNTIED NEURAL NETWORKS

(DLUNNS). WE EVALUATE CONVOLUTIONAL MODELS WITH ONE LAYER OF CONVOLUTION (DCNN) AND TWO LAYERS OF CONVOLUTION (DCNN2).
WE COMPARE MODELS TRAINED WITH FMLLR FEATURES AND FILTER BANK (FBANK) FEATURES. NOTE THAT A CONTEXT WINDOW OF FMLLR

FEATURES HAS A TEMPORAL DIMENSION BUT NO MEANINGFUL FREQUENCY DIMENSION WHEREAS FBANK FEATURES HAVE MEANINGFUL

TIME-FREQUENCY AXES. AS AN ADDITIONAL CONTROL WE TRAIN A DCNN ON FEATURES WHICH ARE RANDOMLY PERMUTED TO REMOVE

MEANINGFUL COHERENCE IN BOTH THE TIME AND FREQUENCY AXES (FBANK-P AND FMLLR-P). WE REPORT PERFORMANCE ON BOTH THE HUB5
EVAL2000 TEST SET (EV) WHICH CONTAINS SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS.

Model Features Acc(%) SWBD WER CH WER EV WER

GMM fMLLR N/A 21.7 36.1 29.0

DNN fMLLR 60.8 14.9 27.4 21.2
DNN FBank 51.7 16.5 31.6 24.1

DCNN fMLLR 59.3 15.8 28.3 22.0
DCNN FBank 53.0 15.8 28.7 22.3

DCNN fMLLR-P 59.0 15.9 28.6 22.4
DCNN FBank-P 50.7 17.2 32.1 24.7

DCNN2 fMLLR 58.8 15.9 28.3 22.2
DCNN2 FBank 53.0 15.6 28.3 22.1

DLUNN fMLLR 61.2 15.2 27.4 21.3
DLUNN FBank 53.0 16.1 29.3 22.8

along frequency only, pooling along both frequency and time,

and overlapping pooling regions, but did not find that these

settings gave better performance. We ran experiments with a

context window of ˘20 frames but found results to be worse

than results obtained with a context window of ˘10 frames,

so we report only the ˘10 frame context results.

B. Results

Table III shows the frame-level and final system perfor-

mance results for acoustic models built from DNNs, DCNNs,

and DLUNNs. When using filter bank features, DCNNs and

DLUNNs both achieve improvements over DNNs. DCNN

models narrowly outperform DLUNN models. For locally

connected acoustic models it appears that the constraint of tied

weights in convolutional models is advantageous as compared

to allowing a different set of localized receptive fields to be

learned at different time-frequency regions of the input.

DLUNNs outperform DCNNs in experiments with fMLLR

features. Indeed, the DLUNN performs about as well as the

DNN. The DCNN is harmed by the lack of meaningful rela-

tionships along the frequency dimension of the input features,

whereas the more flexible architecture of the DLUNN is able

to learn useful first layer parameters. We also note that our

fMLLR features yield much better performance for all models

as compared with models trained on filter bank features.

In order to examine how much benefit using DCNNs to

leverage local correlations in the acoustic signal yields, we

ran control experiments with filter bank features randomly

permuted along both the frequency and time axes. The results

show that while this harms performance the convolutional

architecture can still obtain fairly competitive word error

rates. This control experiment confirms that locally connected

models do indeed leverage localized properties of the input

features to achieve improved performance.

C. Discussion

While DCNN and DLUNN models are promising as com-

pared to DNN models on filter bank features, our results with

filter bank features are overall worse than results from models

utilizing fMLLR features.

Note that the filter bank features we used are fairly simple

as compared to our fMLLR features as the filter bank features

do not contain significant post-processing for speaker adapta-

tion. While performing such feature transformations may give

improved performance, they call into question the initial moti-

vation for using DCNNs to automatically discover invariance

to gender, speaker and time-frequency distortions. The fMLLR

features we compare against include much higher amounts

of specialized post-processing, which appears beneficial for

all neural network architectures we evaluated. This confirms

recent results from previous work, which found that DCNNs

alone are not typically superior to DNNs but can complement

a DNN acoustic model when both are used together, or achieve

competitive results when increased amounts of post-processing

are applied to filter bank features [29]. In summary, we con-

clude that DCNNs and DLUNNs are not sufficient to replace

DNNs as a default, reliable choice for acoustic modeling

network architecture. We additionally conclude that DLUNNs

warrant further investigation as alternatives to DCNNs for

acoustic modeling tasks.

VII. COMBINED LARGE CORPUS

On the Switchboard 300 hour corpus we observed limited

benefits from increasing DNN model size for acoustic model-

ing, even with a variety of techniques to improve generaliza-

tion performance. We next explore DNN performance using

a substantially larger training corpus. This set of experiments

explores how we expect DNN acoustic models to behave when

training set size is not a limiting factor. In this setting, over-

fitting with large DNNs should be less of a problem and we can

14

more thoroughly explore architecture choices in large DNNs

rather than regularization techniques to reduce over-fitting and

improve generalization with a small training corpus.

A. Baseline HMM system

To maximize the amount of training data for a conversa-

tional speech transcription task, we combine the Switchboard

corpus with the larger Fisher corpus [69]. The Fisher corpus

contains approximately 2,000 hours of training data, but has

transcriptions which are slightly less accurate than those of

the Switchboard corpus.

