
Building Efficient and Effective Metasearch Engines

WEIYI MENG

State University of New York at Binghamton

CLEMENT YU

University of Illinois at Chicago

AND

KING-LUP LIU

DePaul University

Frequently a user’s information needs are stored in the databases of multiple
search engines. It is inconvenient and inefficient for an ordinary user to invoke multiple
search engines and identify useful documents from the returned results. To support
unified access to multiple search engines, a metasearch engine can be constructed.
When a metasearch engine receives a query from a user, it invokes the underlying
search engines to retrieve useful information for the user. Metasearch engines have
other benefits as a search tool such as increasing the search coverage of the Web and
improving the scalability of the search. In this article, we survey techniques that have
been proposed to tackle several underlying challenges for building a good metasearch
engine. Among the main challenges, the database selection problem is to identify search
engines that are likely to return useful documents to a given query. The document
selection problem is to determine what documents to retrieve from each identified search
engine. The result merging problem is to combine the documents returned from multiple
search engines. We will also point out some problems that need to be further researched.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed databases; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Search process; Selection process; H.3.4
[Information Storage and Retrieval]: Systems and Software—Information networks

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Collection fusion, distributed collection, distributed
information retrieval, information resource discovery, metasearch

This work was supported in part by the following National Science Foundation (NSF) grants: IIS-9902872,
IIS-9902792, and EIA-9911099.

Authors’ addresses: W. Meng, Department of Computer Science, State University of New York at Binghamton,
Binghamton, NY 13902; email: meng@cs.binghamton.edu; C. Yu, Department of Computer Science,
University of Illinois at Chicago, Chicago, IL 60607; email: yu@cs.uic.edu; K.-L. Liu, School of Computer
Science, Telecommunications and Information Systems, DePaul University, Chicago, IL 60604; email:
kliu@cti.depaul.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted with-
out fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
c©2002 ACM 0360-0300/02/0300-0048 $5.00

ACM Computing Surveys, Vol. 34, No. 1, March 2002, pp. 48–89.

Building Efficient and Effective Metasearch Engines 49

1. INTRODUCTION

The Web has become a vast information
resource in recent years. Millions of people
use the Web on a regular basis and the
number is increasing rapidly. Most data on
the Web is in the form of text or image. In
this survey, we concentrate on the search
of text data.

Finding desired data on the Web in a
timely and cost-effective way is a prob-
lem of wide interest. In the last several
years, many search engines have been cre-
ated to help Web users find desired in-
formation. Each search engine has a text
database that is defined by the set of docu-
ments that can be searched by the search
engine. When there is no confusion, the
term database and the phrase search en-
gine will be used interchangeably in this
survey. Usually, an index for all documents
in the database is created in advance. For
each term that represents a content word
or a combination of several (usually adja-
cent) content words, this index can iden-
tify the documents that contain the term
quickly. Google, Altavista, Excite, Lycos,
and HotBot are all popular search engines
on the Web.

Two types of search engines exist.
General-purpose search engines aim at
providing the capability to search all
pages on the Web. The search engines
we mentioned in the previous para-
graph are a few of the well-known ones.
Special-purpose search engines, on the
other hand, focus on documents in con-
fined domains such as documents in
an organization or in a specific subject
area. For example, the Cora search en-
gine (cora.whizbang.com) focuses on com-
puter science research papers and Med-
ical World Search (www.mwsearch.com)
is a search engine for medical informa-
tion. Most organizations and business
sites have installed search engines for
their pages. It is believed that hundreds
of thousands of special-purpose search en-
gines currently exist on the Web [Bergman
2000].

The amount of data on the Web is huge.
It is believed that by February of 1999,
there were already more than 800 million

publicly indexable Web pages [Lawrence
and Lee Giles 1999] and the number is
well over 2 billion now (Google has indexed
over 2 billion pages) and is increasing at
a very high rate. Many believe that em-
ploying a single general-purpose search
engine for all data on the Web is unre-
alistic [Hawking and Thistlewaite 1999;
Sugiura and Etzioni 2000; Wu et al. 2001].
First, its processing power may not scale
to the rapidly increasing and virtually un-
limited amount of data. Second, gathering
all the data on the Web and keeping it
reasonably up-to-date are extremely diffi-
cult if not impossible objectives. Programs
(e.g., Web robots) used by major search en-
gines to gather data automatically may
slow down local servers and are increas-
ingly unpopular. Furthermore, many sites
may not allow their documents to be in-
dexed but instead may allow the docu-
ments to be accessed through their search
engines only (these sites are part of the so-
called deep Web [Bergman 2000]). Conse-
quently, we have to live with the reality of
having a large number of special-purpose
search engines that each covers a portion
of the Web.

A metasearch engine is a system that
provides unified access to multiple ex-
isting search engines. A metasearch en-
gine does not maintain its own index
of documents. However, a sophisticated
metasearch engine may maintain infor-
mation about the contents of its under-
lying search engines to provide better
service. In a nutshell, when a metasearch
engine receives a user query, it first passes
the query (with necessary reformatting)
to the appropriate underlying search en-
gines, and then collects and reorganizes
the results received from them. A simple
two-level architecture of a metasearch en-
gine is depicted in Figure 1. This two-level
architecture can be generalized to a hier-
archy of more than two levels when the
number of underlying search engines be-
comes large [Baumgarten 1997; Gravano
and Garcia-Molina 1995; Sheldon et al.
1994; Yu et al. 1999b].

There are a number of reasons for the
development of a metasearch engine and
we discuss these reasons below.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

50 Meng et al.

Fig. 1 . A simple metasearch architecture.

(1) Increase the search coverage of the
Web. A recent study [Lawrence and
Lee Giles 1999] indicated that the
coverage of the Web by individual
major general-purpose search engines
has been decreasing steadily. This is
mainly due to the fact that the Web has
been increasing at a much faster rate
than the indexing capability of any sin-
gle search engine. By combining the
coverages of multiple search engines
through a metasearch engine, a much
higher percentage of the Web can be
searched. While the largest general-
purpose search engines index less than
2 billion Web pages, all special-purpose
search engines combined may index
up to 500 billion Web pages [Bergman
2000].

(2) Solve the scalability of searching the
Web. As we mentioned earlier, the ap-
proach of employing a single general-
purpose search engine for the entire
Web has poor scalability. In contrast,
if a metasearch engine on top of all the
special-purpose search engines can be
created as an alternative to search the
entire Web, then the problems associ-
ated with employing a single general-
purpose search engine will either dis-
appear or be significantly alleviated.
The size of a typical special-purpose
search engine is much smaller than
that of a major general-purpose search
engine. Therefore, it is much easier for
it to keep its index data more up to
date (i.e., updating of index data to
reflect the changes of documents can
be carried out more frequently). It is
also much easier to build the necessary
hardware and software infrastructure

for a special-purpose search engine. As
a result, the metasearch engine ap-
proach for searching the entire Web is
likely to be significantly more scalable
than the centralized general-purpose
search engine approach.

(3) Facilitate the invocation of multi-
ple search engines. The information
needed by a user is frequently stored
in the databases of multiple search en-
gines. As an example, consider the case
when a user wants to find the best
10 newspaper articles about a special
event. It is likely that the desired arti-
cles are scattered across the databases
of a number of newspapers. The user
can send his/her query to every news-
paper database and examine the re-
trieved articles from each database
to identify the 10 best articles. This
is a formidable task. First, the user
will have to identify the sites of the
newspapers. Second, the user will need
to send the query to each of these
databases. Since different databases
may accept queries in different for-
mats, the user will have to format
the query correctly for each database.
Third, there will be no overall quality
ranking among the articles returned
from these databases even though the
retrieved articles from each individual
database may be ranked. As a result,
it will be difficult for the user, with-
out reading the contents of the arti-
cles, to determine which articles are
likely to be among the most useful
ones. If there are a large number of
databases, each returning some arti-
cles to the user, then the user will sim-
ply be overwhelmed. If a metasearch
engine on top of these local search en-
gines is built, then the user only needs
to submit one query to invoke all lo-
cal search engines via the metasearch
engine. A good metasearch engine can
rank the documents returned from dif-
ferent search engines properly. Clearly,
such a metasearch engine makes the
user’s task much easier.

(4) Improve the retrieval effectiveness.
Consider the scenario where a user

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 51

needs to find documents in a spe-
cific subject area. Suppose that there
is a special-purpose search engine for
this subject area and there is also
a general-purpose search engine that
contains all the documents indexed by
the special-purpose search engine in
addition to many documents unrelated
to this subject area. It is usually true
that if the user submits the same query
to both of the two search engines, the
user is likely to obtain better results
from the special-purpose search engine
than the general-purpose search en-
gine. In other words, the existence of a
large number of unrelated documents
in the general-purpose search engine
may hinder the retrieval of desired doc-
uments. In text retrieval, documents
in the same collection can be grouped
into clusters such that the documents
in the same cluster are more related
than documents across different clus-
ters. When evaluating a query, clusters
related to the query can be identified
first and then the search can be carried
out for these clusters. This method has
been shown to improve the retrieval ef-
fectiveness of the system [Xu and Croft
1999]. For documents on the Web, the
databases in different special-purpose
search engines are natural clusters. As
a result, if for any given query sub-
mitted to the metasearch engine, the
search can be restricted to only special-
purpose search engines related to the
query, then it is likely that better re-
trieval effectiveness can be achieved
using the metasearch engine than us-
ing a general-purpose search engine.
While it may be possible for a general-
purpose search engine to cluster its
documents to improve retrieval effec-
tiveness, the quality of these clusters
may not be as good as the ones corre-
sponding to special-purpose search en-
gines. Furthermore, constructing and
maintaining the clusters consumes
more resources of the general-purpose
search engine.

This article has three objectives. First,
we review the main technical issues in

building a good metasearch engine. Sec-
ond, we survey different proposed tech-
niques for tackling these issues. Third, we
point out new challenges and research di-
rections in the metasearch engine area.

The rest of the article is organized as
follows. In Section 2, we provide a short
overview of some basic concepts on infor-
mation retrieval (IR). These concepts are
important for the discussions in this arti-
cle. In Section 3, we outline the main soft-
ware components of a metasearch engine.
In Section 4, we discuss how the autonomy
of different local search engines, as well
as the heterogeneities among them, may
affect the building of a good metasearch
engine. In Section 5, we survey reported
techniques for the database selection prob-
lem (i.e., determining which databases
to search for a given user query). In
Section 6, we survey known methods for
the document selection problem (i.e., de-
termining what documents to retrieve
from each selected database for a user
query). In Section 7, we report different
techniques for the result merging problem
(i.e., combining results returned from dif-
ferent local databases into a single ranked
list). In Section 8, we present some new
challenges for building a good metasearch
engine.

2. BASIC INFORMATION RETRIEVAL

Information retrieval deals with tech-
niques for finding relevant (useful) doc-
uments for any given query from a
collection of documents. Documents are
typically preprocessed and represented in
a form that facilitates efficient and ac-
curate retrieval. In this section, we first
overview some basic concepts in classi-
cal information retrieval and then point
out several features specifically associated
with Web search engines.

