
Building Domain-Specific Search Engines with

Machine Learning Techniques

Andrew McCallumSt Kamal Nigamt

mccallum~justresearch.com knigam~cs.cmu.edu

t Just Research

4616 Henry Street
Pittsburgh, PA 15213

Jason Renniet Kristie Seymoret

jr6b~andrew.cmu.edu kseymore@ri.cmu.edu

tSchool of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Domain-specific search engines are growing in popu-
larity because they offer increased accuracy and extra
functionality not possible with the general, Web-wide
search engines. For example, www.campsearch.com
allows complex queries by age-group, size, location
and cost over .summer camps. Unfortunately these
domain-specific search engines are difficult and time-
consuming to maintain. This paper proposes the
use of machine learning techniques to greatly auto-
mate the creation and maintenance of domain-specific
search engines. We describe new research in rein-
forcement learning, information extraction and text
classification that enables efficient spidering, iden-
tifying informative text segments, and populating
topic hierarchies. Using these techniques, we have
built a demonstration system: a search engine for
computer science research papers. It already con-
taius over 50,000 papers and is publicly available at
~w. cora.justres earch, com.

1 Introduction

As the amount of information on the World Wide

Web grows, it becomes increasingly difficult to find
just what we want. While general-purpose search en-

gines, such as Altavista and HotBot offer high coverage,

they often provide only low precision, even for detailed
queries.

When we know that we want information of a certain

type, or on a certain topic, a domain-specific search

engine can be a powerful tool. For example:

¯ www.campsearch.com allows the user to search for

summer camps for children and adults. The user

can query the system based on geographic location,

cost, duration and other requirements.

¯ www.netpart.com lets the user search over company

pages by hostname, company name, and location.

¯ www.mrqe.com allows the user to search for reviews

of movies. Type a movie title, and it provides links

to relevant reviews from newspapers, magazines, and

individuals from all over the world.

¯ www.maths.usyd.edu.au/MathSearch.html lets the
user search web pages about mathematics.

¯ www.travel-finder.com allows the user to search web
pages about travel, with special facilities for search-

ing by activity, category and location.

Performing any of these searches with a traditional,

general-purpose search engine would be extremely te-

dious or impossible. For this reason, domain-specific

search engines are becoming increasingly popular. Un-

fortunately, however, building these search engines is a

labor-intensive process, typically requiring significant
and ongoing human effort.

This paper describes the Ra Project--an effort to

automate many aspects of creating and maintaining

domain-specific search engines by using machine learn-

ing techniques. These techniques allow search en-
gines to be created quickly with minimal effort and

are suited for re-use across many domains. This pa-

per presents machine learning methods for spidering

in an efficient topic-directed manner, extracting topic-

relevant substrings, and building a browseable topic

hierarchy. These approaches are briefly described in

the following three paragraphs.

Every search engine must begin with a collection of

documents to index. A spider (or "crawler") is
agent that traverses the Web, looking for documents

to add to the search engine. When aiming to popu-

late a domain-specific search engine, the spider need

not explore the Web indiscriminantly, but should ex-

plore in a directed fashion in order to find domain-

relevant documents efficiently. We frame the spidering

task in a reinforcement learning framework (Kaelbling,

Littman, & Moore 1996), allowing us to precisely and

mathematically define "optimal behavior." This ap-

proach provides guidance for designing an intelligent

spider that aims to select hyperlinks optimally. Our

28

From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

experimental results show that a reinforcement learn-

ing spider is three times more efficient than a spider

with a breadth-first search strategy.

Extracting characteristic pieces of information from

the documents of a domain-specific search engine al-

lows the user to search over these features in a way

that general search engines cannot. Information ex-

traction, the process of automatically finding specific
textual substrings in a document, is well suited to this

task. We approach information extraction with a tech-

nique from statistical language modeling and speech

recognition, namely hidden Markov models (Rahiner

1989). Our initial algorithm extracts fields such as the

title, authors, institution, and journal name from re-

search paper reference sections with 93% accuracy.

Search engines often provide a hierarchical organiza-
tion of materials into relevant topics; Yahoo is the pro-

totypical example. Automatically adding documents

into a topic hierarchy can be framed as a text classi-

fication task. We present extensions to a probabilis-

tic text classifier known as naive Bayes (Lewis 1998;

McCallum & Nigam 1998) that succeed in this task

without requiring large sets of labeled training data.

The extensions reduce the need for human effort in
training the classifier by (1) using keyword match-

ing to automatically assign approximate labels, (2) us-

ing a statistical technique called shrinkage that finds

more robust parameter estimates by taking advantage

of the hierarchy, and (3) increasing accuracy further
by iterating Expectation-Maximization to probabilisti-

cally reassign approximate labels and incorporate un-

labeled data. Use of the resulting algorithms places

documents into a 70-leaf computer science hierarchy
with 66% accuracy--performance approaching human

agreement levels.

2 The Cora Search Engine

We have brought all the above-described machine

learning techniques together in a demonstration sys-

tem: a domain-specific search engine on computer sci-
ence research papers named Cora. The system is pub-

licly available at www.cora.justresearch.com. Not only

does it provide keyword search facilities over 50,000
collected papers, it also places these papers into a com-

puter science topic hierarchy, maps the citation links

between papers, and provides bibliographic informa-

tion about each paper. Our hope is that in addition

to providing a platform for testing machine learning

research, this search engine will become a valuable

tool for other computer scientists, and will complement

similar efforts, such as the Computing Research Repos-

itory (~.lanl.gov/archive/cs), by providing function-

ality and coverage not available online elsewhere.

The construction of a search engine can be decom-

posed into three functional stages: collecting new in-

formation, collating and extracting from that informa-

tion, and presenting it in a publicly-availahle web in-

terface. Cora implements each stage by drawing upon

machine learning techniques described in this paper.

The first stage is the collection of computer science

research papers. A spider crawls the Web, starting

from the home pages of computer science departments

and laboratories. Using reinforcement learning, it effi-

ciently explores the Web, collecting all postscript doc-

uments it finds. Nearly all computer science papers

are in postscript format, though we are adding more
formats, such as PDF. These postscript documents are

then converted into plain text. If the document can be

reliably determined to have the format of a research pa-

per (e.g. by having Abstract and Reference sections),

it is added to Cora. Using this system, we have found

50,000 computer science research papers, and are con-
tinuing to spider for even more.