Our baseline GMM acoustic model was trained on features

that are obtained by splicing together 7 frames (3 on each side

of the current frame) of 13-dimensional MFCCs (C0-C12) and

projecting down to 40 dimensions using linear discriminant

analysis (LDA). The MFCCs are normalized to have zero mean

per speaker2. After obtaining the features with LDA, we also

use a single semi-tied covariance (STC) transform on the fea-

tures. Moreover, speaker adaptive training (SAT) is done using

a single feature-space maximum likelihood linear regression

(fMLLR) transform estimated per speaker. The models trained

on the full combined Fisher+Switchboard training set contain

8725 tied triphone states and 3.2M Gaussians.

The language model in our baseline system is trained on

the combination of the Fisher transcripts and the Switchboard

Mississippi State transcripts. Kneser-Ney smoothing was ap-

plied to fine-tune the back-off probabilities to minimize the

perplexity on a held out set of 10K transcript sentences from

Fisher transcripts. In preliminary experiments we interpolated

the transcript-derived language model with a language model

built from a large collection of web page text, but found no

gains as compared with using the transcript-derived language

model alone.

We use two evaluation sets for all experiments on this

corpus. First, we use the same Hub5’00 (Eval2000) corpus

used to evaluate systems on the Switchboard 300hr task. This

evaluation set serves as a reference point to compare systems

built on our combined corpus to those trained on Switchboard

alone. Second, we use the RT-03 evaluation set which is

more frequently used in the literature to evaluate Fisher-trained

systems. Performance of the baseline HMM-GMM system is

shown in Table IV and Table V. 3

B. Optimization Algorithm Choice

To avoid exhaustively searching over all DNN architecture

and training parameters simultaneously, we first establish the

impact of optimization algorithm choice while holding the

DNN architecture fixed. We train networks with the two

optimization algorithms described in Section IV-E to deter-

mine which optimization algorithm to use in the rest of the

experiments on this corpus.

2This is done strictly for each individual speaker with our commit r4258 to
the Kaldi recognizer. We found this to work slightly better than normalizing
on a per conversation-side basis.

3The implementation of our baseline HMM-GMM system is available in the
Kaldi project repository as example recipe fisher_swbd (revision: r4340).

1) Experiments: We train several DNNs with five hidden

layers, where each layer has 2,048 hidden units. This results

in DNNs with roughly 36M total free parameters, which is

a typical size for acoustic models used for conversational

speech transcription in the research literature. For both the

classical momentum and Nesterov’s accelerated gradient op-

timization techniques the two key hyper-parameters are the

initial learning rate ǫ and the maximum momentum µmax. In

all cases we decrease the learning rate by a factor of 2 every

200,000 iterations. This learning rate annealing was chosen

after preliminary experiments, and overall performance does

not appear to be significantly affected by annealing schedule.

It is more common to anneal the learning rate after each

pass through the dataset. Because our dataset is quite large

we found that annealing only after each epoch leads to much

slower convergence to a good optimization solution.

2) Results: Table IV shows both WER performance and

classification accuracy of DNN-based ASR systems with vari-

ous optimization algorithm settings. We first evaluate the effect

of optimization algorithm choice. We evaluated DNNs with

µmax P 0.9, 0.95, 0.99 and ǫ P t0.1, 0.01, 0.001u. For both

optimization algorithms DNNs achieve the best performance

by setting µmax “ 0.99 and ǫ “ 0.01.

In terms of frame level accuracy the NAG optimizer nar-

rowly outperforms the CM optimizer, but WER performance

across all evaluation sets are nearly identical. For both op-

timization algorithms a high value of µmax is important for

good performance. Note most previous work in hybrid acoustic

models use CM with µmax “ 0.90, which does not appear to

be optimal in our experiments. We also found that a larger

initial learning rate was beneficial. We ran experiments using

ǫ ě 0.05 but do not report results because the DNNs diverged

during the optimization process. Similarly, all models trained

with ǫ “ 0.001 had WER more than 1% absolute higher on

the EV test set as compared to the same architecture trained

with ǫ “ 0.01. We thus omit the results for models trained

with ǫ “ 0.001 from our results table.

For the remainder of our experiments we use the NAG

optimizer with µmax “ 0.99 and ǫ “ 0.01. These settings

achieve the best performance overall in our initial experiments,

and generally we have found the NAG optimizer to be some-

what more robust than the CM optimizer in producing good

parameter solutions.

C. Scaling Total Number of DNN Parameters

We next evaluate the performance of DNNs as a function of

the total number of model parameters while keeping network

depth and optimization parameters fixed. This approach di-

rectly assesses the hypothesis of improving performance as

a function of model size when there is sufficient training

data available. We train DNNs with 5 hidden layers, and

keep the number of hidden units constant across each hid-

den layer. Varying total free parameters thus corresponds to

adding hidden units to each hidden layer. Table V shows the

frame classification and WER performance of 5 hidden layer

DNNs containing 36M, 100M, 200M, and 400M total free

parameters. Because it can be difficult to exactly reproduce

15

TABLE IV
RESULTS FOR DNNS OF THE SAME ARCHITECTURE TRAINED WITH VARYING OPTIMIZATION ALGORITHMS. PRIMARILY WE COMPARE STOCHASTIC