2.1. Classical Information Retrieval

The contents of a document may be rep-
resented by the words contained in it.
Some words such as “a,” “of,” and “is” do

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

52 Meng et al.

not contain semantic information. These
words are called stop words and are
usually not used for document represen-
tation. The remaining words are con-
tent words and can be used to repre-
sent the document. Variations of the same
word may be mapped to the same term.
For example, the words “beauty,” “beau-
tiful,” and “beautify” can be denoted by
the term “beaut.” This can be achieved
by a stemming program. After remov-
ing stop words and stemming, each doc-
ument can be logically represented by
a vector of n terms [Salton and McGill
1983; Yu and Meng 1998], where n is
the total number of distinct terms in
the set of all documents in a document
collection.

Suppose the document d is represented
by the vector (d1, . . . , di, . . . , dn), where di
is a number (weight) indicating the im-
portance of the ith term in representing
the contents of the document d . Most of
the entries in the vector will be zero be-
cause most terms are absent from any
given document. When a term is present
in a document, the weight assigned to the
term is usually based on two factors. The
term frequency (tf) of a term in a doc-
ument is the number of times the term
occurs in the document. Intuitively, the
higher the term frequency of a term is,
the more important the term is in repre-
senting the contents of the document. As
a consequence, the term frequency weight
(tfw) of the term in the document is usu-
ally a monotonically increasing function of
its term frequency. The second factor af-
fecting the weight of a term is the docu-
ment frequency (df), which is the number
of documents having the term. Usually,
the higher the document frequency of a
term is, the less important the term is
in differentiating documents having the
term from documents not having it. Thus,
the weight of a term based on its docu-
ment frequency is usually monotonically
decreasing and is called the inverse docu-
ment frequency weight (idfw). The weight
of a term in a document can be the prod-
uct of its term frequency weight and its
inverse document frequency weight, that
is, tfw ∗ idfw.

A query is simply a question writ-
ten in text.1 It can be transformed into
an n-dimensional vector as well. Specif-
ically, the noncontent words are elimi-
nated by comparing the words in the
query against the stop word list. Then,
words in the query are mapped into terms
and, finally, terms are weighted based
on term frequency and/or document fre-
quency information.

After the vectors of all documents and a
query are formed, document vectors which
are close to the query vector are retrieved.
A similarity function can be used to mea-
sure the degree of closeness between two
vectors. One simple function is the dot
product function, dot(q, d) =∑n

k=1 qi ∗ di,
where q = (q1, . . . , qn) is the vector of a
query and d = (d1, . . . , dn) is the vector
of a document. The dot product function is
a weighted sum of the terms in common
between the two vectors. The dot prod-
uct function tends to favor long documents
having many terms, because the chance
of having more terms in common between
a document and a given query is higher
for a longer document than a shorter
document. In order that all documents
have a fair chance of being retrieved, the
cosine function can be utilized. It is given
by dot(q, d)/(|q| · |d |), where |q| and |d |
denote, respectively, the lengths of the
query vector and the document vector. The
cosine function [Salton and McGill 1983]
between two vectors is really the cosine of
the angle between the two vectors and it
always returns a value between 0 and 1
when the weights are nonnegative. It gets
the value 0 if there is no term in common
between the query and the document; its
value is 1 if the query and the document
vectors are identical or one vector is a pos-
itive constant multiple of the other.

A common measure for retrieval effec-
tiveness is recall and precision. For a given
query submitted by a user, suppose that

1 We note that Boolean queries are also supported
by many IR systems. In this article, we concentrate
on vector space queries only unless other types of
queries are explicitly identified. A study of 51,473
real user queries submitted to the Excite search en-
gine indicated that less than 10% of these queries are
Boolean queries [Jansen et al. 1998].

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 53

the set of relevant documents with respect
to the query in the document collection can
be determined. The two quantities recall
and precision can be defined as follows:

recall

= the number of retrieved relevant documents

the number of relevant documents
,

(1)
precision

= the number of retrieved relevant documents

the number of retrieved documents
.

(2)

To evaluate the effectiveness of a text re-
trieval system, a set of test queries is used.
For each query, the set of relevant docu-
ments is identified in advance. For each
such query, a precision value for each dis-
tinct recall value is obtained. When these
sets of recall-precision values are aver-
aged over the set of test queries, an aver-
age recall-precision curve is obtained. This
curve is used as the measure of the effec-
tiveness of the system.

An ideal information retrieval system
retrieves all relevant documents and noth-
ing else (i.e., both recall and precision
equal to 1). In practice, this is not possi-
ble, as a user’s needs may be incorrectly or
imprecisely specified by his/her query and
the user’s concept of relevance varies over
time and is difficult to capture. Thus, the
retrieval of documents is implemented by
employing some similarity function that
approximates the degrees of relevance of
documents with respect to a given query.
Relevance information due to previous re-
trieval results may be utilized by sys-
tems with learning capabilities to improve
retrieval effectiveness. In the remaining
portion of this paper, we shall restrict our-
selves to the use of similarity functions
in achieving high retrieval effectiveness,
except for certain situations where users’
feedback information is incorporated.

2.2. Web Search Engines

A Web search engine is essentially an in-
formation retrieval system for Web pages.
However, Web pages have several features

that are not usually associated with docu-
ments in traditional IR systems and these
features have been explored by search en-
gine developers to improve the retrieval
effectiveness of search engines.

The first special feature of Web pages is
that they are highly tagged documents. At
present, most Web pages are in HTML for-
mat. In the foreseeable future, XML docu-
ments may be widely used. These tags of-
ten convey rich information regarding the
terms used in documents. For example, a
term appearing in the title of a document
or emphasized with a special font can pro-
vide a hint that the term is rather impor-
tant in indicating the contents of the docu-
ment. Tag information has been used by a
number of search engines such as Google
and AltaVista to better determine the im-
portance of a term in representing the con-
tents of a page. For example, a term occur-
ring in the title or the header of a page may
be considered to be more important than
the same term occurring in the main text.
As another example, a term typed in a spe-
cial font such as bold face and large fonts is
likely to be more important than the same
term not in any special font. Studies have
indicated that the higher weights assigned
to terms due to their locations or their spe-
cial fonts or tags can yield higher retrieval
effectiveness than schemes which do not
take advantage of the location or tag in-
formation [Cutler et al. 1997].

The second special feature of Web pages
is that they are extensively linked. A link
from page A to page B provides a con-
venient path for a Web user to navigate
from page A to page B. Careful analysis
can reveal that such a simple link could
contain several pieces of information that
may be made use of to improve retrieval
effectiveness. First, such a link indicates
a good likelihood that the contents of the
two pages are related. Second, the author
of page A values the contents of page B.
The linkage information has been used
to compute the global importance (i.e.,
PageRank) of Web pages based on whether
a page is pointed to by many pages and/or
by important pages [Page et al. 1998].
This has been successfully used in the
Google search engine to improve retrieval

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

54 Meng et al.

effectiveness. The linkage information has
also been used to compute the authority
(the degree of importance) of Web pages
with respect to a given topic [Kleinberg
1998]. IBM’s Clever Project aims to de-
velop a search engine that employs the
technique of computing the authorities of
Web page for a given query [Chakrabarti
et al. 1999].

Another way to utilize the linkage in-
formation is as follows. When a page A
has a link to page B, a set of terms known
as anchor terms is usually associated with
the link. The purpose of using the anchor
terms is to provide information regarding
the contents of page B to facilitate the nav-
igation by human users. The anchor terms
often provide related terms or synonyms to
the terms used to index page B. To utilize
such valuable information, several search
engines like Google [Brin and Page 1998]
and WWWW [McBryan 1994] have sug-
gested also using anchor terms to repre-
sent linked pages (e.g., page B). In gen-
eral, a Web page may be linked by many
other Web pages and has many associated
anchor terms.

3. METASEARCH ENGINE COMPONENTS

In a typical session of using a metasearch
engine, a user submits a query to the
metasearch engine through a user-
friendly interface. The metasearch engine
then sends the user query to a number of
underlying search engines (which will be
called component search engines in this ar-
ticle). Different component search engines
may accept queries in different formats.
The user query may thus need to be trans-
lated to an appropriate format for each
local system. After the retrieval results
from the local search engines are received,
the metasearch engine merges the results
into a single ranked list and presents the
merged result, possibly only the top por-
tion of the merged result, to the user. The
result could be a list of documents or more
likely a list of document identifiers (e.g.,
URLs for Web pages on the Web) with
possibly short companion descriptions.
In this article, we use “documents” and

“document identifiers” interchangeably
unless it is important to distinguish them.

Now let us introduce the concept of po-
tentially useful documents.

Definition 1. Suppose there is a similar-
ity function that computes the similarities
between documents and any given query
and the similarity of a document with
a given query approximates the degree
of the relevance of the document to the
“average user” who submits the query. For
a given query, a document d is said to be
potentially useful if it satisfies one of the
following conditions:

(1) If m documents are desired in the final
result for some positive integer m, then
the similarity between d and the query
is among the m highest of all similar-
ities between all documents and the
query.

(2) If every document whose similarity
with the query exceeds a prespecified
threshold is desired, then the similar-
ity between d and the query is greater
than the threshold.

In a metasearch engine environment,
different component search engines may
employ different similarity functions. For
a given query and a document, their sim-
ilarities computed by different local sim-
ilarity functions are likely to be differ-
ent and incomparable. To overcome this
problem, the similarities in the above
definition are computed using a similar-
ity function defined in the metasearch en-
gine. In other words, global similarities
are used.

Note that, in principle, the two condi-
tions in Definition 1 are mutually trans-
latable. In other words, for a given m in
Condition 1, a threshold in Condition 2 can
be determined such that the number of
documents whose similarities exceed the
threshold is m, and vice versa. However,
in practice, the translation can only be
done when substantial statistical informa-
tion about the text database is available.
Usually, a user specifies the number of
documents he or she would like to view.
The system uses a threshold to determine
what documents should be retrieved and

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 55

Fig. 2 . Metasearch software component architec-
ture.

displays only the desired number of docu-
ments to the user.

The goal of text retrieval is to maximize
the retrieval effectiveness while minimiz-
ing the cost. For a centralized retrieval
system, this can be implemented by re-
trieving as many potentially useful doc-
uments as possible while retrieving as
few nonpotentially useful documents as
possible. In a metasearch engine environ-
ment, the implementation should be car-
ried in two levels. First, we should select as
many potentially useful databases (these
databases contain potentially useful doc-
uments) to search as possible while min-
imizing the search of useless databases.
Second, for each selected database, we
should retrieve as many potentially use-
ful documents as possible while minimiz-
ing the retrieval of useless documents.

A reference software component archi-
tecture of a metasearch engine is illus-
trated in Figure 2. The numbers on the
edges indicate the sequence of actions for
a query to be processed. We now discuss
the functionality of each software com-
ponent and the interactions among these
components.