The second stage of building a search engine is to

extract relevant knowledge from each paper. To this

end, the beginning of each paper (up to the abstract)

is passed through an information extraction system

that automatically finds the title, author, institution

and other important header information. Addition-

ally, the bibliography section of each paper is located,

individual references identified, and each reference bro-
ken down into the appropriate fields, such as author,

title, journal, and date. Using this extracted informa-

tion, reference and paper matches are made---grouping
citations to the same paper together, and matching ci-

tations to papers in Cora. Of course, many papers that

are cited do not appear in the repository. This match-

ing procedure is similar to one described by Bollacker,

Lawrence, & Giles (1998), except that we use addi-

tional field-level constraints provided by knowing, for
example, the title and authors of each paper.

The third stage is to provide a publicly-available user

interface. We have implemented two methods for find-

ing papers. First, a search engine over all the papers is

provided. It supports commonly-used searching syn-

tax for queries, including +, -, and phrase searching

with "", and ranks resulting matches by the weighted

log of term frequency, summed over all query terms. It

also allows searches restricted to extracted fields, such

as authors and titles. Query response time is usually
less than a second. The results of search queries are

presented as in Figure 1. Additionally, each individual
paper has a "details" page that shows all the relevant

information, such as title and authors, links to the ac-
tual postscript paper, and a citation map that can be

traversed either forwards or backwards. One example

29

m ~tmmm~mi~ wnmA~mN,u~wm~ ~d~-~m ~m m tum~ A~

~ tm~ cmt~ Im~ w ~ mtmu~q ~im~

....~--.:.,-- ~: ~ ~/ ii~~I~ ~ ~i~
Amem~t~ utqq~ tt~ ~e(~ ~ k ~ ~mh*m*Im~m81 q~w, utd~q eu em~ ~q.me~we¢ mmmmd~
mtcdldn~ mine6, iimm~ mr m Jmm~q ~J*~dNm ~m~em~m (xm~e&l~W m W~-IM~m) imtmemmmqm~

Figure 1: A screen shot of the query results page of the Cora
search engine (tutuw.cora.justresearch.com). Extracted pa-
per titles, authors and abstracts are provided at this level.

of this is shown in Figure 2. We also provide auto-

matically constructed BibTeX entries, general Cora in-

formation links, and a mechanism for submitting new

papers and web sites for spidering.

The other user interface access method is through a

topic hierarchy, similar to that provided by Yahoo, but

customized specifically for computer science research.

This hierarchy was hand-constructed, and contains ?0

leaves, varying in depth from one to three. Using text
classification techniques, each research paper is auto-

matically placed into a topic node. By following hy-

perlinks to traverse the topic hierarchy, the most-cited

papers in each research topic can be found.

3 Efficient Spidering

Spiders are agents that explore the hyperlink graph of

the Web, often for the purpose of finding documents

with which to populate a search engine. Extensive spi-

dering is the key to obtaining high coverage by the

major Web search engines, such as AltaVista and Hot-

Bot. Since the goal of these general-purpose search

engines is to provide search capabilities over the Web

as a whole, for the most part they simply aim to find
as many distinct web pages as possible. Such a goal

lends itself to strategies like breadth-first search. If,

on the other hand, the task is to populate a domain-

specific search engine, then an intelligent spider should

Lem’nin~ bhu~ Relmd Tml~ st the S~me Time With Beckpt’opep~on

Kith ~m~ns

~t~m L~] p~e~ ~ ~ b~ a~f~d ne~d~ d~dd k~.~sif n~s he, ~e

~ llteea ~0 die act we txu~ ~hu t i~te~ kf 8hou~g d~. t b~k ~ ae~ h~l~ll lucy ~*~d
"~k~ e~ ~em~bt~ ees ~ld~ltutsks u bd~c~ ~ (~ e~h cn~ mdd~ ~ b~.

m~d evi:l~l ~b~ .-..~ ~lk buk]p~p pa4n~ k~e~i ntd ~n4u~

Rmh~e~nnts:

1~C~ "l~4~,ak C4emc~e~ L em~e4~" Is~c ~Y~ ef ~i~ Caute¢~ou~ k4e~b 8~ut~ S~b~

~_ --- ,’_~-T "

Figure 2: A screen shot of a details page of the Cora search
engine. At this level, all extracted information about a
paper is displayed, including the citation linking, which are
hyperlinks to other details pages.

try to avoid hyperlinks that lead to off-topic areas, and

concentrate on links that lead to documents of interest.

In Cora efficient spidering is a major concern. The

majority of the pages in many computer science de-
partment web sites do not contain links to research

papers, but instead are about courses, homework,

schedules and admissions information. Avoiding whole

branches and neighborhoods of departmental web

graphs can significantly improve efficiency and increase

the number of research papers found given a finite

amount of crawling time. We use reinforcement learn-

ing to perform efficient spidering.

Several other systems have also studied spidering,

but without a framework defining optimal behavior.

ARACHNID (Menczer 1997) maintains a collection

competitive, reproducing and mutating agents for find-

ing information on the Web. Cho, Garcia-Molina, &
Page (1998) suggest a number of heuristic ordering

metrics for choosing which link to crawl next when

searching for certain categories of web pages. Ad-

ditionally, there are systems that use reinforcement

learning for non-spidering Web tasks. WebWatcher

(Joachims, Freitag, & Mitchell 1997) is a browsing as-

sistant that uses a combination of supervised and re-

inforcement learning to help a user find information

by recommending which hyperlinks to follow. Laser

uses reinforcement learning to tune the parameters of

3O

a search engine (Boyan, Freitag, ~ Joachims 1996).

3.1 Reinforcement Learning

In machine learning, the term "reinforcement learn-

ing" refers to a framework for learning optimal deci-

sion making from rewards or punishment (Kaelbling,

Littman, & Moore 1996). It differs from supervised

learning in that the learner is never told the correct

action for a particular state, but is simply told how

good or bad the selected action was, expressed in the

form of a scalar "reward."