GRADIENT USING CLASSICAL MOMENTUM (CM) AND NESTEROV’S ACCELERATED GRADIENT (NAG). WE ADDITIONALLY EVALUATE MULTIPLE

SETTINGS FOR THE MAXIMUM MOMENTUM (µmax). THE TABLE CONTAINS RESULTS FOR ONLY ONE LEARNING RATE (ǫ “ 0.01) SINCE IT PRODUCES

THE BEST PERFORMANCE FOR ALL SETTINGS OF OPTIMIZATION ALGORITHM AND MOMENTUM. WE REPORT PERFORMANCE ON BOTH THE HUB5
EVAL2000 TEST SET (EV) WHICH CONTAINS SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS. WE ALSO EVALUATE

PERFORMANCE ON THE RT03 (RT03) SWITCHBOARD TEST SET FOR COMPARISON WITH FISHER CORPUS SYSTEMS.

Optimizer µmax Acc(%) SWBD WER CH WER EV WER RT03 WER

GMM N/A N/A 21.9 31.9 26.9 39.5

CM 0.90 52.51 18.3 27.3 22.8 39.0
CM 0.95 54.20 17.1 25.6 21.4 38.1
CM 0.99 55.26 16.3 24.8 20.6 37.5

NAG 0.90 53.18 18.0 26.7 22.3 38.5
NAG 0.95 54.27 17.2 25.8 21.5 39.6
NAG 0.99 55.39 16.3 24.7 20.6 37.4

DNN optimization procedures, we make our DNN training

code available online 4. Our DNN training code comprises

only about 300 lines of Python code in total, which should

facilitate easy comparison to other DNN training frameworks.

Overall, the 400M parameter model performs best in terms

of both frame classification and WER across all evaluation

sets. Unlike with our smaller Switchboard training corpus

experiments, increasing DNN model size does not lead to

significant over-fitting problems in WER. However, the gain

from increasing model size from 36M to 400M, more than a

10x increase, is somewhat limited. On the Eval2000 evaluation

set we observe a 3.8% relative gain in WER from the 100M

DNN as compared to the 36M DNN. When moving from the

100M DNN to the 200M DNN there is relative WER gain of

2.5%. Finally the model size increase from 200M to 400M

total parameters yields a relative WER gain of 1%. There are

clearly diminishing returns as we increase model size. The

trend of diminishing relative gains in WER also occurs on the

RT03 evaluation set, although relative gains on this evaluation

set are somewhat smaller overall.

Frame classification rates on this corpus are much lower

overall as compared with our Switchboard corpus DNNs. We

believe this corpus is more challenging due to more overall

acoustic variation, and errors induced by quick transcriptions.

Even our largest DNN leaves room for improvement in terms

of frame classification. In Section VIII we explore more

thoroughly the frame classification performance of the DNNs

presented here.

D. Number of Hidden Layers

We next compare performance of DNN systems while

keeping total model size fixed and varying the number of

hidden layers in the DNN. The optimal architecture for a

neural network may change as the total number of model

parameters changes. There is no a priori reason to believe that

5 hidden layers is optimal for all model sizes. Furthermore,

there are no good general heuristics to select the number of

hidden layers for a particular task. Table V shows DNN system

4For DNN training code, see <upon acceptance>

performance for DNNs with 1, 3, 5, and 7 hidden layers for

DNNs of at multiple total parameter counts.

The most striking distinction in terms of both frame clas-

sification and WER is the performance gain of deep models

versus those with a single hidden layer. Single hidden layer

models perform much worse than DNNs with 3 hidden layers

or more. Among deep models there are much smaller gains

as a function of depth. Models with 5 hidden layers show

a clear gain over those with 3 hidden layers, but there is

little to no gain from a 7 hidden layer model when compared

with a 5 hidden layer model. These results suggest that for

this task 5 hidden layers may be deep enough to achieve

good performance, but that DNN depth taken further does not

increase performance. It’s also interesting to note that DNN

depth has a much larger impact on performance than total

DNN size. For this task, it is much more important to select

an appropriate number of hidden layers than it is to choose an

appropriate total model size.

For each total model size there is a slight decrease in frame

classification in 7 layer DNNs as compared with 5 hidden layer

DNNs. This trend of decreasing frame-level performance is

also present in the training set, which suggests that as networks

become very deep it is more difficult to minimize the training

objective function. This is evidence for a potential confounding

factor when building DNNs. In theory deeper DNNs should

be able to model more complex functions than their shallower

counterparts, but in practice we found that depth can act as

a regularizer due to the difficulties in optimizing very deep

models.

VIII. WER AND FRAME CLASSIFICATION ERROR

ANALYSIS

We now decompose our task performance metrics of frame

classification accuracy and WER into their constituent compo-

nents to gain a deeper understanding of how models compare

to one another. This analysis attempts to uncover differences

in models which achieve similar aggregate performance. For

example, two systems which have the same final WER may

have different rates of substitutions, deletions, and insertions

– the constituent components of the WER metric.

16

TABLE V
RESULTS FOR DNNS OF VARYING TOTAL MODEL SIZE AND DNN DEPTH. WE REPORT PERFORMANCE ON BOTH THE HUB5 EVAL2000 TEST SET (EV)

WHICH CONTAINS SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS. WE ALSO EVALUATE PERFORMANCE ON THE RT03 (RT03)
SWITCHBOARD TEST SET FOR COMPARISON WITH FISHER CORPUS SYSTEMS. WE ADDITIONALLY REPORT FRAME-LEVEL CLASSIFICATION ACCURACY

(ACC) ON A HELD OUT TEST SET TO COMPARE DNNS AS CLASSIFIERS INDEPENDENT OF THE HMM DECODER.