Database selector: If the number of
component search engines in a meta-
search engine is small, it may be rea-
sonable to send each user query to all

of them. However, if the number is
large, say in the thousands, then send-
ing each query to all component search
engines is no longer a reasonable strat-
egy. This is because in this case, a large
percentage of the local databases will
be useless with respect to the query.
Suppose a user is interested in only
the 10 best matched documents for
a query. Clearly, the 10 desired doc-
uments are contained in at most 10
databases. Consequently, if the num-
ber of databases is much larger than
10, then a large number of databases
will be useless with respect to this
query. Sending a query to the search
engines of useless databases has sev-
eral problems. First, dispatching the
query to useless databases wastes the
resources at the metasearch engine
site. Second, transmitting the query
to useless component search engines
from the metasearch engine and trans-
mitting useless documents from these
search engines to the metasearch en-
gine would incur unnecessary net-
work traffic. Third, evaluating a query
against useless component databases
would waste resources at these local
systems. Fourth, if a large number of
documents were returned from use-
less databases, more effort would be
needed by the metasearch engine
to identify useful documents. There-
fore, it is important to send each
user query to only potentially useful
databases. The problem of identifying
potentially useful databases to search
for a given query is known as the
database selection problem. The soft-
ware component database selector is
responsible for identifying potentially
useful databases for each user query.
A good database selector should cor-
rectly identify as many potentially use-
ful databases as possible while min-
imizing wrongly identifying useless
databases as potentially useful ones.
Techniques for database selection will
be covered in Section 5.

Document selector: For each search en-
gine selected by the database selector,

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

56 Meng et al.

the component document selector de-
termines what documents to retrieve
from the database of the search en-
gine. The goal is to retrieve as many
potentially useful documents from the
search engine as possible while min-
imizing the retrieval of useless docu-
ments. If a large number of useless doc-
uments were returned from a search
engine, more effort would be needed
by the metasearch engine to identify
potentially useful documents. Several
factors may affect the selection of doc-
uments to retrieve from a component
search engine such as the number of
potentially useful documents in the
database and the similarity function
used by the component system. These
factors help determine either the num-
ber of documents that should be re-
trieved from the component search en-
gine or a local similarity threshold
such that only those documents whose
local similarity with the given query
is higher than or equal to the thresh-
old should be retrieved from the com-
ponent search engine. Different meth-
ods for selecting documents to retrieve
from local search engines will be de-
scribed in Section 6.

Query dispatcher: The query dispat-
cher is responsible for establishing a
connection with the server of each se-
lected search engine and passing the
query to it. HTTP (HyperText Trans-
fer Protocol) is used for the connection
and data transfer (sending queries and
receiving results). Each search engine
has its own requirements on the HTTP
request method (e.g., the GET method
or the POST method) and query format
(e.g., the specific query box name). The
query dispatcher must follow the re-
quirements of each search engine cor-
rectly. Note that, in general, the query
sent to a particular search engine may
or may not be the same as that re-
ceived by the metasearch engine. In
other words, the original query may be
translated to a new query before being
sent to a search engine. The transla-
tion of Boolean queries across hetero-

geneous information sources is studied
in Chang and Garcia-Molina [1999].

For vector space queries, query
translation is usually as straightfor-
ward as just retaining all the terms
in the user query. There are two ex-
ceptions, however. First, the relative
weights of query terms in the origi-
nal user query may be adjusted be-
fore the query is sent to a component
search engine. This is to adjust the
relative importance of different query
terms, which can be accomplished by
repeating some query terms an appro-
priate number of times. Second, the
number of documents to be retrieved
from a component search engine may
be different from that desired by the
user. For example, suppose as part of a
query, a user of the metasearch engine
indicates that m documents should
be retrieved. The document selector
may decide that k documents should
be retrieved from a particular compo-
nent search engine. In this case, the
number k, usually different from m,
should be part of the translated query
to be sent to the component search
engine.

Result merger: After the results from
selected component search engines are
returned to the metasearch engine, the
result merger combines the results into
a single ranked list. The top m docu-
ments in the list are then forwarded
to the user interface to be displayed,
where m is the number of documents
desired by the user. A good result
merger should rank all returned doc-
uments in descending order of their
global similarities with the user query.
Different result merging techniques
will be discussed in Section 7.

In the remaining discussions, we will
concentrate on the following three main
components, namely, the database selec-
tor, the document selector, and the result
merger. Except for the query translation
problem, the component query dispatcher
will not be discussed further in this sur-
vey. Query translation for Boolean queries
will not be discussed in this article as we

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 57

focus on vector space queries only. More
discussions on query translation for vector
space queries will be provided at appropri-
ate places while discussing other software
components.

4. SOURCES OF CHALLENGES

In this section, we first review the envi-
ronment in which a metasearch engine is
to be built and then analyze why such an
environment causes tremendous difficul-
ties to building an effective and efficient
metasearch engine.

Component search engines that partic-
ipate in a metasearch engine are often
built and maintained independently. Each
search engine decides the set of documents
it wants to index and provide search ser-
vice to. It also decides how documents
should be represented/indexed and when
the index should be updated. Similarities
between documents and user queries are
computed using a similarity function. It is
completely up to each search engine to de-
cide what similarity function to use. Com-
mercial search engines often regard the
similarity functions they use and other im-
plementational decisions as proprietary
information and do not make them avail-
able to the general public.

As a direct consequence of the autonomy
of component search engines, a number of
heterogeneities exist. In this section, we
first identify major heterogeneities that
are unique in the metasearch engine en-
vironment. Heterogeneities that are com-
mon to other automonous systems (e.g.,
multidatabase systems) such as different
OS platforms will not be described. Then
we discuss the impact of these hetero-
geneities as well as the autonomy of com-
ponent search engines on building an ef-
fective and efficient metasearch engine.

4.1. Heterogeneous Environment

The following heterogeneities can be
identified among autonomous component
search engines [Meng et al. 1999b].

Indexing method: Different search en-
gines may have different ways to de-

termine what terms should be used to
represent a given document. For ex-
ample, some may consider all terms in
the document (i.e., full-text indexing)
while others may use only a subset
of the terms (i.e., partial-text index-
ing). Lycos [Mauldin 1997], for exam-
ple, employs partial-text indexing in
order to save storage space and be
more scalable. Some search engines
on the Web use the anchor terms in
a Web page to index the referenced
Web page [Brin and Page 1998; Cutler
et al. 1997; McBryan 1994] while most
other search engines do not. Other
examples of different indexing tech-
niques involve whether or not to re-
move stopwords and whether or not to
perform stemming. Furthermore, dif-
ferent stopword lists and stemming
algorithms may be used by different
search engines.

Document term weighting scheme:
Different methods exist for determin-
ing the weight of a term in a document.
For example, one method is to use
the term frequency weight and an-
other is to use the product of the
term frequency weight and the in-
verse document frequency weight (see
Section 2). Several variations of these
schemes exist [Salton 1989]. There are
also systems that distinguish different
occurrences of the same term [Boyan
et al. 1996; Cutler et al. 1997; Wade
et al. 1989] or different fonts of the
same term [Brin and Page 1998]. For
example, the occurrence of a term ap-
pearing in the title of a Web page may
be considered to be more important
than another occurrence of the same
term not appearing in the title.

Query term weighting scheme: In the
vector space model for text retrieval,
a query can be considered as a special
document (a very short document
typically). It is possible for a term to
appear multiple times in a query. Dif-
ferent query term weighting schemes
may utilize the frequency of a term in
a query differently for computing the
weight of the term in the query.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

58 Meng et al.

Similarity function: Different search
engines may employ different similar-
ity functions to measure the similarity
between a user query and a document.
Some popular similarity functions
were mentioned in Section 2 but other
similarity functions (see, for example,
Robertson et al. [1999]; Singhal et al.
[1996]) are also possible.

Document database: The text data-
bases of different search engines may
differ at two levels. The first level is
the domain (subject area) of a data-
base. For example, one database
may contain medical documents (e.g.,
www.medisearch.co.uk) and another
may contain legal documents (e.g.,
lawcrawler.lp.findlaw.com). In this
case, the two databases can be said
to have different domains. In prac-
tice, the domain of a database may
not be easily determined since some
databases may contain documents
from multiple domains. Furthermore,
a domain may be further divided
into multiple subdomains. The sec-
ond level is the set of documents.
Even when two databases have the
same domain, the sets of documents
in the two databases can still be
substantially different or even dis-
joint. For example, Echidna Medical
Search (www.drsref.com.au) and Medi-
search (www.medisearch.co.uk) are
both search engines for medical in-
formation but the former is for Web
pages from Australia and the latter
for those from the United Kingdom.

Document version: Documents in a
database may be modified. This is
especially true in the World Wide Web
environment where Web pages can
often be modified at the wish of their
authors. Typically, when a Web page
is modified, those search engines that
indexed the Web page will not be no-
tified of the modification. Some search
engines use robots to detect modified
pages and reindex them. However, due
to the high cost and/or the enormous
amount of work involved, attempts
to revisit a page can only be made

periodically (say from one week to
one month). As a result, depending
on when a document is fetched (or
refetched) and indexed (or reindexed),
its representation in a search engine
may be based on an older version or a
newer version of the document. Since
local search engines are autonomous,
it is highly likely that different sys-
tems may have indexed different
versions of the same document (in the
case of WWW, the Web page can still
be uniquely identified by its URL).

Result presentation: Almost all search
engines present their retrieval result
in descending order of local similar-
ities/ranking scores. However, some
search engines also provide the simi-
larities of returned documents (e.g.,
FirstGov (www.firstgov.gov) and Nor-
thern Light) while some do not (e.g.,
AltaVista and Google).

In addition to heterogeneities between
component search engines, there are also
heterogeneities between the metasearch
engine and the local systems. For exam-
ple, the metasearch engine uses a global
similarity function to compute the global
similarities of documents. It is very likely
that the global similarity function is differ-
ent from the similarity functions in some
(or even all) component search engines.

4.2. Impact of Heterogeneities

In this subsection, we show that the au-
tonomy of and the heterogeneities among
different component search engines and
between the metasearch engine and the
component search engines have a pro-
found impact on how to evaluate global
queries in a metasearch engine.

(1) In order to estimate the usefulness of a
database to a given query, the database
selector needs to know some informa-
tion about the database that charac-
terizes the contents of the database.
We call the characteristic information
about a database the representative of
the database. In the metasearch en-
gine environment, different types of

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 59

database representatives for different
search engines may be available to
the metasearch engine. For coopera-
tive search engines, they may pro-
vide database representatives desired
by the database selector. For unco-
operative search engines that follow
a certain standard, say the proposed
STARTS standard [Gravano et al.
1997], the database representatives
may be obtained from the informa-
tion that can be provided by these
search engines such as the document
frequency and the average document
term weight of any query term. But
the representatives may not contain
certain information desired by a par-
ticular database selector. For unco-
operative search engines that do not
follow any standard, their representa-
tives may have to be extracted from
past retrieval experiences (e.g., Savvy-
Search [Dreilinger and Howe 1997]) or
from sampled documents (e.g., Callan
et al. [1999]; Callan [2000]).