A task is defined by a set of states, s 6 8, a set

of actions, a E .4, a state-action transition function,

T : S x .4 ~ S, and a reward function, R : S x ~4 ~ ~.

At each time step, the learner (also called the agent)
selects an action, and then as a result is given a reward

and its new state. The goal of reinforcement learning

is to learn a policy, a mapping from states to actions,

7r : 8 -~ ~4, that maximizes the sum of its reward over

time. The most common formulation of "reward over

time" is a discounted sum of rewards into an infinite
future. A discount .factor, 7, 0 < 7 < 1, expresses

"inflation," making sooner rewards more valuable than

later rewards. Accordingly, when following policy =,

we can define the value of each state to be:

oo

= (I)
t----O

where rt is the reward received t time steps after start-

ing in state s. The optimal policy, written 7r*, is the

one that maximizes the value, V~(s), for all states s.

In order to learn the optimal policy, we learn its

value function, V*, and its more specific correlate,

called Q. Let Q*(s, a) be the value of selecting action

a from state s, and thereafter following the optimal

policy. This is expressed as:

Q*(s,a) = R(s,a) + 7V*(T(s,a)). (2)

We can now define the optimal policy in terms of Q

by selecting from each state the action with the high-
est expected future reward: 7r*(s) = arg maxa Q*(s,

The seminal work by Bellman (1957) shows that the

optimal policy can be found straightforwardly by dy-
namic programming.

3.2 Spidering as Reinforcement Learning

As an aid to understanding how reinforcement learn-

ing relates to spidering, consider the common reinforce-
ment learning task of a mouse exploring a maze to find

several pieces of cheese. The agent’s actions are mov-

ing among the grid squares of the maze. The agent

receives a reward for finding each piece of cheese. The

state is the position of the mouse and the locations

of the cheese pieces remaining to be consumed (since
the cheese can only be consumed and provide reward

once). Note that the agent only receives immediate re-

ward for finding a maze square containing cheese, but

that in order to act optimally it must choose actions
considering future rewards as well.

In the spidering task, the on-topic documents are

immediate rewards, like the pieces of cheese. The ac-

tions are following a particular hyperlink. The state

is the bit vector indicating which on-topic documents

remain to be consumed. The state does not include

the current "position" of the agent since a crawler can

go to any URL next. The number of actions is large
and dynamic, in that it depends on which documents

the spider has visited so far.

The key features of topic-specific spidering that

make reinforcement learning the proper framework for

defining the optimal solution are: (1) performance

measured in terms of reward over time, and (2) the

environment presents situations with delayed reward.

3.3 Practical Approximations

The problem now is how to apply reinforcement learn-

ing to spidering in such a way that it can be practically

solved. Unfortunately, the state space is huge: two to

the power of the number of on-topic documents on the

Web. The action space is also large: the number of

unique URLs with incoming links on the Web. Thus we

need to make some simplifying assumptions in order to
make the problem tractable and to aid generalization.

Note, however, that by defining the exact solution in

terms of the optimal policy, and making our assump-

tions explicit, we will better understand what inaccura-

cies we have introduced, and how to select areas of fu-
ture work that will improve performance further. The

assumptions we choose initially are the following two:

(1) we assume that the state is independent of which

on-topic documents have already been consumed; that

is, we collapse all states into one, and (2) we assume

that the relevant distinctions between the actions can
be captured by the words in the neighborhood of the

hyperlink corresponding to each action.

Thus our Q function becomes a mapping from

a "bag-of-words" to a scalar (sum of future re-

ward). Learning to perform efficient spidering then in-

volves only two remaining sub-problems: (1) gathering

training data consisting of bag-of-words/future-reward

pairs, and (2) learning a mapping using the training

data.

There are several choices for how to gather training

data. Although the agent could learn from experience

on-line, we currently train the agent off-line, using col-

lections of already-found documents and hyperlinks.

31

In the vocabulary of traditional reinforcement learn-

ing, this means that the state transition function, T,

and the reward function, R, are known, and we learn

the Q function by dynamic programming in the origi-

nal, uncollapsed state space.

We represent the mapping using a collection of naive

Bayes text classifiers (see Section 5.2). We perform the

mapping by casting this regression problem as classi-

fication (Torgo & Gama 1997). We discretize the dis-

counted sum of future reward values of our training

data into bins, place the hyperlinks into the bin corre-

sponding to their Q values by dynamic programming,

and use the hyperlinks’ neighborhood text as train-

ing data for a naive Bayes text classifier. We define

a hyperlink’s neighborhood to be two bags-of-words:

1) the full text of the page on which the hyperlink is

located, and 2) the anchor text of the hyperlink and

portions of the URLJ For each hyperlink, we calculate

the probabilistic class membership of each bin. Then

the reward value of a hyperlink is estimated by taking

a weighted average of each bins’ reward value, using

the probabilistic class memberships as weights.

3.4 Data and Experimental Results

In August 1998 we completely mapped the docu-

ments and hyperlinks of the web sites of computer sci-

ence departments at Brown University, Cornell Univer-

sity, University of Pittsburgh and University of Texas.

They include 53,012 documents and 592,216 hyper-

links. We perform a series of four test/train splits,

in which the data from three universities was used to

train a spider that then is tested on the fourth. The

target pages (for which a reward of 1 is given) are

computer science research papers. They are identi-

fied with very high precision by the simple hand-coded

algorithm mentioned in Section 2.

We present results of two different reinforcement

learning spiders and compare them to breadth-first

search. Immediate uses 7 = 0, utilizing only immediate

reward in its assignment of hyperlink values. This em-

ploys a binary classifier that distinguishes links that

do or do not point directly to a research paper. Fu-

ture uses 7 = 0.5 and represents the Q-function with a

more finely-discriminating 10-bin classifier that makes

use of future reward.

Spiders trained in this fashion are evaluated on each

test/train split by spidering the test university. Fig-

ure 3 plots the number of research papers found over

the course of all the pages visited, averaged over all

four universities. Notice that at all times during their

progress, the reinforcement learning spiders have found

IWe have found that performance does not improve
when a more restricted set of neighborhood text is chosen.

I0O

90

so
70

60
a.

