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Figure 1: Several still frames of our character from Figure 9 in a new animation sequence.

Abstract

Good character animation requires convincing skin deformations
including subtleties and details like muscle bulges. Such effects are
typically created in commercial animation packages which provide
very general and powerful tools. While these systems are conve-
nient and flexible for artists, the generality often leads to characters
that are slow to compute or that require a substantial amount of
memory and thus cannot be used in interactive systems. Instead,
interactive systems restrict artists to a specific character deforma-
tion model which is fast and memory efficient but is notoriously
difficult to author and can suffer from many deformation artifacts.
This paper presents an automated framework that allows character
artists to use the full complement of tools in high-end systems to
create characters for interactive systems. Our method starts with an
arbitrarily rigged character in an animation system. A set of exam-
ples is exported, consisting of skeleton configurations paired with
the deformed geometry as static meshes. Using these examples, we
fit the parameters of a deformation model that best approximates the
original data yet remains fast to compute and compact in memory.

Keywords: Interactive, Skin, Approximation

1 Introduction

To be believable, animated characters must deform in plausible
ways as they move. It is possible to accomplish this by having an
artist sculpt an entire character mesh by hand for every frame of an
animation sequence, but this is impractical. Instead, animators typi-
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cally manipulate an underlying hierarchical skeleton. The character
mesh geometry must then be attached to the underlying skeleton so
that as the skeleton deforms, the mesh also deforms appropriately.
This attachment of model geometry to an underlying skeleton is
called a “skin” and can be viewed as a function that maps from the
skeletal parameters to a deformation field.

There are two fundamental aspects of skin creation—authoring
and computation. Skin authoring refers to how artists use tool sets
to describe the behavior of skin geometry as the skeleton moves.
Skin computation refers to the method by which the deformed mesh
geometry is evaluated for display at some skeleton configuration.
For high-end applications, the authoring methods drive skin cre-
ation while for interactive systems, computation methods dominate.

For high-end applications such as film, the visual fidelity of
characters is paramount, so artists require flexibility and control
in skin authoring. Hence, there are many different ways to create
characters using commercial tools. One technique involves mod-
eling skin substructure such as muscles and tendons to drive the
skin geometry [Wilhelms and Gelder 1997; Scheepers et al. 1997].
Many deformers which drive skins by linking their control points
to the skeletal parameters with custom expressions or scripts are
also available. Some examples include FFD lattices [Sederberg and
Parry 1986] or Wires [Singh and Fiume 1998]. High-end charac-
ters often use a combination of these techniques—different tools
are appropriate for different parts of the character. This generality
and control means that the computation aspect of high-end charac-
ters is highly customizable, tightly coupled to authoring, and poten-
tially unbounded. In fact, high-end tools allow authors to continu-
ally develop new skin computation models through custom scripts,
expressions and complex deformers.

In contrast, interactive systems require fast computation and
small memory size for characters. Thus, the character computa-
tion model is fixed and artists must restrict their tool set to author
characters in direct support of it. The most common skin computa-
tion model in games and interactive systems goes by many names
including SSD, enveloping, smooth skinning, and linear blend skin-
ning. This technique assigns a set of influencing joints and blending
weights to each vertex in the character. The skin is computed by
transforming each vertex by a weighted combination of the joints’
local coordinate frames. This technique is discussed in more de-
tail in Section 3. While fast to evaluate and compact in memory,
this method is notorious not only for its authoring difficulty, but
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also for its undesirable deformation artifacts. However, this method
is widely used since these characters can be used with arbitrary
amounts of animation data and can be posed at runtime.

A different character computation mechanism previously used
in interactive systems is called mesh animation. Mesh animation
works by storing a large number of deformed models as static
meshes—one for each frame of animation. These static models are
then either displayed directly or are linearly interpolated at run-
time. Mesh animation is interesting since it decouples skin au-
thoring from runtime skin computation, allowing artists to use any
tools they want to author characters. Unfortunately mesh anima-
tion is only appropriate when the required animation sequences are
short and are known a priori. As games and interactive applications
use larger amounts of animation, storing every frame becomes pro-
hibitive. This technique is also incapable of generating new poses
at runtime; for example, to place the character’s hand exactly on a
door knob or to make footfalls land precisely on stairs. Due to these
limitations, mesh animation is losing popularity.