There are two major challenges in
developing good database selection al-
gorithms. One is to identify appropri-
ate database representatives. A good
representative should permit fast and
accurate estimation of database use-
fulness. At the same time, a good rep-
resentative should have a small size in
comparison to the size of the database
and should be easy to obtain and main-
tain. As we will see in Section 5, pro-
posed database selection algorithms
often employ different types of repre-
sentatives. The second challenge is to
develop ways to obtain the desired rep-
resentatives. As mentioned above, a
number of solutions exist depending on
whether a search engine follows some
standard or is cooperative. The issue of
obtaining the desired representatives
will not be discussed further in this
article.

(2) The challenges of the document selec-
tion problem and the result merging
problem lie mainly in the fact that
the same document may have differ-
ent global and local similarities with

a given query due to various hetero-
geneities. For example, for a given
query q submitted by a global user,
whether or not a document d in a com-
ponent database D is potentially use-
ful depends on the global similarity
of d with q. It is highly likely that
the similarity function and/or the term
weighting scheme in D are different
from the global ones. As a result, the lo-
cal similarity of d is likely to be differ-
ent from the global similarity of d . In
fact, even when the same term weight-
ing scheme and the same similarity
function are used locally and globally,
the global similarity and the local sim-
ilarity of d may still be different be-
cause the similarity computation may
make use of certain database-specific
information (such as the document fre-
quencies of terms). This means that
a globally highly ranked document in
D may not be a locally highly ranked
document in D. Suppose the globally
top-ranked document d is ranked ith
locally for some i ≥ 1. In order to re-
trieve d from D, the local system may
have to also retrieve all documents
that have a higher local similarity
than that of d (text retrieval systems
are generally incapable of retrieving
lower-ranked documents without first
retrieving higher-ranked ones). It is
quite possible that some of the doc-
uments that are ranked higher than
d locally are not potentially useful
based on their global similarities. The
main challenge for document selection
is to develop methods that can maxi-
mize the retrieval of potentially use-
ful documents while minimizing the
retrieval of useless documents from
component search engines. The main
challenge for result merging is to
find ways to estimate the global sim-
ilarities of documents so that docu-
ments returned from different compo-
nent search engines can be properly
merged.

In the next several sections, we examine
the techniques that have been proposed
to deal with the problems of database

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

60 Meng et al.

selection, document selection, and result
merging.

5. DATABASE SELECTION

When a metasearch engine receives a
query from a user, it invokes the database
selector to select component search en-
gines to send the query to. A good database
selection algorithm should identify poten-
tially useful databases accurately. Many
approaches have been proposed to tackle
the database selection problem. These ap-
proaches differ on the database represen-
tatives they use to indicate the contents of
each database, the measures they use to
indicate the usefulness of each database
with respect to a given query, and the tech-
niques they employ to estimate the useful-
ness. We classify these approaches into the
following three categories.

Rough representative approaches:
In these approaches, the contents of a
local database are often represented
by a few selected key words or para-
graphs. Such a representative is only
capable of providing a very general
idea on what a database is about,
and consequently database selection
methods using rough database rep-
resentatives are not very accurate
in estimating the true usefulness
of databases with respect to a given
query. Rough representatives are often
manually generated.

Statistical representative approa-
ches: These approaches usually rep-
resent the contents of a database
using rather detailed statistical infor-
mation. Typically, the representative
of a database contains some statis-
tical information for each term in
the database such as the document
frequency of the term and the average
weight of the term among all docu-
ments that have the term. Detailed
statistics allow more accurate esti-
mation of database usefulness with
respect to any user query. Scalability of
such approaches is an important issue
due to the amount of information that
needs to be stored for each database.

Learning-based approaches: In these
approaches, the knowledge about
which databases are likely to return
useful documents to what types of
queries is learned from past retrieval
experiences. Such knowledge is then
used to determine the usefulness of
databases for future queries. The re-
trieval experiences could be obtained
through the use of training queries be-
fore the database selection algorithm
is put to use and/or through the real
user queries while database selection
is in active use. The obtained experi-
ences against a database will be saved
as the representative of the database.

In the following subsections, we sur-
vey and discuss different database se-
lection approaches based on the above
classification.

5.1. Rough Representative Approaches

As mentioned earlier, a rough represen-
tative of a database uses only a few key
words or a few sentences to describe the
contents of the database. It is only capable
of providing a very general idea on what
the database is about.

In ALIWEB [Koster 1994], an often
human-generated representative in a
fixed format is used to represent the con-
tents of each local database or a site.
An example of the representative used
to describe a site containing files for the
Perl Programming Language is as follows
(www.nexor.com/site.idx):

Template-Type: DOCUMENT
Title: Perl
URI: /public/perl/perl.

html
Description: Information on the

Perl Programming
Language. Includes
a local Hypertext
Perl Manual, and
the latest FAQ in
Hypertext.

Keywords: perl, perl-faq,
language

Author-Handle: m.koster@nexor.
co.uk

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 61

The user query is matched with the rep-
resentative of each component database
to determine how suitable a database is
for the query. The match can be against
one or more fields (e.g. title, description,
etc.) of the representatives based on the
user’s choice. Component databases are
ranked based on how closely they match
with the query. The user then selects com-
ponent databases to search from a ranked
list of component databases, one database
at a time. Note that ALIWEB is not a
full-blown metasearch engine as it only al-
lows users to select one database to search
at a time and it does not perform result
merging.

Similar to ALIWEB, descriptive repre-
sentations of the contents of component
databases are also used in WAIS [Kahle
and Medlar 1991]. For a given query, the
descriptions are used to rank component
databases according to how similar they
are to the query. The user then selects com-
ponent databases to search for the desired
documents. In WAIS, more than one lo-
cal database can be searched at the same
time.

In Search Broker [Manber and Bigot
1997; Manber and Bigot 1998], each
database is manually assigned one or two
words as the subject or category keywords.
Each user query consists of two parts:
the subject part and the regular query
part. When a query is received by the
system, the subject part of the query is
used to identify the component search
engines covering the same subject and
the regular query part is used to search
documents from the identified search
engines.

In NetSerf [Chakravarthy and Haase
1995], the text description of the con-
tents of a database is transformed into
a structured representative. The trans-
formation is performed manually and
WordNet [Miller 1990] is used in the
transformation process to disambiguate
topical words. As an example, the de-
scription “World facts listed by coun-
try” for the World Factbook archive is
transformed into the following structured
representation [Chakravarthy and Haase
1995]:

topic: country
synset: [nation,

nationality, land,
country, a_people]

synset: [state, nation,
country, land,
commonwealth,
res_publica,
body_politic]

synset: [country, state,
land, nation]

info-type: facts

Each word in WordNet has one or more
synsets with each containing a set of
synonyms that together defines a mean-
ing. The topical word “country” has four
synsets of which three are considered to
be relevant, and are therefore used. The
one synset (i.e., [rural area, country])
whose meaning does not match the in-
tended meaning of the “country” in the
above description (i.e., “World facts listed
by country”) is omitted. Each user query is
a sentence and is automatically converted
into a structured and disambiguated rep-
resentation similar to a database repre-
sentation using a combination of several
techniques. However, not all queries can
be handled. The query representation is
then matched with the representatives of
local databases in order to identify poten-
tially useful databases [Chakravarthy and
Haase 1995].

While most rough database representa-
tives are generated with human involve-
ment, there exist automatically gener-
ated rough database representatives. In
Q-Pilot [Sugiura and Etzioni 2000], each
database is represented by a vector of
terms with weights. The terms can either
be obtained from the interface page of the
search engine or from the pages that have
links to the search engine. In the former
case, all content words in the interface
page are considered and the weights are
the term frequencies. In the latter case,
only terms that appear in the same line as
the link to the search engine are used and
the weight of each term is the document
frequency of the term (i.e., the number of
back link documents that contributed the
term).

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

62 Meng et al.

The main appeal of rough representa-
tive approaches is that the representatives
can be obtained relatively easily and they
require little storage space. If all compo-
nent search engines are highly specialized
with diversified topics and their contents
can be easily summarized, then these ap-
proaches may work reasonably well. On
the other hand, it is unlikely that the short
description of a database can represent
the database sufficiently comprehensively,
especially when the database contains
documents of diverse interests. As a re-
sult, missing potentially useful databases
can occur easily with these approaches.
To alleviate this problem, most such ap-
proaches involve users in the database se-
lection process. For example, in ALIWEB
and WAIS, users will make the final
decision on which databases to select
based on the preliminary selections by
the metasearch engine. In Search Broker,
users are required to specify the sub-
ject areas for their queries. As users of-
ten do not know the component databases
well, their involvement in the database
selection process can easily miss use-
ful databases. Rough representative ap-
proaches are considered to be inadequate
for large-scale metasearch engines.

5.2. Statistical Representative Approaches

A statistical representative of a database
typically takes every term in every docu-
ment in the database into consideration
and keeps one or more pieces of statistical
information for each such term. As a re-
sult, if done properly, a database selection
approach employing this type of database
representatives may detect the existence
of individual potentially useful documents
for any given query. A large number of ap-
proaches based on statistical representa-
tives have been proposed. In this subsec-
tion, we describe five such approaches.

5.2.1. D-WISE Approach. WISE (Web In-
dex and Search Engine) is a centralized
search engine [Yuwono and Lee 1996].
D-WISE is a proposed metasearch en-
gine with a number of underlying search
engines (i.e., distributed WISE) [Yuwono

and Lee 1997]. In D-WISE, the repre-
sentative of a component search engine
consists of the document frequency of
each term in the component database
as well as the number of documents in
the database. Therefore, the representa-
tive of a database with n distinct terms
will contain n + 1 quantities (the n doc-
ument frequencies and the cardinality of
the database) in addition to the n terms.
Let ni denote the number of documents in
the ith component database and dfi j be the
document frequency of term t j in the ith
database.

Suppose q is a user query. The repre-
sentatives of all databases are used to
compute the ranking score of each com-
ponent search engine with respect to q.
The scores measure the relative useful-
ness of all databases with respect to q.
If the score of database A is higher than
that of database B, then database A will
be judged to be more relevant to q than
database B. The ranking scores are com-
puted as follows. First, the cue validity of
each query term, say term t j , for the ith
component database, CVij , is computed
using the following formula:

CVij =
dfi j

ni

dfi j

ni
+
∑N

k 6=i
dfk j∑N

k 6=i
nk

, (3)

where N is the total number of compo-
nent databases in the metasearch engine.
Intuitively, CVij measures the percentage
of the documents in the ith database that
contain term t j relative to that in all other
databases. If the ith database has a higher
percentage of documents containing t j in
comparison to other databases, then CVij
tends to have a larger value. Next, the
variance of the CVij ’s of each query term
t j for all component databases, CVV j , is
computed as follows:

CVV j =
∑N

i=1(CVij − ACVj)2

N
, (4)

where ACVj is the average of all CVij ’s
for all component databases. The value

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 63

CVV j measures the skew of the distri-
bution of term t j across all component
databases. For two terms tu and tv, if CVVu
is larger than CVVv, then term tu is more
useful to distinguish different component
databases than term tv. As an extreme
case, if every database had the same per-
centage of documents containing a term,
then the term would not be very useful for
database selection (the CVV of the term
would be zero in this case). Finally, the
ranking score of component database i
with respect to query q is computed by

ri =
M∑

j=1

CVV j · dfi j , (5)

where M is the number of terms in the
query. It can be seen that the ranking
score of database i is the sum of the docu-
ment frequencies of all query terms in the
database weighted by each query term’s
CVV (recall that the value of CVV for
a term reflects the distinguishing power
of the term). Intuitively, the ranking
scores provide clues to where useful query
terms are concentrated. If a database has
many useful query terms, each having
a higher percentage of documents than
other databases, then the ranking score
of the database will be high. After the
ranking scores of all databases are com-
puted with respect to a given query, the
databases with the highest scores will be
selected for search for this query.