2 5O

ee

20

10

0
0

Spidering CS Departments

.../

-/ , , L i i i * i J

10 20 30 40 50 60 70 80 90
Percent Hyperlinks Followed

1O0

Figure 3: The performance of reinforcement learning spi-
dering versus traditional breadth-first search, averaged over
four test/train splits with data from four universities. The
reinforcement learning spiders find target documents sig-
nificantly faster than the traditional method.

more research papers than Breadth-first.

One measure of performance is the number of hy-

perlinks followed before 75% of the research papers

are found. Reinforcement learning performs signifi-

cantly more efficiently, requiring exploration of only

16% of the hyperlinks; in comparison Breadth-first re-

quires 48%. This represents a factor of three increase

in spidering efficiency.

Note also that the Future reinforcement learning spi-

der performs better than the Immediate spider in the

beginning, when future reward must be used to cor-

rectly select among alternative branches, none of which

give immediate reward. On average, the Immediate spi-

der takes nearly three times as long as Future to find

the first 28 (5%) papers.

In Figure 3, after the first 50% of the papers are

found, the Immediate spider performs slightly better

than the Future spider. This is because the system has

uncovered many links that will give immediate reward

if followed, and the Immediate spider recognizes them

more accurately. In ongoing work we are investigating

techniques for improving classification with the larger

number of bins required for regression with future re-

ward. We believe that adding features based on the

HTML structure around a hyperlink (headers, titles,

and neighboring pages) will improve classification and

thus regression.

We are also currently applying the Future spider to

other tasks where rewards are more sparse, and thus

modeling future reward is more crucial. For example,

information about a company’s corporate officers is of-

ten contained on a single web page in the company’s

web site; here there is a single reward. Our prelimi-

32

nary experiments show that our current Future spider

performs significantly better than the Immediate spider

on these common tasks.

4 Information Extraction

Information extraction is concerned with identifying

phrases of interest in textual data. For many applica-

tions, extracting items such as names, places, events,

dates, and prices is a powerful way to summarize the

information relevant to a user’s needs. In the case of
a domain-specific search engine, the automatic identi-

fication of important information can increase the ac-

curacy and efficiency of a directed search.

We use hidden Markov models (HMMs) to extract
the fields relevant to research papers, such as title, au-

thor, journal and publication date. The extracted text

segments are used (1) to allow searches over specific

fields, (2) to provide useful effective presentation
search results (e.g. showing title in bold), and (3)

match references to papers. Our interest in HMMs for

information extraction is particularly focused on learn-

ing the state and transition structure of the models

from training data.

4.1 Hidden Markov Models

Hidden Markov models, widely used for speech recog-
nition and part-of-speech tagging (Rabiner 1989; Char-

niak 1993), provide a natural framework for modeling

the production of the headers and reference sections

of research papers. Discrete output, first-order HMMs

are composed of a set of states Q, with specified ini-
tial and final states ql and qF, a set of transitions be-

tween states (q ~ q’), and a discrete vocabulary of out-

put symbols E = ala2.., aM. The model generates a

string x = zlz2.., xl by beginning in the initial state,

transitioning to a new state, emitting an output sym-

bol, transitioning to another state, emitting another
symbol, and so on, until a transition is made into the

final state. The parameters of the model are the tran-

sition probabilities P(q -~ q’) that one state follows

another and the emission probabilities P(q t a) that

a state emits a particular output symbol. The prob-

ability of a string x being emitted by an HMM M is
computed as a sum over all possible paths by:

l+l

P(xIM) -- ~ H P(qk-1 qk)P(qk t Xk), (3
ql,...,qzEQ t k-~l

where qo and qt+l are restricted to be ql and qF respec-

tively, and xt+l is an end-of-string token. The observ-

able output of the system is the sequence of symbols

that the states emit, but the underlying state sequence
itself is hidden. One common goal of learning prob-

lems that use HMMs is to recover the state sequence

data;
built
ples.

V(x[M) that has the highest probability of having pro-

duced an observation sequence:

l+l

V(x[M)--- argmax H P(qk-1 --4 qk)P(qk ? xk). (4)
ql""qlEQt k~l

Fortunately, there is an efficient algorithm, called the
Viterbi algorithm (Viterbi 1967), that efficiently recov-

ers this state sequence.

HMMs may be used for information extraction from

research papers by formulating a model in the follow-

ing way: each state is associated with a field class

that we want to extract, such as title, author or in-
stitution. Each state emits words from a class-specific

unigram distribution. We can learn the class-specific

unigram distributions and the transition probabilities

from data. In our case, we collect BibTeX files from
the Web with reference classes explicitly labeled, and

use the text from each class as training data for the ap-

propriate unigram model. Transitions between states

are estimated directly from a labeled training set, since

BibTeX data does not contain this information. In or-

der to label new text with classes, we treat the words

from the new text as observations and recover the
most-likely state sequence with the Viterbi algorithm.

The state that produces each word is the class tag for

that word.
HMMs have been used in other systems for infor-

mation extraction and the closely related problems of

topic detection and text segmentation. Leek (1997)

uses hidden Markov models to extract information

about gene names and locations from scientific ab-

stracts. The Nymble system (Bikel et al. 1997) deals
with named-entity extraction, and a system by Yam-

ton et al. (1998) uses an HMM for topic detection and

tracking. Unlike our work, these systems do not con-

sider automatically determining model structure from

they either use one state per class, or use hand-

models assembled by inspecting training exam-

4.2 Experiments

Our experiments on reference extraction are based on

five hundred references that were selected at random
from a set of 500 research papers. The words in each

of the 500 references were manually tagged with one

of the following 13 classes: title, author, institution,

location, note, editor, publisher, date, pages, volume,

journal, booktitle, and technical report. The tagged

references were split into a 300-instance, 6995 word to-

ken training set and a 200-instance, 4479 word token

test set. Unigram language models were built for each

of the thirteen classes from almost 2 million words of
BibTeX data acquired from the Web, and were based

33

0.0:

0.8:~

0.82

0.86
0.80

0.03,/~ ,..,,0.91 / \

Figure 4: An example HMM built from only five labeled ref-
erences after merging neighbors and collapsing V-neighbors
in the forward and backward directions. Note that the
structure is close to many reference section formats.

on a 44,000 word vocabulary. Each HMM state is as-
sociated with one class label, and uses the appropriate

unigram distribution to provide its emission probabil-

ities. Emission distributions are not re-estimated dur-
ing the training process.