Params Nun. Layers Layer Size Acc(%) SWBD WER CH WER EV WER RT03 WER

GMM N/A N/A N/A 21.9 31.9 26.9 39.5

36M 1 3803 49.38 21.0 30.4 25.8 43.2
36M 3 2480 54.78 17.0 25.8 21.4 38.2
36M 5 2048 55.37 16.2 24.7 20.6 37.4
36M 7 1797 54.99 16.3 24.7 20.7 37.3

100M 1 10454 50.82 19.8 29.1 24.6 42.4
100M 3 4940 56.02 16.3 24.8 20.6 37.3
100M 5 3870 56.62 15.8 23.8 19.8 36.7
100M 7 3309 56.59 15.7 23.8 19.8 36.4

200M 1 20907 51.29 19.6 28.7 24.3 42.8
200M 3 7739 56.58 16.0 24.0 20.1 37.0
200M 5 5893 57.36 15.3 23.1 19.3 36.0
200M 7 4974 57.28 15.3 23.3 19.3 36.2

400M 5 8876 57.70 15.0 23.0 19.1 35.9

Figure 6 shows decomposed WER performance of HMM-

DNN systems of varying DNN size. Each HMM-DNN system

uses a DNN with 5 hidden layers, these are the same HMM-

DNN systems reported in Table V. We see that decreases in

overall WER as a function of DNN model size are largely

driven by lower substitution rates. Insertions and deletions

remain relatively constant across systems, and are generally

the smaller components of overall WER. Decreased substi-

tution rates should be a fairly direct result of improving

acoustic model quality as the system becomes more confident

in matching audio features to senones. While the three WER

sub-components are linked, it is possible that insertions and

deletions are more an artifact of other system shortcomings

such as out of vocabulary words (OOVs) or a pronunciation

dictionary which does not adequately capture pronunciation

variations.

We next analyze performance in terms of frame-level clas-

sification grouped by phoneme. When understanding senone

classification we can think of the possible senone labels as

leaves from a set of trees. Each phoneme acts as the root of

a different tree, and the leaves of a tree correspond to the

senones associated with a the tree’s base phoneme.

Figure 7 shows classification percentages of senones

grouped by their base phoneme. The DNNs analyzed are the

same 5 hidden layer models presented in our WER analysis of

Figure 6 and Table V. The total height of each bar reflects its

percentage of occurrence in our data. Each bar is then broken

into three components – correct classifications, errors within

the same base phoneme, and errors outside the base phoneme.

Errors within the base phoneme correspond the examples

where the true label is a senone from a particular base phone,

e.g. ah, but the network predicts an incorrect senone label also

rooted in ah. The other type of error possible is predicting a

senone from a different base phoneme. Together these three

categories, correct, same base phone, and different base phone,

Sub Del Ins WER
0

5

10

15

20

25

36M
100M
200M
400M

Fig. 6. Eval2000 WER of 5 hidden layer DNN systems of varying
total parameter count. WER is broken into its sub-components – insertions,
substitutions, and deletions.

additively combine to form the total set of senone examples

for a given base phone.

The rate of correct classifications is non-decreasing as a

function of DNN model size for each base phoneme. The

overall increasing accuracy of larger DNNs comes from small

correctness increases spread across many base phonemes.

Across phonemes we see substantial differences in within-

base-phoneme versus out-of-base-phoneme error rates. For

example, the vowel iy has a higher rate of within-base-

phoneme errors as compared to the fairly similar vowel ih.

Similarly, the consonants m, k, and d have varying rates of

within-base versus out-of-base errors despite having similar

total rates of base phoneme occurrence in the data. We

note that our DNNs generally exhibit similar error patterns

17

ah t n iy ih ay s ow uw r l m d k ey ae z er y eh w dh ao f aa p b hh v ng aw g th sh jh ch uh oy zh
0

1

2

3

4

5

6

7

P
er

ce
nt

ag
e

Correct
Same center phone
Different center phone

Fig. 7. Senone accuracy of 5 hidden layer DNN systems of varying total parameter count. Accuracy is grouped by base phone and we report the percentage
correct, mis-classifications which chose a senone of the same base phone, and mis-classifications which chose a senone of a different base phone. The total
size of the combined bar indicates the occurrence rate of the base phone in our data set. Each base phone has five bars, each representing the performance
of a different five layer DNN. The bars show performance of DNNs of size 36M 100M 200M and 400M from left to right. We do not show the non-speech
categories of silence, laughter, noise, or OOV which comprise over 20% of frames sampled.

to those observed with DNN acoustic models on smaller

corpora [70]. However, due to the challenging nature of our

corpus we observe overall lower phone accuracies than those

found in previous work. Performance as a function of model

size appears to change gradually and fairly uniformly across

phonemes, rather than larger models improving upon only

specific phonemes, perhaps at the expense of performance on

others.