In this paper, we present an automated method to build charac-
ter skins that are fast to compute and compactly represented from
a set of examples. This technique allows artists to use any skin
authoring tools they like while producing characters that meet the
performance demands and work with the computation models used
in interactive systems. We present a framework for extending linear
blend skinning that allows us to capture these detailed skin defor-
mations. We show how we can fit the parameters of our skinning
model using a sampling of an arbitrarily rigged character’s defor-
mations.

The rest of this paper is organized as follows. After a review of
related work, we describe the simple linear blend skinning model
and its strengths and weaknesses. The limitations of this approach
lead us to a discussion of our framework for extending this skinning
model. Next we describe how we fit the parameters of our skinning
model using a sampling of the original character deformations. Fi-
nally we present results and applications of our technique.

1.1 System Overview

Building a skin with our system involves two major steps. We be-
gin with a character rigged in an animation package such as Maya.
We then sample this character’s skin deformations by exporting the
character’s geometry in several poses. Next we fit the parameters
of our underlying skinning model using this sampled data.

We wish to obtain a good sampling of the character’s skin de-
formations to fit our underlying model with. To do this, we pose
the character to exercise all the joints fully and include its extreme
poses. This step does not require a trained animator since these
poses are only intended to exercise the degrees of freedom of the
character and need not correspond to a realistic motion. Once this
is done, the poses are sampled regularly at k times. This sampling
can be very simple to obtain from the user’s perspective—in our
case, users must simply invoke a script we have implemented in
Maya. Each sample consists of the skeleton configuration and the
corresponding deformed skin geometry as a static mesh. We call a
paired skeleton configuration and static mesh an example.

Using this set of examples, our system first determines the set of
joints that should influence each vertex, and then solves a bilinear
least-squares problem to fit the parameters of the underlying skin-
ning model. As mentioned earlier, the skinning model we use is
an extension of the standard linear blend skinning model. Our ex-
tension adds extra joints to the character that are simply related to
the existing joints. These new joints are designed in such a way to
capture richer deformations than the standard linear blend skinning
model. Our system is configured to add these extra joints automat-
ically to characters, but we allow users to fine tune the specific set
of extra joints if they wish.

2 Related Work

Character skin deformations are fundamental to character ani-
mation and have been addressed for some time in the litera-
ture. Catmull [1972] introduced one of the first skeleton-driven
techniques—rigid skinning to a hierarchically structured articulated
figure. A 2D skeletal bilinear deformation method was presented
by Burtnyk and Wein [1976]. An early 3D skeleton-driven tech-
nique that went beyond rigid skinning was presented by Magnenat-
Thalmann, et al. [1988]. Their technique used custom programmed
algorithms to deform character meshes based on the nature of par-
ticular joints.

More recently, novel skinning methods that start with a simple
skin and use sparse data interpolation to correct errors between it
and a set of examples have been introduced. Three examples, Pose
Space Deformation, Shape by Example, and EigenSkin [Lewis
et al. 2000; Sloan et al. 2001; Kry et al. 2002] use radial basis
interpolation of corrections to linear blend skins. Another recent
work applies these techniques to range scan data [Allen et al. 2002].
These techniques are similar to ours in that they take examples as
input. The results of these approaches are quite good, and unlike
our technique, they can handle skin deformations that depend on
abstract parameters rather than only skeleton configurations. How-
ever, these methods are not appropriate for interactive characters
since they require storing potentially large amounts of example data
for runtime interpolation. In contrast, our method discards all ex-
ample data after the fitting process so the size of our runtime struc-
tures does not scale with the number of inputs.

Other authors have used physical simulation for interactive de-
formations, especially secondary animation [James and Pai 2002;
Capell et al. 2002]. Our method cannot capture these secondary
deformations directly; however, a technique such as DyRT [James
and Pai 2002] can be applied to the characters we generate to add
secondary animation.