We examine the potential of learning model struc-
ture from data by comparing four different HMMs.

The first two models are fully-connected HMMs where

each class is represented by a single state. In the first

model (HMM-0), the transitions out of each state re-

ceive equal probability. Finding the most likely path
through this model for an observation sequence is

equivalent to consulting each unigram model for each

test set word, and setting each word’s class to the

class of the unigram model that produces the highest
probability. The transition probabilities for the second

model (HMM-1) are set to the maximum likelihood es-

timates from the labeled training data. A smoothing
count of 1 is added to all transitions to avoid non-zero

probabilities.

Next, an HMM is built where each word token in the
training set is assigned a single state that only transi-

tions to the state that follows it. Each state is associ-

ated with the class label of its word token. From the
initial state, there are 300 equiprobable transitions into

sequences of states, where each sequence represents the

tags for one of the 300 training references. This model

consists of 6997 states, and is maximally specific in

that its transitions exactly explain the training data.

This HMM is put through a series of state merges in

order to generalize the model. First, "neighbor merg-
ing" combines all states that share a unique transi-

Accuracy

Model # states Any word Punc word

HMM-0 13 59.2 80.8

HMM-1 13 91.5 92.9
HMM-2 1677 90.2 91.1
HMM-3 46 91.7 92.9

Table 1: Word classification accuracy results (%) on 200
test references (4479 words).

tion and have the same class label. For example, all

adjacent title states are merged into one title state,

representing the sequence of title words for that refer-

ence. As multiple neighbor states with the same class

label are merged into one, a self-transition loop is intro-

duced, whose probability represents the expected state

duration for that class. After neighbor merging, 1677

states remain in the model (HMM-2).

Next, the neighbor-merged HMM is put through for-

ward and backward V-merging. For V-merging, any
two states that share transitions from or to a common

state and have the same label are merged. A simple

example of an HMM built from just 5 tagged refer-

ences after V-merging is shown in Figure 4. Notice
that even with just five references, the model closely

matches formats found in many reference sections. Af-

ter V-merging, the HMM is reduced from 1677 states

to 46 states (HMM-3).

All four HMM models are used to tag the 200 test
references by finding the Viterbi path through each

HMM for each reference. The class labels of the states
in the Viterbi path are the classifications assigned to

each word in the test references. Word classification

accuracy results for two testing scenarios are reported

in Table 1. In the Any word case, state transitions
are allowed to occur after any observation word. In

the Punc word case, state transitions to a new state
(with a different class label) are only allowed to occur

after observations ending in punctuation, since punc-

tuation is often a delimiter between fields in references.

For HMM-0, allowing transitions only after words with
punctuation greatly increases classification accuracy,

since in this case punctuation-delimited phrases are be-

ing classified instead of individual words. For the last

three cases, the overall classification accuracy is quite

high. The V-merged HMM derived directly from the
training data (HMM-3) performs at 93% accuracy,

well as the HMM where only one state was allowed per

class (HMM-1). For these three cases, limiting state

transitions to occur only after words with punctuation

improves accuracy by about 1% absolute.

34

Computer Seienee

computer, university, science, system, paper

Software Programming OS Artificial .- Hardware & HCl Information
Enginaaring programming distributed Intelligence Architecture computer Retrieval

software language system learning circuits system in£ormation
design logic systems university design multimedia text
engineering university network computer computer university documents
tools progran~ time based university paper classification

SenmnU~ Garbage Compiler’- " NLP M~hin~ Planning Knowledge _ Interface Cooperative Mulflmedin

scmuatic~ Cdlneflon Dcalga language L~wnlng planning l~pre~mntaUon Design collaborative multimedia

danotetional garbage compiler natural learning temporal knowledge interface cscw real

language collection code processing algorithm reasoning ropresentation design work time

construction memory parallel information algorithms plan language user provide data

types optimization data text university problems system sketch group media
region lun&uage networks natural interfaces

Figure 5: A subset of Cora’s topic hierarchy. Each node contains its title, and the five most probable words, as calculated

by naive Bayes and shrinkage with vertical word redistribution (Hofmaun & Puzicha 1998). Words that were not among the
keywords for that class are indicated with italics.

4.3 Future Work

All of the experiments presented above use HMMs

where the model structure and parameters were esti-
mated directly from labeled training instances. Our fu-

ture work will focus on using unlabeled training data.

Unlabeled training data is preferable to labeled data

because generally greater quantities of unlabeled data
are available, and model parameters may be more reli-

ably estimated from larger amounts of data. Addition-

ally, manually labeling large amounts of training data

is costly and error-prone.

Specifically, if we are willing to fix the model struc-

ture, we can use the Baum-Welch estimation tech-
nique (Baum 1972) to estimate model parameters. The

Baum-Welch method is an Expectation-Maximization

procedure for HMMs that finds local likelihood max-
ima, and is used extensively for acoustic model estima-

tion in automatic speech recognition systems.

We can remove the assumption of a fixed model
structure and estimate both model structure and pa-

rameters directly from the data using Bayesian Model
Merging (Stolcke 1994). Bayesian Model Merging in-

volves starting out with a maximally specific hidden

Markov model, where each training observation is rep-

resented by a single state. Pairs of states are iteratively

merged, generalizing the model until an optimal trade-

off between fit to the training data and a preference

for smaller, more generalized models is attained. This

merging process can be explained in Bayesian terms

by considering that each merging step is looking to

find the model that maximizes the posterior probabil-

ity of the model given the training data. We believe

that Bayesian Model Merging, when applied to the V-

merged model (HMM-3, 46 states), will result in an in-

termediate HMM structure that will outperform both

the fully-connected model (HMM-1, 13 states) and the

V-merged model on the reference extraction task.

We will test both of these induction methods on ref-

erence extraction, and will include new experiments on

header extraction. We believe that extracting informa-

tion from headers will be a more challenging problem

than references because there is less of an established

format for presenting information in the header of a

paper.