The representative of a database in
D-WISE contains one quantity, that is, the
document frequency, per distinct term in
the database, plus one additional quan-
tity, that is, the cardinality, for the entire
database. As a result, this approach is eas-
ily scalable. The computation is also sim-
ple. However, there are two problems with
this approach. First, the ranking scores
are relative scores. As a result, it will
be difficult to determine the real value
of a database with respect to a given
query. If there are no good databases for
a given query, then even the first ranked
database will have very little value. On
the other hand, if there are many good
databases for another query, then even the

10th ranked database can be very use-
ful. Relative ranking scores are not very
useful in differentiating these situations.
Second, the accuracy of this approach is
questionable as this approach does not
distinguish a document containing, say,
one occurrence of a term from a docu-
ment containing 100 occurrences of the
same term.

5.2.2. CORI Net Approach. In the Collec-
tion Retrieval Inference Network (CORI
Net) approach [Callan et al. 1995], the rep-
resentative of a database consists of two
pieces of information for each distinct term
in the database: the document frequency
and the database frequency. The latter
is the number of component databases
containing the term. Note that if a term
appears in multiple databases, only one
database frequency needs to be stored in
the metasearch engine to save space.

In CORI Net, for a given query q, a
document ranking technique known as in-
ference network [Turtle and Croft 1991]
used in the INQUERY document retrieval
system [Callan et al. 1992] is extended
to rank all component databases with re-
spect to q. The extension is mostly con-
ceptual and the main idea is to visual-
ize the representative of a database as a
(super) document and the set of all repre-
sentatives as a collection/database of su-
per documents. This is explained below.
The representative of a database may be
conceptually considered as a super docu-
ment containing all distinct terms in the
database. If a term appears in k docu-
ments in the database, we repeat the term
k times in the super document. As a re-
sult, the document frequency of a term in
the database becomes the term frequency
of the term in the super document. The
set of all super documents of the compo-
nent databases in the metasearch engine
form a database of super documents. Let
D denote this database of all super docu-
ments. Note that the database frequency
of a term becomes the document frequency
of the term in D. Therefore, from the rep-
resentatives of component databases, we
can obtain the term frequency and docu-
ment frequency of each term in each super

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

64 Meng et al.

document. In principle, the tfw·idfw (term
frequency weight times inverse document
frequency weight) formula could now be
used to compute the weight of each term
in each super document so as to repre-
sent each super document as a vector of
weights. Furthermore, a similarity func-
tion such as the cosine function may be
used to compute the similarities (rank-
ing scores) of all super documents (i.e.,
database representatives) with respect to
query q and these similarities could then
be used to rank all component databases.
The approach employed in CORI Net is
an inference network-based probabilistic
approach.

In CORI Net, the ranking score of a
database with respect to query q is an
estimated belief that the database con-
tains useful documents. The belief is es-
sentially the combined probability that
the database contains useful documents
due to each query term. More specifically,
the belief is computed as follows. Suppose
the user query contains k terms t1, . . . , tk .
Let N be the number of databases in the
metasearch engine. Let dfi j be the docu-
ment frequency of the j th term in the ith
component database Di and dbf j be the
database frequency of the j th term. First,
the belief that Di contains useful docu-
ments due to the j th query term is com-
puted by

p(t j | Di) = c1 + (1− c1) · Tij · I j , (6)

where

Tij = c2 + (1− c2) · dfi j

dfi j + K

is a formula for computing the term fre-
quency weight of the j th term in the super
document corresponding to Di and

I j =
log
(

N + 0.5
dbf j

)
log(N + 1.0)

is a formula for computing the inverse doc-
ument frequency weight of the j th term
based on all super documents. In the above

formulas, c1 and c2 are constants between
0 and 1, and K = c3 · ((1− c4)+ c4 ·dwi/
adw) is a function of the size of database
Di with c3 and c4 being two constants, dwi
being the number of words in Di and adw
being the average number of words in a
database. The values of these constants
(c1, c2, c3 and c4) can be determined em-
pirically by performing experiments on ac-
tual test collections [Callan et al. 1995].
Note that the value of p(t j | Di) is es-
sentially the tfw · idfw weight of term
t j in the super document corresponding
to database Di. Next, the significance of
term t j in representing query q, denoted
p(q | t j), can be estimated, for example, to
be the query term weight of t j in q. Finally,
the belief that database Di contains useful
documents with respect to query q, or the
ranking score of Di with respect to q, can
be estimated to be

ri = p(q | Di) =
k∑

j=1

p(q | t j) · p(t j | Di).

(7)

In CORI Net, the representative of a
database contains slightly more than one
piece of information per term (i.e., the doc-
ument frequency plus the shared database
frequency across all databases). Therefore,
the CORI Net approach also has rather
good scalability. The information for repre-
senting each component database can also
be obtained and maintained easily. An ad-
vantage of the CORI Net approach is that
the same method can be used to compute
the ranking score of a document with a
query as well as the ranking score of a
database (through the database represen-
tative or super document) with a query.
Recently, it was shown in Xu and Callan
[1998] that if phrase information is col-
lected and stored in each database repre-
sentative and queries are expanded based
on a technique called local context anal-
ysis [Xu and Croft 1996], then the CORI
Net approach can select useful databases
more accurately.

5.2.3. gGlOSS Approach. The gGlOSS
(generalized Glossary Of Servers’ Server)

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 65

system is a research prototype [Gravano
and Garcia-Molina 1995]. In gGlOSS,
each component database is represented
by a set of pairs (dfi, Wi), where dfi
is the document frequency of the ith
term and Wi is the sum of the weights
of the ith term over all documents in
the component database. A threshold is
associated with each query in gGlOSS
to indicate that only documents whose
similarities with the query are higher
than the threshold are of interest. The
usefulness of a component database with
respect to a query in gGlOSS is defined
to be the sum of the similarities of the
documents in the component database
with the query that are higher than
the threshold associated with the query.
The usefulness of a component database is
used as the ranking score of the database.
In gGlOSS, two estimation methods are
employed based on two assumptions.
One is the high-correlation assumption
(for any given database, if query term ti
appears in at least as many documents as
query term t j , then every document con-
taining term t j also contains term ti) and
the other is the disjoint assumption (for a
given database, for any two terms ti and
t j , the set of documents containing term
ti is disjoint from the set of documents
containing term t j).

We now discuss the two estimation
methods for a component database D.
Suppose q = (q1, . . . , qk) is a query and
T is the associated threshold, where qi is
the weight of term ti in q.

High-correlation case: Let terms be ar-
ranged in ascending order of document
frequency, i.e., dfi ≤ df j for any i < j ,
where dfi is the document frequency of
term ti. This means that every docu-
ment containing ti also contains t j for
any j > i. There are df1 documents
having similarity

∑k
i=1 qi · Wi

d f i
with q.

In general, there are df j − df j−1 doc-
uments having similarity

∑k
i= j qi · Wi

d f i
with q, 1 ≤ j ≤ k, and df0 is defined to
be 0. Let p be an integer between 1 and
k that satisfies

∑k
i=p qi · Wi

d f i
> T and∑k

i=p+1 qi · Wi
d f i
≤ T . Then the estimated

usefulness of this database is

usefulness(D, q, T)

=
p∑

j=1

(df j − df j−1) ·
 k∑

i= j

qi · Wi

dfi


=

p∑
j=1

qj ·W j + dfp ·
k∑

j=p+1

qj · W j

df j
.

Disjoint case: By the disjoint assump-
tion, each document can contain at
most one query term. Thus, there are
dfi documents that contain term ti and
the similarity of these dfi documents
with query q is qi · Wi

dfi
. Therefore, the

estimated usefulness of this database
is:

usefulness(D, q, T)

=
∑

i=1,...,k|(df i>0)∧
(

qi · Wi
df i

)
>T

dfi · qi · Wi

dfi

=
∑

i=1,...,k|(dfi>0)∧
(

qi · Wi
df i

)
>T

qi ·Wi.

In gGlOSS, the usefulness of a database
is sensitive to the similarity threshold
used. As a result, gGlOSS can differenti-
ate a database with many moderately sim-
ilar documents from a database with a few
highly similar documents. This is not pos-
sible in D-WISE and CORI Net. However,
the two assumptions used in gGlOSS are
somewhat too restrictive. As a result, the
estimated database usefulness may be in-
accurate. It can be shown that, when the
threshold T is not too large, the estima-
tion formula based on the high-correlation
assumption tends to overestimate the use-
fulness and the estimation formula based
on the disjoint assumption tends to under-
estimate the usefulness. Since the two es-
timates by the two formulas tend to form
upper and lower bounds of the true use-
fulness, the two methods are more use-
ful when used together than when used
separately. For a given database, the size
of the database representative in gGlOSS

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

66 Meng et al.

is twice the size of that in D-WISE. The
computation for estimating the database
usefulness in gGlOSS can be carried out
efficiently.

5.2.4. Estimating the Number of Potentially
Useful Documents. One database useful-
ness measure used is “the number of po-
tentially useful documents with respect to
a given query in a database.” This measure
can be very useful for search services that
charge a fee for each search. For exam-
ple, the Chicago Tribune Newspaper Com-
pany charges a certain fee for retrieving
archival newspaper articles. Suppose the
fee is independent of the number of re-
trieved documents. In this case, from the
user’s perspective, a component system
which contains a large number of sim-
ilar documents but not necessarily the
most similar documents is preferable to
another component system containing just
a few most similar documents. On the
other hand, if a fee is charged for each
retrieved document, then the component
system having the few most similar docu-
ments will be preferred. This type of charg-
ing policy can be incorporated into the
database selector of a metasearch engine
if the number of potentially useful docu-
ments in a database with respect to a given
query can be estimated.

Let D be a component database,
sim(q, d) be the global similarity between
a query q and a document d in D, and
T be a similarity threshold. The number
of potentially useful documents in D with
respect to q can be defined precisely as
follows:

NoDoc(D, q, T) = cardinality({d | d ∈ D
and sim(q, d) > T }).

(8)

If NoDoc(D, q, T) can be accurately es-
timated for each database with respect to
a given query, then the database selec-
tor can simply select those databases with
the most potentially useful documents to
search for this query.

In Meng et al. [1998], a generating-
function based method is proposed to es-

timate NoDoc(D, q, T) when the global
similarity function is the dot product func-
tion (the widely used cosine function is a
special case of the dot product function
with each term weight divided by the doc-
ument/query length). In this method, the
representative of a database with n dis-
tinct terms consists of n pairs {(pi, wi)},
i = 1, . . . , n, where pi is the probabil-
ity that term ti appears in a document in
D (note that pi is simply the document
frequency of term ti in the database di-
vided by the number of documents in the
database) and wi is the average of the
weights of ti in the set of documents con-
taining ti. Let (q1, q2, . . . , qk) be the query
vector of query q, where qi is the weight of
query term ti.