There has been some recent work on fitting skinning mod-
els. One method solves for joint centers and vertex weights for
a scanned arm [Nebel and Sibiryakov 2002] but the Multi-Weight
Enveloping technique [Wang and Phillips 2002], or MWE, is most
similar to our approach. MWE extends linear blend skinning by
giving each vertex one weight to each coefficient of each influenc-
ing joint’s transformation matrix instead of one weight per influ-
encing joint. They then find these weights by solving a linear least-
squares problem using a set of examples as input. While on the sur-
face Multi-Weight Enveloping and our technique seem very similar,
they are in fact different in a fundamental way. Both MWE and our
technique use an extension of linear blend skinning as an underlying
deformation model. However, MWE extends linear blend skinning
by adding more vertex weights to the model while in contrast, our
method adds more joints.

MWE uses a large number of weights per vertex (12 per influenc-
ing joint). This introduces the possibility of rank deficient matrices
in the least-squares solutions [Wang and Phillips 2002], especially
since the matrix coefficients are usually highly correlated. This can
lead to overfitting, which MWE must take measures to avoid. In
contrast, since the number of weights per vertex in one of our skins
remains relatively small (1 per influencing joint) and our extra joints
are explicitly designed to be very different from existing joints, our
technique requires no special provisions to avoid overfitting. Even
so, our method can detect and handle small amounts of overfitting
if it occurs as explained in Section 5.2. Another consequence of
having one weight per entry in the joint transformation matrices is
that MWE skins are not as easily accelerated by graphics hardware
as skins created using our method. Finally, since our skins are com-
puted in the same manner as linear blend skins, existing software
infrastructure can make use of them with little or no changes.
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3 Linear Blend Skinning

The traditional interactive skinning model goes by many names.
Lewis et. al call it Skeleton Subspace Deformation or SSD, Maya
calls it “smooth skinning” and we call it linear blend skinning. This
technique is widely used for interactive applications. An excellent
description of this method is found in Lewis et al. [2000].

The linear blend skinning algorithm works by first placing a hi-
erarchical skeleton inside a static model of a character, typically in
some neutral pose. This initial character pose is referred to as “dress
pose”. Then, each vertex is assigned a set of influencing joints and a
blending weight for each influence. Computing the deformation in
some pose involves rigidly transforming each dress pose vertex by
all of its influencing joints. Then the blending weights are used to
combine these rigidly transformed positions. The deformed vertex
position at some skeletal configuration c, v̄c is computed as

v̄c =
n

∑
i=1

wiMi,cM−1
i,d vd (1)

where wi are the weights (usually affine or convex), vd is the dress-
pose location of some vertex v, Mi,c is the transformation matrix

associated with the ith joint in configuration c and M−1
i,d is the in-

verse of the dress-pose matrix associated with the ith influence.

(Taken together, M−1
i,d vd represents the location of vd in the local

coordinate frame of the ith influence.) Note that a deformed vertex
position in the dress pose configuration c = d is the same as the
provided dress pose vertex (v̄d = vd) if the weights are affine.

This skinning algorithm is notorious for its failings. It cannot
represent complex deformations and suffers from characteristic ar-
tifacts such as the “candy-wrapper” collapse effect on wrists and
collapsing around bending joints as shown in Figure 2. The artifacts
occur because vertices are transformed by linearly interpolated ma-
trices. If the interpolated matrices are dissimilar as in a rotation of
nearly 180 degrees, the interpolated transformation is degenerate,
so the geometry must collapse. In addition to these deformation
problems, linear blend skins are very difficult to author [Lewis et al.
2000].

Despite its failings, this skinning algorithm is very fast and
widely supported by commercial applications so it remains popu-
lar especially in games and virtual environments.

4 Extending Linear Blend Skinning

The linear blend skinning model is not sufficient to capture defor-
mations well as shown in Figure 3. The problem in this particular
case is that as the twist approaches 180 degrees, the linearly blended
matrix becomes degenerate and collapses the skin geometry. Lin-
early blended transformations tend to collapse the more different
they are. The resulting loss of volume can also be observed around
hinge joints such as the knee and elbow as shown in Figure 2.