5 Classification into a Topic Hierarchy

Topic hierarchies are an efficient way to organize, view

and explore large quantities of information that would

otherwise be cumbersome. The U.S. Patent database,
Yahoo, MEDLINE and the Dewey Decimal system are

all examples of topic hierarchies that exist to make

information more manageable.

As Yahoo has shown, a topic hierarchy can be a use-

ful, integral part of a search engine. Many search en-

gines (e.g. Lycos, Excite, and HotBot) now display

hierarchies on their front page. This feature is equally

valuable for domain-specific search engines. We have

created a 70-leaf hierarchy of computer science topics

for Cora, part of which is shown in Figure 5. Creating

the hierarchy took about 60 minutes, during which we

examined conference proceedings, and explored com-

puter science sites on the Web. Selecting a few key-

words associated with each node took about 90 min-

utes.

A much more difficult and time-consuming part of

creating a hierarchy is populating it with documents

that are placed in the correct topic branches. Ya-

hoo has hired large numbers of people to categorize

35

web pages into their hierarchy. The U.S. patent office

also employs people to perform the job of categorizing

patents. In contrast, we automate this process with

learned text classifiers.

5.1 Seeding Naive Bayes using Keywords

One method of classifying documents into a hierarchy

is to match them against the keywords in a rule-list

fashion; for each document, we step through the key-

words, and place the document in the category of the

first keyword that matches. If an extensive keyword
list is carefully chosen, this method can be reason-

ably accurate. However, finding enough keywords to

obtain broad coverage and finding sufficiently specific

keywords to obtain high accuracy can be very diffi-

cult; it requires intimate knowledge of the data and a

lot of trial and error. Without this extensive effort,
keyword matching will be brittle, incapable of finding

documents that do not contain matches for selected
keywords.

A less brittle approach is provided by naive Bayes,

an established text classification algorithm (Lewis

1998; McCallum & Nigam 1998) based on Bayesian

machine learning techniques. However, it requires

large amounts of labeled training data to work well.

Traditionally, training data is labeled by a human, and

is difficult and tedious to obtain.

In this paper, we propose using a combination of
these two approaches with what we call pseudo-labeled

data. Instead of asking the builder to hand-label nu-

merous training examples, or to generate a complete-

coverage set of keywords, the builder simply provides
just a few keywords for each category. A large col-

lection of unlabeled documents are "pseudo-labeled"

by using the keywords as a rule-list classifier. These

pseudo-labels are noisy, and the majority of documents

remain unlabeled. However, we then build an improved

classifier by using all the documents and any pseudo-
labels to bootstrap a naive Bayes text classifier that has

been combined with Expectation-Maximization (EM)

(Dempster, Laird, & Rubin 1977) and a powerful tech-

nique from statistics called shrinkage. EM serves to

incorporate the evidence from the unlabeled data, and

to correct, to some extent, the pseudo-labels. Hier-

archical shrinkage serves to alleviate poor parameter

estimates caused by sparse training data.

In this approach, using an enhanced naive Bayes text

classifier acts to smooth the brittleness of the original
keywords. One way to understand this is that naive

Bayes discovers new keywords that are probabilisticaUy

correlated with the original keywords. The resulting

pseudo-labeled method provides classification accuracy

that is higher than keyword matching.

5.2 Naive Bayes Text Classification

We use the framework of multinomial naive Bayes text

classification. The classifier parameterizes each class

separately with a document frequency, and also word

frequencies. Each class, cj, has a document frequency
relative to all other classes, written P(cj). For every

word, wt, in the vocabulary, V, P(wt[cj) indicates the

frequency that the classifier expects word wt to occur

in documents in class cj.
We represent a document, di, as an unordered collec-

tion of its words. Given a document and a classifier,
we determine the probability that the document be-

longs in class cj by Bayes’ rule and the naive Bayes
assumption--that the words in a document occur in-

dependently of each other given the class. If we denote

Wd,,k to be the kth word in document di, then classifi-
cation becomes:

P(c~ld~) c¢ P(c~)P(d~[c~)

¢x P(cj) H P(Wd,.,lej). (5)
k----1

Learning these parameters (P(cj) and P(wtlcj)) for
classification is accomplished using a set of labeled

training documents, :D. To estimate the word prob-

ability parameters, P(wt[cj), we count the frequency

that word wt occurs in all word occurrences for doc-

uments in class cj. We supplement this with Laplace

smoothing that primes each estimate with a count of
one to avoid probabilities of zero. Define N(wt, di) to

be the count of the number of times word wt occurs in
document di, and define P(cj[di) e {0, 1}, as given

the document’s class label. Then, the estimate of the
probability of word wt in class cj is:

P(wt[c~) = "J r ~d , ET ~ N(wt, d,)P(cjldi) (6)
IVI + E~vll Ed, eV N(w,, d,)P(ci[di)"

The class frequency parameters are set in the same

way, where]C[indicates the number of classes:

P(cj) 1 + ~d,e~P(cj[di)

ICl +
(7)

Empirically, when given a large number of training

documents, naive Bayes does a good job of classifying
text documents (Lewis 1998). More complete presenta-

tions of naive Bayes for text classification are provided

by Mitchell (1997) and McCallum & Nigam (1998).

5.3 Combining Labeled and Unlabeled

Data

When there are both labeled and unlabeled docu-

ments available when training a naive Bayes classi-

36

tier, Expectation-Maximization can be used to prob-

abilisti~ally fill in the missing class labels of the un-

labeled data, allowing them to be used for training.

This results in parameters that are more likely given

all the data, both the labeled and the unlabeled. In

previous work (Nigam et al. 1999), we have shown

this technique significantly increases classification ac-

curacy with limited amounts of labeled data and large

amounts of unlabeled data.

EM is a class of iterative algorithms for maximum

likelihood estimation in problems with incomplete data

(Dempster, Laird, & Rubin 1977). Given a model

data generation, and data with some missing values,

EM iteratively uses the current model to estimate the

missing values, and then uses the missing value esti-

mates to improve the model. Using all the available

data, EM will locally maximize the likelihood of the

parameters and give estimates for the missing values.

In our scenario, the class labels of the unlabeled data

are treated as the missing values.