IX. ANALYZING CODING PROPERTIES

Our experiments so far focus on task performance at varying

levels of granularity. These metrics address the question of

what DNNs are capable of doing as classifiers and when in-

tegrated with HMM speech decoding infrastructure. However,

we have not yet completely addressed the question of how

various DNN architectures achieve their various levels of task

performance. While the DNN computation equations presented

in Section IV describe the algorithmic steps necessary to

compute predictions, there are many possible settings of the

free parameters in a model. In this section we offer a descrip-

tive analysis of how our trained DNNs encode information.

This analysis aims to uncover quantifiable differences in how

models of various sizes and depths encode input data and

transform it to make a final prediction.

A. Sparsity and Dispersion

Our first analysis focuses on the sparsity patterns of units

with each hidden layer of a DNN. We compute the empirical

lifetime sparsity of each hidden unit by forward propagating

a set of 512,000 examples through the DNN. We consider a

unit as a active when its output is non-zero, and compute

the fraction of examples for which a unit is active as its

lifetime activation probability. This value gives the empirical

probability that a particular unit will activate given a random

input drawn from our sample distribution. For each hidden

layer of a network, we can plot all hidden units’ lifetime

activation probabilities sorted in decreasing order to get a sense

for the distribution of activation probabilities within a layer.

This plotting technique, sometimes called a scree plot, helps

us understand how information coding is distributed across

units in a hidden layer. Figure 8 shows a set of scree plots for

5 hidden layer DNNs of varying total model size.

From a coding theory perspective, researchers often discuss

DNNs as learning efficient codes which are both sparse and

dispersed. Sparsity generally refers to relatively few hidden

units in a hidden layer being active in response to an input.

Sparsity is efficient and seems natural given modern DNN

structures in which hidden layer size is often much larger than

input vector dimensionality. Dispersion refers to units within a

hidden layer equally sharing responsibility for coding inputs.

A representation with perfect dispersion would appear flat in a

scree plot. A scree plot also visualizes sparsity as the average

height of representation units on the y axis.

Generally we see that in all model sizes sparsity increases in

deeper layers of the DNN. The first hidden layer is noticeably

more active on average as compared with every other layer in

the DNN, in most cases by almost a factor of two. Beyond the

first layer, activation probability per layer decreases slightly as

we look at deeper layers of the DNN. The changes in activation

probability per layer within deeper hidden layers are fairly

minor, which suggest that a representation is transformed but

not continually compressed.

Dispersion is similar within layers of a particular DNN size.

18

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Fig. 8. Empirical activation probability of hidden units in each hidden layer layer of 5 hidden layer DNNs. Hidden units (x axis) are sorted by their probability
of activation. We consider any positive value as active (hpxq ą 0). Each sub-figure corresponds to a different model size of 36M, 100M, and 200M total
parameters from left to right.

Generally the representations appear fairly disperse, with a

mostly flat curve for each hidden layer and only a few units

which are on or off for a large percentage of inputs at each tail.

There does appear to be a slight trend of increasing dispersion

in deeper layers of the DNN, especially in larger models.

Most importantly, we do not observe a significant set of

permanently inactive units as DNNs grow in total number of

parameters. In larger DNNs the representation remains fairly

disperse, with only a small set of units which are active for less

than 1% of inputs. This is an important metric because adding

more parameters to a DNN is only useful in so far as those

parameters are actually used in encoding and transforming

inputs.

Given the task performance differences observed as a

function of DNN depth for a fixed number of total DNN

parameters, we also compare scree plots as a function of DNN

depth to better understand their coding properties. Figure 9

shows scree plots for DNNs with 1, 3, 5, and 7 hidden layers

for DNNs of total size 36M, 100M, and 200M. We observe

a general trend of average activation probability decreasing in

subsequent hidden layers of DNNs at each size. This is not

true, however, for models with 7 hidden layers, which have

slightly less sparse activations on average in layers 6 and 7

as compared to layer 5. As we compare models across total

model size we find that larger models are more sparse than

smaller models. Larger models also tend to be slightly more

dispersed on average compared with smaller models.

B. Code Length

Our sparsity and dispersion metrics serve as indicators

for how hidden units within each layer behave. We now

focus on code length, which analyzes each hidden layer as

a transformed representation of the input rather than focusing

on individual units with each hidden layer. For a given input

we compute the number of non-zero hidden unit activations in

a hidden layer. We can then compute the average code length

for each hidden layer over a large sample of inputs from our

dataset. Figure 10 shows average code length for each hidden

layer of DNNs of varying depth and total size.

As we compare code length across models of varying total

parameter size, we see that larger DNNs use more hidden

units per layer to encode information at each hidden layer.

This trend is especially evident in the first hidden layer, where

100M parameter models use nearly twice the code length as

compared to 36M models. In deeper layers, we again observe

that models with more parameters have greater code length.

It is unclear to what extend the longer codes are capturing

more information about an input, which in turn should en-

able greater classification accuracy, versus redundancy where

multiple hidden units encode overlapping information.

Code length in deeper versus more shallow models of the

same total size exhibit an interesting trend. DNNs of increasing

depth show a generally decreasing or constant code length

per layer, except in the case of our 7 hidden layer DNNs.

In 7 hidden layer DNNs, the deepest models we trained, code

length decreases until it reaches a minimum at layer 5, but then

increases in layers 6 and 7. This trend is evident in models

of 36M, 100M, and 200M total parameters. We note that this

trend of decreasing code length followed by increasing code

length is correlated with the lack of improvement of 7 hidden

layer models as compared to 5 hidden layer models. More

experiments are needed to establish whether code length in

deeper models is more generally correlated to diminishing task

performance.