We observe that we can help avoid the collapse problem by
avoiding blending transformations that are so dissimilar. We can
accomplish this by adding extra transformations that properly in-
terpolates without collapsing. In the case of the twisting wrists, we
can add an extra joint that interpolates the rotation angle correctly
and does not collapse. In fact, artists sometimes do this by hand to
help avoid wrist collapses.

More generally, we observe that any deformation effect could be
obtained by adding joints that deform appropriately to capture that
deformation effect. For example, to capture muscle bulges, we can
add joints that scale up when the muscle should bulge, and scale
down when the muscle relaxes. For wrinkles, we could add several
joints that move and scale in concert to capture the wrinkles. In

Figure 2: Common problems with linear blend skinning: the bent arm on the left

demonstrates shrinkage around bent joints such as the elbow and knee while the twisted

wrist on the right demonstrates the “candy-wrapper” collapse effect. These artifacts are

caused by blending dissimilar transformations.

Figure 3: Top Row: Three examples of a twisting box driven by a nonlinear de-

former. Middle Row: Solved linear blend skin using one joint. Bottom Row: Our

result with just one additional joint that half interpolates the twist rotation.

fact, in the limit we could add as many transformations as vertices
and capture all deformations exactly.

Unfortunately, adding so many extra joints is impractical. First,
adding such a large number of joints would severely impact the per-
formance of our resulting skins. Worse, even if we could find these
transformations for the input examples, it is unclear how to deter-
mine the general relationships of these transformations to the skele-
tal parameters in all poses. Without knowledge of this relationship,
our scheme would only be able to reproduce the input frames and
would not work well in new poses.

Instead, we extend the traditional linear blend skinning model by
adding a relatively small number of joints that are simply related to
the original skeletal parameters and fit using them. We choose these
extra joints by both examining the places where the standard linear
blend model fails and by examining extra character deformations
that we would like to capture. We then add joints that we believe
will help resolve these artifacts. Finally, we fit the parameters of
our skinning model using this extended skeleton. The key to our
success is that since vertices choose weighted sums of transforma-
tions, if any linear scaling of an added joint is beneficial it may be
used. Thus the additional joints need not be exact.

We emphasize that this is a framework for obtaining better defor-
mations and the joints we choose to add are based on our observa-
tions of characters. Different characters with different deformations
may require a different set of additional joints. However, once some
set of these joints is determined, the skin may be solved using our
fitting algorithm without change.
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Figure 4: Top Row: Original examples of a twisting wrist. Middle Row: Linear

blend skin approximation. Bottom Row: Our result using one additional joint.

Original Linear Blend Our Method

Figure 5: Linear blend skinning alone is incapable of capturing correct creasing

around elbows. At the left is an example of a bent elbow. In the middle is the linear

blend skin approximation. notice the interpenetration. In contrast, our method avoids

the interpenetration.

4.1 Additional Joints

To help solve the collapsing geometry problem, our system can
automatically add joints that properly interpolate rotations without
collapsing. This is done by examining the rotation of a joint relative
to the dress pose and computing the new joint as the halfway spher-
ical linear interpolation [Shoemake 1985] of this rotation, located at
the same position in space. More joints with evenly distributed in-
terpolation parameters could be added to sample this rotation space
even better; however, in our experience just a single interpolated
rotation is sufficient.

Figure 4 demonstrates the improvements gained by simply
adding a single interpolated rotation joint in the twisting case. Fig-
ure 5 shows the improvements for the bent elbow case.

Another type of effect not easily captured by the simple linear
blend model is bulging and denting of skins caused by muscles,
tendons, or other substructure. These particular effects cannot be
captured since the joints employed in animating a character do not
typically scale up and down as would be necessary to approximate
these effects.

We have observed that for many characters, the substructure de-
formation effects from muscles and tendons are often simply re-
lated to the angles between joints. For example, a bicep bulge is
small when the elbow is near full extension while the bugle is large
when the elbow is near full flexion. The effect is similar for other
muscles in the body. To capture these effects, our system can add
several joints that scale up and down based on the angle between
particular joints.