In implementation, EM is an iterative two-step pro-

cess. Initially, the parameter estimates are set in the

standard naive Bayes way, using just the labeled data.

Then we iterate the E- and M-steps. The E-step cal-

culates probabilistically-weighted class labels, P (cj]d i),

for every unlabeled document using the classifier and

Equation 5. The M-step estimates new classifier pa-

rameters using all the labeled data, both original and

probabilistically labeled, by Equations 6 and 7. We it-

erate the E- and M-steps until the classifier converges.

5.4 Shrinkage and Naive Bayes

When the classes are organized hierarchically, as they

are in Cora, naive Bayes parameter estimates can also

be significantly improved with the statistical technique

shrinkage.

Consider trying to estimate the probability of the

word "intelligence" in the class NLP. This word should

clearly have non-negligible probability there, however,

with limited training data we may be unlucky, and the

observed frequency of "intelligence" in NLP may be
very far from its true expected value. One level up

the hierarchy, however, the Artificial Intelligence class
contains many more documents (the union of all the

children); there, the probability of the word "intelli-

gence" can be more reliably estimated.

Shrinkage calculates new word probability estimates

for each leaf by a weighted average of the estimates

on the path from the leaf to the root. The technique

balances a trade-off between specificity and reliability.

Estimates in the leaf are most specific but unreliable;
further up the hierarchy estimates are more reliable

but unspecific. We can calculate mixture weights that

are guaranteed to maximize the likelihood of held-out

data by an iterative procedure.

More formally, let {Pl(wt[cj),...,P~(wt]cj)} be

word probability estimates, where pl(wt[cj) is the es-

timate using training data just in the leaf, pk-1 (wt [Cj)
is the estimate at the root using all the training data,

and Pk(wt]cj) is the uniform estimate (Pk(wt[cj)

1/IVD. The interpolation weights among cj’s "ances-
tors" (which we define to include cj itself) are writ-

ten {A~,A~,...,A~}, where ~-~ik__lA~ = 1. The new
word probability estimate based on shrinkage, denoted

P(wt[cj), is then

r’(wtlc#) = Alpl(wtlc#) +... + A~Pk(wtlc#).

The Aj vectors are calculated using EM. In the E-

step, for every word of training data in class cj, we

determine the expectation that each ancestor was re-

sponsible for generating it (in leave-one-out fashion,

withholding from parameter estimation the data in

the word’s document). In the M-step, we normalize

the sum of these expectations to obtain new mixture

weights Aj. Convergence usually occurs in less than 10

iterations and less than 5 minutes of wall clock time.

A more complete description of hierarchical shrinkage

for text classification is presented by McCallum et aL

(1998).

5.5 Experimental Results

Now we describe results of classifying computer sci-

ence research papers into our 70-leaf hierarchy. A test

set was created by one expert hand-labeling a random
sample of 625 research papers from the 30,682 papers

in the Cora archive at the time we began these experi-

ments. Of these, 225 did not fit into any category, and

were discarded--resulting in a 400 document test set.

Some of these papers were outside the area of com-

puter science (e.g. astrophysics papers), but most of

these were papers that, with a more complete hierar-

chy, would be considered computer science papers. In
these experiments, we used the title, author, institu-

tion, references, and abstracts of papers for classifica-

tion, not the full text.

Table 2 shows classification results with different
techniques used. The rule-list classifier based on the

keywords alone provides 45%. Traditional naive Bayes

with 399 labeled training documents, tested in a leave-

one-out fashion, results in 47% classification accuracy.

However, only 100 documents could have been hand-

labeled in the time it took to create the keyword-lists;

using this smaller training set results in 30% accuracy.

We now turn to our pseudo-label approach. Applying

the keyword rule-list to the 30,682 documents in the

37

Method :#= Lab # P-Lab # Unlab Acc

Keyword 45%

NB 100 30%

NB 399 47%

NB 12,657 47%

NB+S 12,657 63%

NB+EM+S 12,657 18,025 66%

Human 72%

Table 2: Classification results with different techniques:
keyword matching, human agreement, naive Bayes (NB),
and naive Bayes combined with hierarchical shrinkage (S),
and EM. The classification accuracy (Acc), and the number
of lab eled (Lab), keyword-matched pseudo-labeled (P- Lab
and unlabeled (Unlab) documents used by each method are
shown.

archive results in 12,657 matches, and thus an equiva-

lent number of pseudo-labeled documents. When these

noisy labels are used to train a traditional naive Bayes

text classifier, 47% accuracy is reached on the test

set. When naive Bayes is augmented with hierarchical
shrinkage, accuracy increases to 63%. The full algo-

rithm, including naive Bayes, shrinkage, and EM re-

assignment of the pseudo-labeled and unlabeled data,

achieves 66% accuracy. As an interesting comparison,

a second expert classified the same test set; human

agreement between the two was 72%.

These results demonstrate the utility of the pseudo-

label approach. Keyword matching alone is noisy, but

when naive Bayes, shrinkage and EM are used together

as a regularizer, the resulting classification accuracy is

close to human agreement levels. We expect that using

EM with unlabeled data will yield much larger bene-
fits when the hierarchy is expanded to cover more of

computer science. Approximately one-third of the un-

labeled data do not fit the hierarchy; this mismatch of

the data and the model misleads EM. The paradigm of

creating pseudo-labels, either from keywords or other

sources, avoids the significant human effort of hand-
labeling training data.

In future work we plan to refine our probabilistic

model to allow for documents to be placed in interior

hierarchy nodes, documents to have multiple class as-

signments, and classes to be modeled with multiple

mixture components. We are also investigating prin-

cipled methods of re-weighting the word features for

"semi-supervised" clustering that will provide better

discriminative training with unlabeled data.

6 Related Work

Several related research projects investigate the gath-

ering and organization of specialized information. The

WebKB (Craven et al. 1998) project focuses on the col-

lection and organization of information from the Web

into knowledge bases. This project also has a strong

emphasis on using machine learning techniques, includ-

ing text classification and information extraction, to
promote easy re-use across domains. Two example do-

mains, computer science departments and companies,

have been developed.