Consider the following generating
function:

(p1 ∗ X w1∗q1 + (1− p1)) ∗ (p2 ∗ X w2∗q2

+ (1− p2)) ∗ · · · ∗ (pk ∗ X wk∗qk

+ (1− pk)). (9)

After the generating function (9) is ex-
panded and the terms with the same X s

are combined, we obtain

a1 ∗ X b1 + a2 ∗ X b2 + · · · + ac ∗ X bc ,
b1 > b2 > · · · > bc. (10)

It can be shown that, if the terms are in-
dependent and the weight of term ti when-
ever present in a document is wi, which
is given in the database representative
(1 ≤ i ≤ k), then ai is the probability that
a document in the database has similar-
ity bi with q [Meng et al. 1998]. There-
fore, if database D contains N documents,
then N ∗ ai is the expected number of doc-
uments that have similarity bi with query
q. For a given similarity threshold T , let
C be the largest integer to satisfy bC > T .
Then, NoDoc(D, q, T) can be estimated by
the following formula:

NoDoc(D, q, D) =
C∑

i=1

N ∗ ai = N
C∑

i=1

ai.

(11)

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 67

The above solution has two restrictive
assumptions. The first is the term inde-
pendence assumption and the second is
the uniform term weight assumption (i.e.,
the weights of a term in all documents
containing the term are the same—the
average weight). These assumptions re-
duce the accuracy of the database use-
fulness estimation. One way to address
the term independence assumption is to
utilize covariances between term pairs,
term triplets, and so on and to incorpo-
rate them into the generating function
(9) [Meng et al. 1998]. The problem with
this approach is that the storage overhead
for representing a component database
may become too large because a very
large number of covariances may be as-
sociated with each component database.
A remedy is to use only significant co-
variances (those whose absolute values
are significantly greater than zero). An-
other way to incorporate dependencies be-
tween terms is to combine certain ad-
jacent terms into a single term [Liu
et al. 2001]. This is similar to recognizing
phrases.

In Meng et al. [1999a], a method known
as the subrange-based estimation method
is proposed to deal with the uniform term
weight assumption. This method parti-
tions the actual weights of a term ti in
the set of documents having the term into
a number of disjoint subranges of possi-
bly different lengths. For each subrange,
the median of the weights in the sub-
range is estimated based on the assump-
tion that the weight distribution of the
term is normal (hence, the standard de-
viation of the weights of the term needs
to be added to the database representa-
tive). Then, the weights of ti that fall in
a given subrange are approximated by
the median of the weights in the sub-
range. With this weight approximation,
for a query containing term ti, the poly-
nomial pi ∗ X wi∗qi + (1− pi) in the generat-
ing function (9) is replaced by the following
polynomial:

pi1 ∗ X wmi1∗qi + pi2 ∗ X wmi2∗qi

+ · · · + pil ∗ X wmil∗qi + (1− pi), (12)

where pij is the probability that term ti
occurs in a document and has a weight
in the j th subrange, wmij is the median
of the weights of ti in the j th subrange,
j = 1, . . . , l , and l is the number of sub-
ranges used. After the generating func-
tion has been obtained, the rest of the
estimation process is identical to that de-
scribed earlier. It was shown in Meng et al.
[1999a] that if the maximum normalized
weight of each term is used in the high-
est subrange, the estimation accuracy of
the database usefulness can be drastically
improved.

The above methods [Liu et al. 2001;
Meng et al. 1998; Meng et al. 1999a], while
being able to produce accurate estimation,
have a large storage overhead. Further-
more, the computation complexity of ex-
panding the generating function is expo-
nential. As a result, they are more suitable
for short queries.

5.2.5. Estimating the Similarity of the Most
Similar Document. Another useful measure
is the global similarity of the most simi-
lar document in a database with respect
to a given query. On one hand, this mea-
sure indicates the best that we can expect
from a database as no other documents
in the database can have higher similari-
ties with the query. On the other hand, for
a given query, this measure can be used
to rank databases optimally for retrieving
the m most similar documents across all
databases.

Suppose a user wants the metasearch
engine to find the m most similar docu-
ments to his/her query q across M com-
ponent databases D1, D2, . . . , DM . The fol-
lowing definition defines an optimal order
of these databases for the query.

Definition 2. A set of M databases is
said to be optimally ranked in the order
[D1, D2, . . . , DM] with respect to query q if
there exists a k such that D1, D2, . . . , Dk
contain the m most similar documents and
each Di, 1 ≤ i ≤ k, contains at least one of
the m most similar documents.

Intuitively, the ordering is optimal
because whenever the m most similar

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

68 Meng et al.

documents to the query are desired, it is
sufficient to examine the first k databases.
A necessary and sufficient condition for
the databases D1, D2, . . . , DM to be op-
timally ranked in the order [D1, D2, . . . ,
DM] with respect to query q is
msim(q, D1) > msim(q, D2) > · · · > msim
(q, DM) [Yu et al. 1999b], where msim
(q, Di) is the global similarity of the
most similar document in database Di
with the query q. Knowing an optimal
rank of the databases with respect to
query q, the database selector can se-
lect the top-ranked databases to search
for q.

The challenge here is how to estimate
msim(q, D) for query q and any database
D. One method is to utilize the Expres-
sion (10) for D. We can scan this expres-
sion in descending order of the exponents
until

∑r
i=1 ai ∗ N is approximately 1 for

some r, where N is the number of docu-
ments in D. The exponent, br , is an esti-
mate of msim(q, D) as the expected num-
ber of documents in D with similarity
greater than or equal to br is approxi-
mately 1. The drawback of this solution
is that it requires a large database repre-
sentative and the computation is of high
complexity.

A more efficient method to estimate
msim(q, D) is proposed in Yu et al. [1999b].
In this method, there are two types of rep-
resentatives. There is a global representa-
tive for all component databases. For each
distinct term ti, the global inverse docu-
ment frequency weight (gidfi) is stored in
this representative. There is a local rep-
resentative for each component database
D. For each distinct term ti in D, a pair of
quantities (mnwi, anwi) is stored, where
mnwi and anwi are the maximum nor-
malized weight and the average normal-
ized weight of term ti, respectively. Sup-
pose di is the weight of ti in a document
d . Then the normalized weight of ti in
d is di/|d |, where |d | denotes the length
of d . The maximum normalized weight
and the average normalized weight of ti
in database D are, respectively, the max-
imum and the average of the normalized
weights of ti in all documents in D. Sup-
pose q = (q1, . . . , qk) is the query vector.

Then msim(q, D) can be estimated as
follows:

msim(q, D) = max
1≤i≤k

qi ∗ gidfi ∗mnwi

+
k∑

j=1, j 6=i

q j ∗ gidf j ∗ anw j

 /|q|. (13)

The intuition for having this estimate
is that the most similar document in a
database is likely to have the maximum
normalized weight of the ith query term,
for some i. This yields the first half of
the above expression within the braces.
For each of the other query terms, the
document takes the average normalized
weight. This yields the second half. Then,
the maximum is taken over all i, since
the most similar document may have the
maximum normalized weight of any one of
the k query terms. Normalization by the
query length, |q|, yields a value less than
or equal to 1. The underlying assumption
of Formula (13) is that terms in each query
are independent. Dependencies between
terms can be captured to a certain extent
by storing the same statistics (i.e. mnw’s
and anw’s) of phrases in the database rep-
resentatives, i.e., treating each phrase as
a term.

In this method, each database is rep-
resented by two quantities per term plus
the global representative shared by all
databases but the computation has linear
complexity.

The maximum normalized weight of
a term is typically two or more orders
of magnitude larger than the average
normalized weight of the term as the
latter is computed over all documents,
including those not containing the term.
This observation implies that in Formula
(13), if all query terms have the same
tf weight (a reasonable assumption, as
in a typical query each term appears
once), gidfi ∗mnwi is likely to dominate∑k

j=1, j 6=i gidfj ∗anwj , especially when the
number of terms, k, in a query is small
(which is typically true in the Internet

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 69

environment [Jansen et al. 1998; Kirsch
1998]). In other words, the rank of
database D with respect to a given
query q is largely determined by the
value of max1≤i≤k{qi ∗ gidfi ∗mnwi}. This
leads to the following more scalable for-
mula to estimate msim(q, D) [Wu et al.
2001]: max1≤i≤k{qi ∗ ami}/|q|, where ami =
gidfi ∗mnwi is the adjusted maximum
normalized weight of term ti in D. This
formula requires only one piece of infor-
mation, namely ami, to be kept in the
database representative for each distinct
term in the database.

5.3. Learning-Based Approaches

These approaches predict the usefulness
of a database for new queries based on the
retrieval experiences with the database
from past queries. The retrieval experi-
ences may be obtained in a number of
ways. First, training queries can be used
and the retrieval knowledge of each com-
ponent database with respect to these
training queries can be obtained in ad-
vance (i.e., before the database selec-
tor is enabled). This type of approach
will be called the static learning ap-
proach as in such an approach, the re-
trieval knowledge, once learned, will not
be changed. The weakness of static learn-
ing is that it cannot adapt to the changes
of database contents and query pattern.
Second, real user queries (in contrast to
training queries) can be used and the
retrieval knowledge can be accumulated
gradually and be updated continuously.
This type of approach will be referred to
as the dynamic learning approach. The
problem with dynamic learning is that
it may take a while to obtain sufficient
knowledge useful to the database selector.
Third, static learning and dynamic learn-
ing can be combined to form a combined-
learning approach. In such an approach,
initial knowledge may be obtained from
training queries but the knowledge is up-
dated continuously based on real user
queries. Combined learning can overcome
the weaknesses of the other two learning
approaches. In this subsection, we intro-

duce several learning-based database se-
lection methods.

5.3.1. MRDD Approach. The MRDD
(Modeling Relevant Document Distribu-
tion) approach [Voorhees et al. 1995b] is
a static learning approach. During learn-
ing, a set of training queries is utilized.
Each training query is submitted to every
component database. From the returned
documents from a database for a given
query, all relevant documents are identi-
fied and a vector reflecting the distribution
of the relevant documents is obtained
and stored. Specifically, the vector has
the format <r1, r2, . . . , rs>, where ri is
a positive integer indicating that ri top-
ranked documents must be retrieved from
the database in order to obtain i relevant
documents for the query. As an example,
suppose for a training query q and a com-
ponent database D, 100 documents are
retrieved in the order (d1, d2, . . . , d100).
Among these documents, d1, d4, d10, d17,
and d30 are identified to be relevant. Then
the corresponding distribution vector is
〈r1, r2, r3, r4, r5〉 = 〈1, 4, 10, 17, 30〉.