We add these scaling joints as follows. First we choose a joint
in the original skeleton that will drive the scaling parameters of the
new joints. Once this driver is chosen, there are two sets of joints
that we add. The first set is “upstream” of the driver and lies in the
middle of the bone connecting the driver to its parent, the second
set is “downstream” and lies in the middle of the bones connecting
the driver to its children.

v1

v2

θ

Driver

J1

J2

J3

J4-J7

Figure 6: Our method adds extra joints to characters to help better approximate

deformations. Here J4 through J7 are automatically added upstream joints that scale

depending on the angle θ. As θ decreases, J4 scales up in the direction v1 which is

orthogonal to the bone connecting J1 and J2. Meanwhile, J5 scales up in the direction

v2, orthogonal to both the bone and v1. J6 and J7 operate similarly, but scale down as

θ increases rather than up. Downstream joints are very similar except that these joints

are positioned on the bone from J2 to J3.

All upstream joints are oriented in the same way, with one axis
aligned with the bone as shown in Figure 6. We use four upstream
joints. Two of them scale up about two axes orthogonal to the bone
and a corresponding pair scale down about the two axes orthogonal
to the bone. The scale parameters of these joints are set based on
the angle of the bone connecting the driver to its parent and the
bone connecting the driver to its child. If the driver has multiple
children, a vector that is the sum of the bones connecting the driver
to its children is used to measure the angle. Downstream joints are
similar. We use four downstream joints on each bone connecting
the driver to its children that scale just as the upstream joints do.

The scale parameters are computed as follows. For joints that
scale up, the scale parameter s is

s = 1+
k

2

(

b1 ·b2

‖b1‖‖b2‖
+1

)

where b1 and b2 are the bone vectors used to measure the angle at
the driver joint and k is the maximum scale factor when the angle
between b1 and b2 is zero. For joints that scale down, the scale
parameter is simply s−1. The value for k may be chosen by the
user but in our experience, we have found that 8 works well for our
examples. Again, since vertices may take any scaling of these new
joints, a conservative large value is fine. For example, if a vertex in
fact needed a joint that scaled by 2 instead of 8, it could be assigned

a weight of 1
4 .

5 Fitting the Skinning Model

Once our system has augmented the input skeleton, we use a fitting
procedure to set the parameters of the underlying skinning model
to match the example data well.

As mentioned earlier, the input to the fitting process is a set of ex-
amples. An example is simply a static character mesh paired with
a skeleton. This static mesh is deformed according to the skele-
ton configuration, but it is not attached to the skeleton in any way.
For our results, our examples were generated by exporting rigged
objects from Maya, but they could have been sculpted by hand or
come from another program.

A linear blend skin computes a deformed vertex as described
earlier in Equation 1. Examining this skinning model, only the Mi

are predetermined. These are the coordinate frames associated with
all the joints in the character. That means for each vertex, we are
able to choose the set of influencing joints, influence weights (wi)
and the dress pose vertex position (vd). We would like to choose
the influence sets, weights and dress pose vertex positions that best
approximate the examples and generalize well to new poses.
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Examples

Compactness of Local Coordinate Point Clouds

Upper Arm Lower Arm

Figure 7: Top: A set of three examples of a deforming arm mesh with a bulging

bicep. A particular point on the arm mesh is highlighted in each example. Bottom

Left: Each example rotated and aligned so that the upper arm bones coincide. The

highlighted points form a cloud in the local coordinate frame of the upper arm. Even

though the bicep bulges significantly, this cloud is compact. Lower Right: A similar

point cloud but relative to the forearm. This cloud is far less compact than the former,

making the forearm a poorer choice for an influence.

5.1 Finding Influence Sets

We determine influence sets first for several reasons. Ideally, the
influence sets would fall out naturally from the weight solving pro-
cedure (irrelevant joints would have a weight of zero) but this does
not happen in practice because our samplings are necessarily not ex-
haustive. Also, the more joints that a vertex depends on, the slower
the skin can be to compute and current hardware only supports a
limited number of influences per vertex. Thus, we would like to
select a small set of good influences. Also, choosing the influence
sets appropriately lets us bound the size of the problems we must
solve to determine the weights as discussed in Section 5.2. This
makes the solving process faster.