The CiteSeer project (Bollacker, Lawrence, & Giles

1998) has also developed a search engine for computer

science research papers. It provides similar functional-
ity for searching and linking of research papers, but

does not currently provide a hierarchy of the field.
CiteSeer focuses on the domain of research papers, but

not as much on using machine learning techniques to

automate search engine creation.

The New Zealand Digital Library project (Witten et

al. 1998) has created publicly-available search engines

for domains from computer science technical reports

to song melodies. The emphasis of this project is on
the creation of full-text searchable digital libraries, and

not on machine learning techniques that can be used

to autonomously generate such repositories. The web

sources for their libraries are manually identified. No

high-level organization of the information is given. No

information extraction is performed and, for the paper

repositories, no citation linking is provided.

The WHIRL project (Cohen 1998) is an effort to in-

tegrate a variety of topic-specific sources into a single

domain-specific search engine. Two demonstration do-

mains of computer games and North American birds

integrate information from many sources. The empha-
sis is on providing soft matching for information re-

trieval searching. Information is extracted from web

pages by hand-written extraction patterns that are cus-

tomized for each web source. Recent WHIRL research

(Cohen & Fan 1999) learns general wrapper extractors
from examples.

7 Conclusions and Future Work

The amount of information available on the Internet

continues to grow exponentially. As this trend con-

tinues, we argue that not only will the public need

powerful tools to help them sort through this informa-

tion, but the creators of these tools will need intelligent
techniques to help them build and maintain these ser-

vices. This paper has shown that machine learning

techniques can significantly aid the creation and main-

tenance of domain-specific search engines. We have

presented new research in reinforcement learning, text

classification and information extraction towards this
end.

Much future work in each machine learning area has

38

already been discussed. However, we also see many

other areas where machine learning can further au-

tomate the construction and maintenance of domain-
specific search engines. For example, text classifica-

tion can decide which documents on the Web are rel-
evant to the domain. Unsupervised clustering can au-

tomatically create a topic hierarchy and generate key-

words. Citation graph analysis can identify seminal

papers. We anticipate developing a suite of many ma-

chine learning techniques so domain-specific search en-

gine creation can be accomplished quickly and easily.

Acknowledgements

Most of the work in this paper was performed while all

the authors were at Just Research. The second, third
and fourth authors are listed in alphabetic order. Ka-

mal Nigam was supported in part by the Darpa HPKB

program under contract F30602-97-1-0215.

References
Baum, L. E. 1972. An inequality and associated maxi-
mization technique in statistical estimation of probabilis-
tic functions of a Markov process. Inequalities 3:1-8.

Bellman, R. E. 1957. Dynamic Programming. Princeton,
N J: Princeton University Press.

Bikel, D. M.; Miller, S.; Schwartz, R.; and Weischedel, R.
1997. Nymble: a high-performance learning name-finder.
In Proceedings of ANLP-gT, 194-201.

Bollacker, K. D.; Lawrence, S.; and Giles, C. L. 1998.
CiteSeer: Aa autonomous web agent for automatic re-
trieval and identification of interesting publications. In
Agents ’gs, 116-123.

Boyan, J.; Freitag, D.; and Joachims, T. 1996. A machine
learning architecture for optimizing web search engines. In
AAAI workshop on lnternet-Based Information Systems.

Charniak, E. 1993. Statistical Language Learning. Cam-
bridge, Massachusetts: The MIT Press.

Cho, J.; Garcia-Molina, H.; and Page, L. 1998. Efficient
crawling through URL ordering. In WWW7.

Cohen, W., and Fan, W. 1999. Learning page-independent
heuristics for extracting data from web pages. In AAAI
Spring Symposium on Intelligent Agents in Cyberspace.

Cohen, W. 1998. A web-based information system that
reasons with structured collections of text. In Agents ’98.

Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.;
Mitchell, T.; Nigam, K.; and Slattery, S. 1998. Learning
to extract symbolic knowledge from the World Wide Web.
In AAAI-98, 509-516.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series
B 39(1):1-38.

Hofmann, T., and Puzicha, J. 1998. Statistical models
for co-occurrence data. Technical Report AI Memo 1625,
Artificial Intelligence Laboratory, MIT.

Joachims, T.; Freitag, D.; and Mitchell, T. 1997. Web-
watcher: A tour guide for the World Wide Web. In Pro-
ceedings of IJCAI-g7.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 237-285.

Leek, T. R. 1997. Information extraction using hidden
Markov models. Master’s thesis, UC San Diego.

Lewis, D. D. 1998. Naive (Bayes) at forty: The indepen-
dence assumption in information retrieval. In ECML-98.

McCallum, A., and Nigam, K. 1998. A comparison
of event models for naive Bayes text classification. In
AAAI-98 Workshop on Learning for Text Categorization.
http://www.cs.cmu,edu/~mccaUum.

McCallum, A.; Rosenfeld, R.; Mitchell, T.; and Ng, A.
1998. Improving text clasification by shrinkage in a hier-
archy of classes. In ICML-98, 359-367.

Menczer, F. 1997. ARACHNID: Adaptive retrieval agents
choosing heuristic neighborhoods for information discov-
ery. In ICML ’gz

Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.

Nigam, K.; McCallum, A.; Thrun, S.; and Mitchell, T.
1999. Text classification from labeled and unlabeled doc-
uments using EM. Machine Learning. To appear.

Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceed-
ings of the IEEE 77(2):257-286.

Stolcke, A. 1994. Bayesian Learning of Probabilistic Lan-
guage Models. Ph.D. Dissertation, UC Berkeley.

Torgo, L., and Gama, J. 1997. Regression using classifi-
cation algorithms. Intelligent Data Analysis 1(4).

Viterbi, A. J. 1967. Error bounds for convolutional codes
and an asymtotically optimum decoding algorithm. IEEE
Transactions on Information Theory IT-13:260-269.

Witten, I. H.; Nevill-Manning, C.; McNab, R.; and
Cunnningham, S. J. 1998. A public digital library based
on full-text retrieval: Collections and experience. Com-
munications of the ACM 41(4):71-75.

yamron, J.; Carp, I.; Gillick, L.; Lowe, S.; and van Mul-
bregt, P. 1998. A hidden Markov model approach to text
segmentation and event tracking. In Proceedings of the
IEEE ICASSP.

39