With the vectors for all training queries
and all databases obtained, the database
selector is ready to select databases for
user queries. When a user query is re-
ceived, it is compared against all training
queries and the k most similar training
queries are identified (k = 8 performed
well as reported in [Voorhees et al.
1995b]). Next, for each database D, the av-
erage relevant document distribution vec-
tor over the k vectors corresponding to the
k most similar training queries and D is
obtained. Finally, the average distribution
vectors are used to select the databases to
search and the documents to retrieve. The
selection tries to maximize the precision
for each recall point.

Example 1. Suppose for a given query
q, the following three average distribution
vectors have been obtained for three com-
ponent databases:

D1: 〈1, 4, 6, 7, 10, 12, 17〉
D2: 〈3, 5, 7, 9, 15, 20〉
D3: 〈2, 3, 6, 9, 11, 16〉

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

70 Meng et al.

Consider the case when three relevant
documents are to be retrieved. To maxi-
mize the precision (i.e., to reduce the re-
trieval of irrelevant documents), one doc-
ument should be retrieved from D1 and
three documents should be retrieved from
D3 (two of the three are supposed to be rel-
evant). In other words, databases D1 and
D3 should be selected. This selection yields
a precision of 0.75 as three out of the four
retrieved documents are relevant.

In the MRDD approach, the represen-
tative of a component database is the
set of distribution vectors for all training
queries. The main weakness of this ap-
proach is that the learning has to be car-
ried out manually for each training query.
In addition, it may be difficult to iden-
tify appropriate training queries and the
learned knowledge may become less accu-
rate when the contents of the component
databases change.

5.3.2. SavvySearch Approach. Savvy-
Search (www.search.com) is a metasearch
engine employing the dynamic learning
approach. In SavvySearch [Dreilinger and
Howe 1997], the ranking score of a compo-
nent search engine with respect to a query
is computed based on the past retrieval
experience of using the terms in the query.
More specifically, for each search engine,
a weight vector (w1, . . . , wm) is main-
tained by the database selector, where
each wi corresponds to the ith term in the
database of the search engine. Initially, all
weights are zero. When a query contain-
ing term ti is used to retrieve documents
from a component database D, the weight
wi is adjusted according to the retrieval
result. If no document is returned by the
search engine, the weight is reduced by
1/k, where k is the number of terms in
the query. On the other hand, if at least
one returned document is read/clicked
by the user (no relevance judgment is
needed from the user), then the weight
is increased by 1/k. Intuitively, a large
positive wi indicates that the database
D responded well to term ti in the past
and a large negative wi indicates that D
responded poorly to ti.

SavvySearch also tracks the recent per-
formance of each search engine in terms
of h, the average number of documents re-
turned for the most recent five queries,
and r, the average response time for the
most recent five queries sent to the com-
ponent search engine. If h is below a
threshold Th (the default is 1), then a
penalty ph = (Th−h)2

T 2
h

for the search engine
is computed. Similarly, if the average re-
sponse time r is greater than a thresh-
old Tr (the default is 15 seconds), then
a penalty pr = (r−Tr)2

(ro−Tr)2 is computed, where
ro = 45 (seconds) is the maximum allowed
response time before a timeout.

For a new query q with terms t1, . . . , tk ,
the ranking score of database D is com-
puted by

r(q, D) =
∑k

i=1 wti · log(N/ fi)√∑k
i=1 |wi|

− (ph + pr),

(14)

where log(N/ fi) is the inverse database
frequency weight of term ti, N is the num-
ber of databases, and fi is the number of
databases having a positive weight value
for term ti.

The overhead of storing the represen-
tative information for each local search
engine in SavvySearch is moderate. (Es-
sentially there is just one piece of informa-
tion for each term, i.e., the weight. Only
terms that have been used in previous
queries need to be considered.) Moderate
effort is needed to maintain the informa-
tion. One weakness of SavvySearch is that
it will not work well for new query terms
or query terms that have been used only
very few times. In addition, the user feed-
back process employed by SavvySearch
is not rigorous and could easily lead to
the mis-identification of useful databases.
Search engine users may have the ten-
dency to check out top-ranked documents
for their queries regardless of whether
or not these documents are actually use-
ful. This means that term weights in
the database representative can easily be
modified in a way not consistent with the
meaning of the weights. As a result, it is

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 71

possible that the weight of a term for a
database does not sufficiently reflect how
well the database will respond to the term.

5.3.3. ProFusion Approach. ProFusion
(www.profusion.com) is a metasearch
engine employing the combined learning
approach. In ProFusion [Fan and Gauch
1999; Gauch et al. 1996], 13 preset cate-
gories are utilized in the learning process.
The 13 categories are “Science and Engi-
neering,” “Computer Science,” “Travel,”
“Medical and Biotechnology,” “Business
and Finance,” “Social and Religion,”
“Society, Law and Government,” “Animals
and Environment,” “History,” “Recreation
and Entertainment,” “Art,” “Music,” and
“Food.” A set of terms is associated with
each category to reflect the topic of the
category. For each category, a set of
training queries is identified. The reason
for using these categories and dedicated
training queries is to learn how well
each component database will respond
to queries in different categories. For a
given category C and a given component
database D, each associated training
query is submitted to D. From the top 10
retrieved documents, relevant documents
are identified. Then a score reflecting
the performance of D with respect to the
query and the category C is computed

by c ∗
∑10

i=1
Ni

10 ∗ R
10 , where c is a constant;

Ni is set to 1/i if the ith-ranked doc-
ument is relevant and Ni is set to 0 if
the document is not relevant; R is the
number of relevant documents in the
10 retrieved documents. It can be seen
that this formula captures both the rank
order of each relevant document and the
precision of the top 10 retrieved docu-
ments. Finally, the scores of all training
queries associated with the category C is
averaged for database D and this average
is the confidence factor of the database
with respect to the category. At the end of
the training, there is a confidence factor
for each database with respect to each of
the 13 categories.

When a user query q is received by the
metasearch engine, q is first mapped to
one or more categories. The query q is
mapped to a category C if at least one term

in q belongs to the set of terms associ-
ated with C. Now the databases will be
ranked based on the sum of the confidence
factors of each database with respect to
the mapped categories. Let this sum of the
confidence factors of a database with re-
spect to q be called the ranking score of
the database for q. In ProFusion, the three
databases with the largest ranking scores
are selected to search for a given query.

In ProFusion, documents retrieved from
selected search engines are ranked based
on the product of the local similarity of
a document and the ranking score of the
database. Let d in database D be the
first document read/clicked by the user. If
d is not the top-ranked document, then
the ranking score of D should be in-
creased while the ranking scores of those
databases whose documents are ranked
higher than d should be reduced. This is
carried out by proportionally adjusting the
confidence factors of D in mapped cate-
gories. For example, suppose for a query
q and a database D, two categories C1
and C2 are selected and the correspond-
ing confidence factors are 0.6 and 0.4, re-
spectively. To increase the ranking score of
database D by x, the confidence factors of
D in C1 and C2 are increased by 0.6x and
0.4x, respectively. This ranking score ad-
justment policy tends to move d higher in
the rank if the same query is processed in
the future. The rationale behind this pol-
icy is that if the ranking scores were per-
fect, then the top-ranked document would
be the first to be read by the user.

ProFusion combines static learning and
dynamic learning, and as a result, over-
comes some problems associated with em-
ploying static learning or dynamic learn-
ing alone. ProFusion has the following
shortcomings. First, the static learning
part is still done mostly manually, i.e.,
selecting training queries and identifying
relevant documents are carried out manu-
ally. Second, the higher-ranked documents
from the same database as the first clicked
document will remain as higher-ranked
documents after the adjustment of con-
fidence factors although they are of no
interest to the user. This is a situation
where the learning strategy does not help

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

72 Meng et al.

retrieve better documents for a repeating
query. Third, the employed dynamic learn-
ing method seems to be too simplistic. For
example, very little user feedback infor-
mation is used and the tendency of users
to select the highest-ranked document re-
gardless of the relevance of the document
is not taken into consideration. One way
to alleviate this problem is to use the
first clicked document that was read for a
“significant” amount of time.

6. DOCUMENT SELECTION

After the database selector has chosen the
component databases for a given query,
the next task is to determine what doc-
uments to retrieve from each selected
database. A naive approach is to let each
selected component search engine return
all documents that are retrieved from the
search engine. The problem with this ap-
proach is that too many documents may
be retrieved from the component systems
unnecessarily. As a result, this approach
will not only lead to higher communication
cost but also require more effort from the
result merger to identify the best matched
documents. This naive approach will not
be further discussed in this section.

As noted previously, a component search
engine typically retrieves documents in
descending order of local similarities. Con-
sequently, the problem of selecting what
documents to retrieve from a component
database can be translated into one of the
following two problems:

(1) Determine the number of documents to
retrieve from the component database.
If k documents are to be retrieved from
a component database, then the k doc-
uments with the largest local similari-
ties will be retrieved.

(2) Determine a local threshold for the
component database such that a doc-
ument from the component database
is retrieved only if its local similarity
with the query exceeds the threshold.

Both problems have been tackled in ex-
isting or proposed metasearch engines.
For either problem, the goal is always to

retrieve all or as many as possible poten-
tially useful documents from each compo-
nent database while minimizing the re-
trieval of useless documents. We classify
the proposed approaches for the document
selection problem into the following four
categories:

User determination: The metasearch
engine lets the global user determine
how many documents to retrieve from
each component database.

Weighted allocation: The number of
documents to retrieve from a compo-
nent database depends on the rank-
ing score (or the rank) of the compo-
nent database relative to the ranking
scores (or ranks) of other component
databases. As a result, proportionally
more documents are retrieved from
component databases that are ranked
higher or have higher ranking scores.

Learning-based approaches: These
approaches determine the number of
documents to retrieve from a compo-
nent database based on past retrie-
val experiences with the component
database.

Guaranteed retrieval: This type of ap-
proach aims at guaranteeing the re-
trieval of all potentially useful docu-
ments with respect to any given query.

In the following subsections, we survey
and discuss approaches from each of the
categories.

6.1. User Determination

In MetaCrawler [Selberg and Etzioni
1995; 1997] and SavvySearch [Dreilinger
and Howe 1997], the maximum number of
documents to be returned from each com-
ponent database can be customized by the
user. Different numbers can be used for
different queries. If a user does not select
a number, then a query-independent de-
fault number set by the metasearch engine
will be used. This approach may be reason-
able if the number of component databases
is small and the user is reasonably fa-
miliar with all of them. In this case, the
user can choose an appropriate number of

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 73

documents to retrieve for each component
database and can afford to do so.

If the number of component databases
is large, then this method has a serious
problem. In this case, it is likely that the
user will not be capable of selecting an
appropriate number for each component
database. Consequently, the user will be
forced to choose one number and apply
that number to all selected component
databases. As the numbers of useful docu-
ments in different databases with respect
to a given query are likely to be different,
this method may retrieve too many use-
less documents from some component sys-
tems on the one hand while retrieving too
few useful documents from other compo-
nent systems on the other hand. If m doc-
uments are to be retrieved from N selected
databases, the number of documents to re-
trieve from each database may be set to be
dm

N e or slightly higher.