In most recent research, influence set determination has been left
to users [Lewis et al. 2000; Wang and Phillips 2002; Sloan et al.
2001]. The task is typically accomplished by “painting” the re-
gions of influence for each joint over the mesh. While less difficult
than painting the weights themselves [Lewis et al. 2000], it is a te-
dious process. In contrast, our system automatically determines the
influence sets for each vertex using a heuristic algorithm.

We observe that vertices in a character skin typically transform
nearly rigidly with respect to some joint. For instance, vertices on
the forearm roughly follow the forearm. We believe that for most
characters, their skin is most heavily influenced by those joints that
they are bound to. Even though a point on the bicep is not truly
rigid as an arm moves (due to muscle bulge), we believe that these
points remain mostly rigidly attached to the upper arm, and there-
fore should be influenced by it. Using this observation, we measure
how rigidly a vertex transforms with every joint over all examples
and use the most rigidly transforming joints for the influence set.

For a single vertex, a rigidity score for a joint is computed as
follows. For each example, the local coordinate position of the

vertex is computed as M−1
i,e ve where Mi,e is the coordinate frame

associated with the ith joint in the eth example and ve is the global
coordinate position of the vertex on the eth example. The collection
of these local coordinate positions over all examples forms a point
cloud as shown in Figure 7. The more compact this point cloud, the
more rigid we believe the vertex-joint relationship to be. We mea-
sure the compactness of this point cloud by taking its diameter (the
maximum distance between any two points in the cloud). We have
found that the simple O(n2) algorithm that compares each point to
every other to be fast enough for our purposes but this diameter

may be computed more quickly. An O(n logn) time algorithm is
possible. See [Malandain and Boissonnat 2002] for faster methods.

Once the compactness measures for all joints are computed for a
vertex, the smallest k are chosen as the influence set for that vertex.
It may be tempting to use a threshold scheme to choose influence
sets but we have found this problematic. It is unclear how to pick
a good threshold because as the rigidity scores get larger, they be-
come less meaningful. For instance, it may happen as an artifact of
the particular input examples that points on the left shoulder move
much more rigidly relative to the right leg rather than the left leg
but both choices make no sense for influences. Since larger rigid-
ity scores are not particularly meaningful, it is nearly impossible to
pick a meaningful threshold value.

As in other linear blend skinning systems, influence sets need
only be determined conservatively [Wang and Phillips 2002] so we
allow users to choose k if desired. In our experience, we have found
that between three and eight influences works well, depending on
the complexity of the character.

5.2 Solving for Weights and Vertices

Once the influence sets have been determined, only the weights and
dress pose vertex positions remain (wi and vd). We would like to
find the best vertices and weights that minimize the least-squares
difference between the skin and the examples at all the example
skeleton configurations. That is

min

∥

∥

∥

∥

∥

n

∑
i=1

v̄ei
−vei

∥

∥

∥

∥

∥

2

for all examples where vei
is the input vertex position from the ith

example and v̄ei
is the deformed vertex computed by the skinning

model at the ith example configuration.

v̄e =
n

∑
i=1

wiMi,eM−1
i,d vd

This problem is bilinear in the weights and vertices. We use an
alternation technique to solve the optimization. This works by first
fixing the first variable and solving a linear least-squares problem
to find the second, then fixing the second and solving a linear least-
squares problem for the first. This process is then repeated until
it converges. This technique is commonly used and is described
in [Freeman and Tenenbaum 1997]. We start by solving for weights
since we have no good guess for them but we know that the initial
dress pose vertices are ideal. Next we hold the weights fixed and
solve for vertex positions. This process typically converges after
one or two iterations.

As mentioned in Section 2, we have found that since we are
solving for a small numbers of weights using large numbers of ex-
amples, our systems are often well conditioned and do not suffer
from overfitting if the input data is well sampled. Thus we do not
have to take special precautions to avoid overfitting as in [Wang and
Phillips 2002], although we include tests for robustness.

For clarity, we present the matrices we solve via least-squares in

block form. First we introduce some notation: Ti,e = Mi,eM−1
i,d . In

order to ensure that the resulting weights are affine, we set w1 =
1−∑

n
i=2 wi, and solve for w2 through wn.