X. CONCLUSION

The multi-step process of building neural network acoustic

models comprises a large design space with a broad range

of previous work. Our work sought to address which of the

most fundamental DNN design decisions are most relevant

for final ASR system performance. We found that increasing

model size and depth are simple but effective ways to improve

19

WER performance, but only up to a certain point. For the

Switchboard corpus, we found that regularization can im-

prove the performance of large DNNs which otherwise suffer

from overfitting problems. However, a much larger gain was

achieved by utilizing the combined 2,100hr training corpus as

opposed to applying regularization with less training data.

Our experiments suggest that the DNN architecture is quite

competitive with specialized architectures such as DCNNs and

DLUNNs. The DNN architecture outperformed other archi-

tecture variants in both frame classification and final system

WER. While previous work has used more specialized features

with locally connected models, we note that DNNs enjoy

the benefit of making no assumptions about input features

having meaningful time or frequency properties. This enables

us to build DNNs on whatever features we choose, rather than

ensuring our features match the assumptions of our neural net-

work. We found that DLUNNs performed slightly better and

DCNNs, and may be an interesting approach for specialized

acoustic modeling tasks. For example, locally untied models

may work well for robust or reverberant recognition tasks

where particular frequency ranges experience interference or

distortion.

We trained DNN acoustic models with up to 400M pa-

rameters and 7 hidden layers, comprising some of the largest

models evaluated to date for acoustic modeling. When trained

with the simple NAG optimization procedure, these large

DNNs achieved clear gains on both frame classification and

WER when the training corpus was large. An analysis of

performance and coding properties revealed a fairly gradual

change in DNN properties as we move from smaller to larger

models, rather than finding some phase transition where large

models begin to encode information differently from smaller

models. Overall, total network size, not depth, was the most

critical factor we found in our experiments. Depth is certainly

important with regards to having more than one hidden layer,

but differences among DNNs with multiple hidden layers

were fairly small with regards to all metrics we evaluated.

At a certain point it appears that increasing DNN depth

yields no performance gains, and may indeed start to harm

performance. When applying DNN acoustic models to new

tasks it appears sufficient to use a fixed optimization algorithm,

we suggest NAG, and cross-validate over total network size

using a DNN of at least three hidden layers, but no more than

five. Based on our results, this procedure should instantiate

a reasonably strong baseline system for further experiments,

by modifying whatever components of the acoustic model

building procedure researchers choose to explore.

Finally, we note that a driving factor in the uncertainty

around DNN acoustic model research stems from training

the acoustic model in isolation from the rest of the larger

ASR system. All models trained in this paper used the cross

entropy criterion, and did not perform as well as DNNs

trained with discriminative loss functions in previous work.

We hypothesize that large DNNs will become increasingly

useful as researchers invent loss functions which entrust larger

components of the ASR task to the neural network. This allows

the DNN to utilize its function fitting capacity to do more than

simply map acoustic inputs to HMM states.

We believe a better understanding of task performance

and coding properties can guide research on new, improved

DNN architectures and loss functions. We trained DNNs

using approximately 300 lines of Python code, demonstrating

the feasibility of fairly simple architectures and optimization

procedures to achieve good system performance. We hope that

this serves as a reference point to improve communication and

reproducibility in the now highly active research area of neural

networks for speech and language understanding.

REFERENCES

[1] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-trained
Deep Neural Networks for Large Vocabulary Speech Recognition,” IEEE

Transactions on Audio, Speech, and Language Processing, 2011.

[2] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition,” IEEE Signal

Processing Magazine, vol. 29, no. November, pp. 82–97, 2012.

[3] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable minimum Bayes
risk training of deep neural network acoustic models using distributed
hessian-free optimization,” in Interspeech, 2012.

[4] K. Veselỳ, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in INTERSPEECH,
2013, pp. 2345–2349.

[5] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A

Hybrid Approach. Norwell, MA: Kluwer Academic Publishers, 1993.

[6] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist feature
extraction for conventional hmm systems,” in ICASSP, vol. 3. IEEE,
2000, pp. 1635–1638.

[7] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco, “Con-
nectionist probability estimators in hmm speech recognition,” IEEE

Transactions on Speech and Audio Processing, vol. 2, no. 1, pp. 161–
174, 1994.

[8] M. Gales and S. Young, “The application of hidden markov models
in speech recognition,” Foundations and Trends in Signal Processing,
vol. 1, no. 3, pp. 195–304, 2008.

[9] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey et al., The HTK book. Entropic
Cambridge Research Laboratory Cambridge, 1997, vol. 2.

[10] G. Saon and J. Chien, “Large-vocabulary continuous speech recognition
systems: A look at some recent advances,” IEEE Signal Processing

Magazine, vol. 29, no. 6, pp. 18–33, 2012.

[11] B. Gold, N. Morgan, and D. Ellis, Speech and audio signal processing:

processing and perception of speech and music. John Wiley & Sons,
2011.

[12] D. Jurafsky and J. H. Martin, Speech and language processing: An

introduction to natural language processing, computational linguistics,

and speech recognition. Prentice Hall, 2000.