(T2,e1
−T1,e1

)vd · · · (Tn,e1
−T1,e1

)vd

...
. . .

...
(T2,ek

−T1,ek
)vd · · · (Tn,ek

−T1,ek
)vd















w2

w3

...
wn









=







ve1
−T1,e1

vd

...
vek

−T1,ek
vd
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The matrix used to solve for vertex positions is as follows.







∑
n
i=1 wiTi,e1

...

∑
n
i=1 wiTi,ek







[

vd

]

=







ve1

...
vek







To handle homogeneous coordinates, the translation parts of the

∑
n
i=1 wiTi,ek

matrices are subtracted from the ve on the right hand
side.

We solve these least-squares problems using the singular value
decomposition. This lets us detect when our matrices are rank defi-
cient, leading to overfitting. We detect this by comparing the ratio
of the largest singular value to the smallest, and issuing a warning
if there are any singular values below some fraction of this ratio. To
recover, we zero these singular values and continue with the fitting
process. If overfitting is a problem, provisions such as those taken
in [Wang and Phillips 2002] could also be used. However, in all the
examples in this paper, no singular values were zeroed.

5.3 Handling Normals

It is not only important for the geometry in a skin approximation
to be accurate, but also important for normals to be well approxi-
mated. If they are not, lighting calculations will not produce good
results. We assume that normals are specified per vertex. It may
seem that just transforming a dress pose normal by the inverse trans-
pose of the corresponding vertex’s transformation matrix would be
correct. To be more explicit,

n̄c =
(∑wiMi,cM−1

i,d )−T nd
∥

∥

∥
(∑wiMi,cM−1

i,d )−T nd

∥

∥

∥

While this is technically valid for local neighborhoods of smooth
surfaces [Turkowski 1990], we do not have a smooth surface. In-
stead we have single points that are computed independently. Com-
puting the normals in this manner can give undesirable results when
the blended transformations are not pure rotations.

Interactive systems typically approximate normal calculations as

n̄c =
∑wiM

−T
i,c MT

i,dnd
∥

∥

∥∑wiM
−T
i,c MT

i,dnd

∥

∥

∥

(2)

since it is often faster to calculate the joint matrices and their in-
verses incrementally by composition because at each step, rotations
and scales have special inverse forms. This alleviates the need for
a general inversion operation. In EigenSkin [Kry et al. 2002], nor-
mals are treated as second skinning problem and are computed in-
dependently. In our system, we take the model used in existing
systems as in Equation 2 and include normals in our optimization
process. To do this, we simply add more terms to the objective func-
tion to include the differences between normal vectors. We allow
users to scale normals if they wish to change their relative influence
on the least-squares solution.

6 Results

The simple linear blend skinning model commonly used in video
games and other interactive applications is very fast and compact
but cannot capture the high quality deformations that make convinc-
ing characters. Our framework for extending the linear blend model
allows us to capture much more interesting deformations while re-
taining its efficiency.

The most egregious deformation problems of linear blend skin-
ning are solved by our approach. Figures 3 and 4 show how our

Original

Linear Blend Skin

Our Method

Figure 8: Top: Examples of a muscular arm flexing. Middle: Linear blend skin

approximation. Note the lack of bicep bulge. Bottom: Results using our method.

system can fix collapsing twists by adding just a single extra joint.
Collapsing and interpenetrations around hinge joints are also fixed
using our method as shown in Figure 5.

In addition to solving these problems with linear blend skinning,
our extension framework can capture other more subtle and detailed
deformations required for convincing characters. Figure 8 demon-
strates how our method can capture the bulges in the biceps and
triceps of a character’s arm. While the particular extra joints we
have chosen to add to our characters may not be capable of captur-
ing the full deformation for any character, different extra joints that
do capture the desired deformations may be added and solved using
our technique.

To demonstrate that our technique can be used on more than just
simple arms and legs, Figure 9 shows a rigged upper body and its
approximation by our system. This figure also shows this character
in new poses from an animation sequence, demonstrating that our
resulting skins generalize well to new poses.

Our solution procedure is generally very fast. None of the exam-
ples shown here took more than five minutes to solve on a modern
personal computer. The slowest was the upper body model which
has more than 6000 vertices, 50 examples, and 5 influences per ver-
tex. The computation time for each vertex depends on the number
of influences and the number of examples. Also, since each vertex
is solved independently, our algorithm is trivial to parallelize.

6.1 Applications

The ability to generate compactly represented, fast to evaluate, high
quality skin approximations from a set of examples is very useful.
Applications range from building characters for video games and
virtual environments to high-end animation previewing.

Many current interactive systems such as video games only sup-
port linear blend skinned characters. Aside from the deformation
problems associated with using this model, authoring these skins
is notoriously difficult. Determining the blending weights and in-
fluence sets is left to the skin author to set directly. None of the
more intuitive or useful deformer primitives provided by animation
systems may be used.

Using our method, character authors may use any tools they like
to author characters. All our system requires is a set of examples
which is used to compute the appropriate influence sets and blend-
ing weights automatically. This frees the author from setting them
manually. It is important to note that since our characters are a
straightforward extension to linear blend skinning, many existing
interactive systems already have the software infrastructure to sup-

6



To appear at SIGGRAPH 2003

Original Examples

Linear Blend Skin

Our Method

Figure 9: Top Row: Examples of an upper body rigged in Maya. Middle Row:

Best linear blend skin. Note the circled problem areas. Bottom Row: Our results.

port them. In addition, since our skins are computed in the same
manner as existing linear blend skins, they are already accelerated
by current graphics hardware.

Another application of our system is to map a character origi-
nally attached to one skeleton onto a different underlying skeleton.
We call this process skin retargeting. Skin retargeting is useful if a
particular interactive system requires characters to have a specific
skeleton. For instance, a video game may have an optimized engine
for characters with a particular skeleton topology. Ordinarily, if a
character was created for a different skeleton, the character would
have to be re-rigged manually to work on the new skeleton topol-
ogy. However, this can be accomplished much more easily with our
system. One just exports a set of example meshes deformed by the
original skeleton but paired with corresponding poses of the new
skeleton. Our system sees this as any other set of data and solves
for the proper influence sets and blending weights.

Another application of our technique is targeted at high-end ani-
mation. High-end characters often have such complex deformations
that they cannot be computed interactively. Thus, animators typi-
cally work with low fidelity versions that only roughly suggest the
actual shape of the character. Using our method, interactive charac-
ters could be built that allow animators to interact with much better
approximations of the deformed characters.

6.2 Discussion

In this paper, we have presented a method for building fast to eval-
uate, compact representations that produce accurate approxima-
tions of deforming characters. The characters may be rigged using
any available tool since our system only requires static deformed
meshes paired with skeletal configurations as input.

While our technique works well for a wide variety of character
skins, it has limitations. For instance, character deformations in
our model are only driven by the skeleton’s joint parameters. Our
method cannot capture deformations that are driven by abstract pa-
rameters such as “happiness” as in [Lewis et al. 2000; Sloan et al.
2001]. Our system also cannot accurately reproduce deformations
that are not representable as linear combinations of the transforma-
tions expressed in our skeletons. For instance, the scaling joints
presented in this paper can only fully capture deformations that are
well approximated by a scaling that is linearly related to the cosine
of the angle between two bones. This assumption may be violated
by a character whose muscle bulges only when its arm is fully bent.
The scaling joints also assume that only the angle between joints is
important, so bending the shoulder forward is treated the same as

bending it up. Even though not all deformations can be captured
using the extra joints presented here, new joints may be added to
capture any important deformation, and our influence set and ver-
tex weight solving framework may be applied without change.

Despite these limitations, our method produces high-quality yet
fast and compact skinned characters that work with existing game
engines, graphics hardware and other runtime systems.

Acknowledgments
We would like to thank Luke Tokheim for help with rigging and J. P. Lewis and Karan

Singh for their generosity with characters. We would also like to thank the UW Graph-

ics Group, especially Andrew Selle and Hyun Joon Shin for their help with video pro-

duction. This research is supported by NSF grants CCR-9984506 and CCR-0204372,

and equipment donations from Intel.

References
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