[13] J. L. McClelland and J. L. Elman, “The trace model of speech percep-
tion,” Cognitive psychology, vol. 18, no. 1, pp. 1–86, 1986.

[14] G. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[15] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” The Journal of Machine

Learning Research, vol. 11, pp. 3371–3408, 2010.

[16] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” Audio, Speech, and Language Processing, IEEE

Transactions on, no. 99, 2010.

[17] G. Dahl, D. Yu, and L. Deng, “Large vocabulary continuous speech
recognition with context-dependent DBN-HMMs,” in ICASSP, 2011.

[18] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Application of
pretrained deep neural networks to large vocabulary speech recognition,”
in INTERSPEECH, 2012.

[19] D. Yu and L. Deng, “Deep neural network-hidden markov model hybrid
systems,” in Automatic Speech Recognition. Springer, 2015, pp. 99–
116.

[20] D. Yu, M. Seltzer, J. Li, J. Huang, and F. Seide, “Feature Learning in
Deep Neural Networks Studies on Speech Recognition Tasks,” in ICLR,
2013.

20

[21] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-dependent deep neural networks.” in Interspeech, 2011, pp. 437–
440.

[22] A. Senior, G. Heigold, M. Bacchiani, and H. Liao, “Gmm-free dnn
acoustic model training,” in ICASSP. IEEE, 2014, pp. 5602–5606.

[23] G. Dahl, T. Sainath, and G. Hinton, “Improving Deep Neural Networks
for LVCSR using Rectified Linear Units and Dropout,” in ICASSP, 2013.

[24] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen,
A. Senior, V. Vanhoucke, J. Dean, and G. Hinton, “On Rectified Linear
Units for Speech Processing,” in ICASSP, 2013.

[25] A. Maas, A. Hannun, and A. Ng, “Rectifier Nonlinearities Improve Neu-
ral Network Acoustic Models,” in ICML Workshop on Deep Learning

for Audio, Speech, and Language Processing, 2013.

[26] N. Morgan, “Deep and wide: Multiple layers in automatic speech recog-
nition,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 20, no. 1, pp. 7–13, 2012.

[27] O. Abdel-Hamid, A. rahman Mohamed, H. Jang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition,” in ICASSP, 2012.

[28] T. Sainath, B. Kingsbury, A. Mohamed, G. Dahl, G. Saon, H. Soltau,
T. Beran, A. Aravkin, and B. Ramabhadran, “Improvements to Deep
Convolutional Neural Networks for LVCSR,” in ASRU, 2013.

[29] T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A. rahman
Mohamed, G. Dahl, and B. Ramabhadran, “Deep Convolutional
Neural Networks for Large-Scale Speech Tasks,” Neural Networks,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608014002007

[30] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” Acoustics,

Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 3,
pp. 328–339, 1989.

[31] T. Robinson and F. Fallside, “A recurrent error propagation network
speech recognition system,” Computer Speech & Language, vol. 5, no. 3,
pp. 259–274, 1991.

[32] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga,
and M. Mao, “Sequence discriminative distributed training of long short-
term memory recurrent neural networks,” in Interspeech, 2014.

[33] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
Interspeech, 2014.

[34] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in ICASSP. IEEE, 2013, pp. 6645–6649.

[35] O. Vinyals, S. V. Ravuri, and D. Povey, “Revisiting recurrent neural
networks for robust asr,” in ICASSP. IEEE, 2012, pp. 4085–4088.

[36] C. Weng, D. Yu, S. Watanabe, and B. Juang, “Recurrent deep neural
networks for robust speech recognition,” ICASSP, 2014.

[37] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in ICASSP. IEEE, 2013, pp. 8599–8603.

[38] L. B. Bahl, P. de Souza, and R. P. Mercer, “Maximum mutual in-
formation estimation of hidden markov model parameters for speech
recognition,” in ICASSP. IEEE, 1986.

[39] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon,
and K. Visweswariah, “Boosted mmi for model and feature-space
discriminative training,” in ICASSP. IEEE, 2008, pp. 4057–4060.

[40] V. Valtchev, J. Odell, P. C. Woodland, and S. J. Young, “Mmie training of
large vocabulary recognition systems,” Speech Communication, vol. 22,
no. 4, pp. 303–314, 1997.

[41] J. Kaiser, B. Horvat, and Z. Kacic, “A novel loss function for the overall
risk criterion based discriminative training of hmm models,” in ICSLP,
2000.

[42] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for sequence
training of context-dependent deep networks for conversational speech
transcription,” in ICASSP, 2013, pp. 6664–6668.

[43] J. Martens, “Deep learning via hessian-free optimization,” in ICML,
2010, pp. 735–742.

[44] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng,
“On optimization methods for deep learning,” in ICML, 2011, pp. 265–
272.

[45] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine

Learning Research, vol. 12, pp. 2121–2159, 2011.

[46] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the Importance
of Momentum and Initialization in Deep Learning,” in ICML, 2013.

[47] K. Oh and K. Jung, “Gpu implementation of neural networks,” Pattern

Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[48] Z. Luo, H. Liu, and X. Wu, “Artificial neural network computation on
graphic process unit,” in IJCNN. IEEE, 2005, pp. 622–626.

[49] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors.” in ICML, vol. 9, 2009, pp. 873–880.

[50] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and Y. Ng, “Large Scale
Distributed Deep Networks,” in ICML, 2012.

[51] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th

USENIX Symposium on Operating Systems Design and Implementation,
2014, pp. 571–582.

[52] I. Chung, T. N. Sainath, B. Ramabhadran, M. Picheny, J. Gunnels,
V. Austel, U. Chauhari, and B. Kingsbury, “Parallel deep neural network
training for big data on blue gene/q,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 2014, pp. 745–753.
[53] A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, and B. Catanzaro, “Deep

Learning with COTS HPC Systems,” in ICML, 2013.
[54] D. Ellis and N. Morgan, “Size matters: An empirical study of neural

network training for large vocabulary continuous speech recognition,”
in ICASSP. IEEE, 1999, pp. 1013–1016.

[55] C. S. Lindsey and T. Lindblad, “Survey of neural network hardware,”
in SPIE Symposium on OE/Aerospace Sensing and Dual Use Photonics.
International Society for Optics and Photonics, 1995, pp. 1194–1205.

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[57] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in NIPS, 2012.

[58] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in ICML. ACM, 2009, pp. 609–616.

[59] D. Plaut, “Experiments on learning by back propagation.” 1986.
[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” Parallel distributed processing:

explorations in the microstructures of cognition, volume 2: psychological

and biological models, vol. 76, p. 1555, 1986.
[61] Y. Nesterov, “A method of solving a convex programming problem with

convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27,
no. 2, 1983, pp. 372–376.

[62] I. Sutskever, “Training recurrent neural networks,” Ph.D. dissertation,
University of Toronto, 2013.

[63] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, K. Veselý,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky,
and G. Stemmer, “The kaldi speech recognition toolkit,” in ASRU, 2011.

[64] H. Liao, E. McDermott, and A. Senior, “Large scale deep neural network
acoustic modeling with semi-supervised training data for YouTube video
transcription,” in ASRU, 2013.

[65] T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-Rank Matrix Factorization for Deep Neural Network Training with
High-Dimensional Output Targets,” in ICASSP, 2013.

[66] S. Wager, S. Wang, and P. Liang, “Dropout Training as Adaptive
Regularization,” in NIPS, 2013.

[67] R. Caruana, S. Lawrence, and L. Giles, “Overfitting in Neural Nets:
Backpropagation, Conjugate Gradient, and Early Stopping,” in NIPS,
2000.

[68] A. Saxe, J. McClelland, and S. Ganguli, “Learning Hierarchical Category
Structure in Deep Networks,” in CogSci, 2013.

[69] C. Cieri, D. Miller, and K. Walker, “The fisher corpus: a resource for the
next generations of speech-to-text.” in LREC, vol. 4, 2004, pp. 69–71.

[70] Y. Huang, D. Yu, C. Liu, and Y. Gong, “A comparative analytic study on
the gaussian mixture and context dependent deep neural network hidden
markov models,” in Interspeech, 2014.

http://www.sciencedirect.com/science/article/pii/S0893608014002007
http://www.sciencedirect.com/science/article/pii/S0893608014002007

21

1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2000 4000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

Fig. 9. Empirical activation probability of hidden units in each hidden layer layer of DNNs with varying numbers of hidden layers. Each row contains
DNNs of 36M (top), 100M (middle), and 200M total parameters (bottom). From left to right, each sub-figure shows a DNN with 1, 3, 5, and 7 hidden layers.
Hidden units (x axis) are sorted by their probability of activation. We consider any positive value as active (hpxq ą 0).

22

36M 1L 36M 3L 36M 5L 36M 7L 100M 1L 100M 3L 100M 5L 100M 7L 200M 1L 200M 3L 200M 5L 200M 7L
0

500

1000

1500

2000

2500

1 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 1 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 1 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7

Fig. 10. Effective code length for each hidden layer in DNNs with varying total size and depth. We compute the number on non-zero hidden unit activations
for a given input, and then average over a large sample of inputs. Plots show the average number of units active in each hidden layer of DNNs of varying
depth and total size. Within each sub-plot layers are ordered left to right from first to final hidden layer.

	I Introduction
	II Neural Network Acoustic Models
	III Questions Addressed in This Work
	IV Neural Network Computations
	IV-A Cross Entropy Loss Function
	IV-B Deep Neural Network Computations
	IV-C Deep Convolutional Neural Networks
	IV-D Deep Local Untied Neural Networks
	IV-E Optimization Algorithms

	V Switchboard 300 Hour Corpus
	V-A Varying DNN Model Size
	V-A1 Experiments
	V-A2 Results
	V-A3 Discussion

	V-B Dropout Regularization
	V-B1 Experiments
	V-B2 Results

	V-C Early Stopping
	V-C1 Results

	V-D Early Realignment
	V-D1 Experiments
	V-D2 Results
	V-D3 Discussion

	VI Comparing DNNS, DCNNs, and DLUNNS on Switchboard
	VI-A Experiments
	VI-B Results
	VI-C Discussion

	VII Combined Large Corpus
	VII-A Baseline HMM system
	VII-B Optimization Algorithm Choice
	VII-B1 Experiments
	VII-B2 Results

	VII-C Scaling Total Number of DNN Parameters
	VII-D Number of Hidden Layers

	VIII WER and Frame Classification Error Analysis
	IX Analyzing Coding Properties
	IX-A Sparsity and Dispersion
	IX-B Code Length

	X Conclusion
	References