6.2. Weighted Allocation

For a given query, each component
database has a rank (i.e., 1st, 2nd, . . .)
and a ranking score as determined by
the database selection algorithm. Both the
rank information and the ranking score
information can be used to determine the
number of documents to retrieve from dif-
ferent component systems. In principle,
weighted allocation approaches attempt to
retrieve more documents from component
search engines that are ranked higher (or
have larger ranking scores).

In D-WISE [Yuwono and Lee 1997], the
ranking score information is used. For a
given query q, let ri be the ranking score
of component database Di, i = 1, . . . , N ,
where N is the number of selected compo-
nent databases for the query. Suppose m
documents across all selected component
databases are desired. Then the number
of documents to retrieve from database Di
is m · ri/

∑N
j=1 r j .

In CORI Net [Callan et al. 1995],
the rank information is used. Specifi-
cally, if a total number of m documents
are to be retrieved from N component
databases, then m· 2(1+N−i)

N (N+1) documents will

be retrieved from the ith ranked compo-
nent database, i = 1, . . . , N (note that∑N

i=1
2(1+N−i)
N (N+1) = 1). In CORI Net, m could

be chosen to be larger than the number of
desired documents specified by the global
user in order to reduce the likelihood of
missing useful documents.

As a special case of the weighted allo-
cation approach, if the ranking score of
a component database is the estimated
number of potentially useful documents in
the database, then the ranking score of a
component database can be used as the
number of documents to retrieve from the
database.

Weighted Allocation is a reasonably
flexible and easy-to-implement approach
based on good intuition (i.e., retrieve more
documents from more highly ranked local
databases).

6.3. Learning-Based Approaches

It is possible to learn how many doc-
uments to retrieve from a component
database for a given query from past
retrieval experiences for similar queries.
The following are two learning-based app-
roaches [Towell et al. 1995; Voorhees et al.
1995a; Voorhees et al. 1995b; Voorhees
1996; Voorhees and Tong 1997].

In Section 5.3, we introduced a learning-
based method, namely MRDD (Model-
ing Relevant Document Distribution), for
database selection. In fact, this method
combines the selection of databases and
the determination of what documents to
retrieve from databases. For a given query
q, after the average distribution vectors
have been obtained for all databases, the
decision on what documents to retrieve
from these databases is made to maxi-
mize the overall precision. In Example 1,
when three relevant documents are de-
sired from the given three databases, this
method retrieves the top one document
from database D1 and the top three doc-
uments from D3.

The second method, QC (Query Clus-
tering), also performs document selec-
tion based on past retrieval experiences.
Again, a set of training queries is utilized.
In the training phase, for each component

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

74 Meng et al.

database, the training queries are grouped
into a number of clusters. Two queries are
placed in the same cluster if the num-
ber of common documents retrieved by
the two queries is large. Next, the cen-
troid of each query cluster is computed
by averaging the vectors of the queries in
the cluster. Furthermore, for each compo-
nent database, a weight is computed for
each cluster based on the average num-
ber of relevant documents among the top
T retrieved documents (T = 8 performed
well as reported in [Voorhees et al. 1995b])
for each query in the query cluster. For
a given database, the weight of a clus-
ter indicates how well the database re-
sponds to queries in the cluster. When a
user query is received, for each component
database, the query cluster whose centroid
is most similar to the query is selected.
Then the weights associated with all se-
lected query clusters across all databases
are used to determine the number of doc-
uments to retrieve from each database.
Suppose wi is the weight associated with
the selected query cluster for component
database Di and m is the total number of
documents desired. Then the number of
documents to retrieve from database Di
is m · wi/

∑N
j=1 wj , where N is the num-

ber of component databases. It can be seen
that this method is essentially a weighted
allocation method and the weight of a
database for a given query is the learned
weight of the selected query cluster for the
database.

For user queries that have very simi-
lar training queries, the above approaches
may produce very good results. However,
these approaches also have serious weak-
nesses that may prevent them from be-
ing used widely. First, they may not be
suitable in environments where new com-
ponent search engines may be frequently
added to the metasearch engine because
new training needs to be conducted when-
ever a new search engine is added. Sec-
ond, it may not be easy to determine what
training queries are appropriate to use.
On the one hand, we would like to have
some similar training queries for each po-
tential user query. On the other hand, hav-
ing too many training queries would con-

sume a lot of resources. Third, it is too time
consuming for users to identify relevant
documents for a wide variety of training
queries.

6.4. Guaranteed Retrieval

Since the similarity function used in a
component database may be different from
that used in the metasearch engine, it
is possible for a document with low local
similarity to have a high global similar-
ity, and vice versa. In fact, even when
the global and local similarity functions
are identical, this scenario regarding local
and global similarities may still occur
due to the use of some database-specific
statistical information in these functions.
For example, the document frequency of
a term in a component system is prob-
ably very different from that across all
systems (i.e., the global document fre-
quency). Consequently, if a component sys-
tem only returns documents with high
local similarities, globally potentially use-
ful documents that are determined based
on global similarities from the compo-
nent database may be missed. The guar-
anteed retrieval approach tries to ensure
that all globally potentially useful docu-
ments would be retrieved even when the
global and local document similarities do
not match. Note that none of the ap-
proaches in earlier subsections belongs to
the guaranteed retrieval category because
they do not take global similarities into
consideration.

Many applications, especially those in
medical and legal fields, often desire to
retrieve all documents (cases) that are
similar to a given query (case). For these
applications, the guaranteed retrieval ap-
proaches that can minimize the retrieval
of useless documents would be appropri-
ate. In this subsection, we introduce some
proposed techniques in the guaranteed re-
trieval category.

6.4.1. Query Modification. Under certain
conditions, a global query can be modi-
fied before it is submitted to a component
database to yield the global similarities
for returned documents. This technique

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 75

is called query modification [Meng et al.
1998]. It is essentially a query transla-
tion method for vector queries. Clearly, if
a component system can be tricked into
returning documents in descending order
of global similarities, guaranteeing the re-
trieval of globally most similar documents
becomes trivial.

Let D be a component database. Con-
sider the case when both the local and the
global similarity functions are the cosine
function [Salton and McGill 1983]. Note
that although the same similarity function
is used globally and locally, the same doc-
ument may still have different global and
local similarities due to the use of different
local and global document frequencies of
terms. Let d = (w1, . . . , wr) be the weight
vector of a document in D. Suppose each
wi is computed using only information in
d (such as term frequency) while a query
may use both the term frequency and the
inverse document frequency information.
The idf information for each term in D
is incorporated into the similarity compu-
tation by modifying each query before it
is processed [Buckley et al. 1993]. Con-
sider a user query q = (q1, . . . , qr), where
qj is the weight of term t j in the query,
j = 1, . . . , r. It is assumed that qj is ei-
ther assigned by the user or computed us-
ing the term frequency of t j in the query.
When the component system receives the
query q, it first incorporates the local idf
weight of each query term by modifying
query q to

q′ = (q1 ∗ l1, . . . , qr ∗ lr) (15)

and then evaluates the modified query,
where l j is the local idf weight of term
t j in component system D, j = 1, . . . , r.
As a result, when the cosine function is
used, the local similarity of d with q in
D can be computed to be simD(q, d) =
(
∑r

j=1 qj ∗ l j ∗wj)/(|q′|·|d |), where |q′| and
|d | are the lengths of q′ and d , respectively.

Let l ′j be the global idf weight of term
t j . Then, when the cosine function is
used, the global similarity of d with q
should be simG(q, d)= (

∑r
j=1 qj ∗ l ′j ∗wj)/

(|q′′| · |d |), where q′′ = (q1 ∗ l ′1, . . . , qr ∗ l ′r).

In order to trick the component system
D into computing the global similarity for
d , the following procedure is used. When
query q = (q1, . . . , qr) is received by the
metasearch engine, it is first modified to
q∗ = (q1 ∗ (l ′1/l1), . . . , qr ∗ (l ′r/lr)). Then the
modified query q∗ is sent to the compo-
nent database D for evaluation. Accord-
ing to (15), after D receives q∗, it further
modifies q∗ to (q1 ∗ (l ′1/l1) ∗ l1, . . . , qr ∗
(l ′r/lr) ∗ lr) = (q1 ∗ l ′1, . . . , qr ∗ l ′r) = q′′.
Finally, q′′ is evaluated by D to compute
the global similarity of d with q.

Unfortunately, query modification is not
a technique that can work for any combi-
nations of local and global similarity func-
tions. In general, we still need to deal with
the situations when documents have dif-
ferent local and global similarities. Fur-
thermore, this approach requires knowl-
edge of the similarity function and the
term weighting formula used in a compo-
nent system. The information is likely to
be proprietary and may not be easily avail-
able. A study of discovering such informa-
tion based on sampling queries is reported
in Liu et al. [2000].

6.4.2. Computing the Tightest Local Thresh-
old. For a given query q, suppose the
metasearch engine sets a threshold T
and uses a global similarity function G
such that any document d that satisfies
G(q, d) > T is to be retrieved (i.e., the doc-
ument is considered to be potentially use-
ful). The problem is to determine a proper
threshold T ′ for each selected component
database D such that all potentially useful
documents will that exist in D can be re-
trieved using its local similarity function
L. That is, if G(q, d) > T , then L(q, d) >
T ′ for any document d in D. Note that in
order to guarantee that all potentially use-
ful documents will be retrieved from D,
some unwanted documents from D may
also have to be retrieved. The challenge
is to minimize the number of documents
to retrieve from D while still guaranteeing
that all potentially useful documents from
D will be retrieved. In other words, it is de-
sirable to determine the tightest (largest)
local threshold T ′ such that if G(q, d) > T ,
then L(q, d) > T ′.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

76 Meng et al.

In Gravano and Garcia-Molina [1997],
it is shown that if (1) the similarities
computed by G and L are between 0 and
1, and (2) G and L are related by the in-
equality G(q, d) − ε ≤ L(q, d), where ε
is a constant satisfying 0 ≤ ε < 1, then
a local threshold T ′ can be determined.
However, the local threshold determined
using the method in Gravano and Garcia-
Molina [1997] is often not tight.

In Meng et al. [1998], several tech-
niques were proposed to find the tightest
local threshold for some popular similarity
function pairs. For a given global similar-
ity threshold T , let L(T) denote the tight-
est local threshold for a given component
database D. Then one way to determine
L(T) is as follows:

(1) Find the function f (t), the minimum
of the local similarity function L(q, d),
over all documents d in D, subject to
t = G(q, d). In this step, t is fixed and
d varies over all possible documents
in D.

(2) Minimize f (t) in the range t ≥ T . This
minimum of f (t) is the desired L(T).

Let {ti} be the set of terms in the query
q. If both L(q, d) and G(q, d) are differen-
tiable with respect to the weight wi of each
term ti of document d , then finding f (t) in
the above Step 1 can generally be achieved
using the method of Lagrange in calculus
[Widder 1989]. Once f (t) is found, its min-
imum value in the range t ≥ T can usu-
ally be computed easily. In particular, if
f (t) is nondecreasing, then L(T) is simply
f (T). The example below illustrates this
method.

Example 2. Let d = (w1, . . . , wr) be
a document and q= (u1, . . . , ur) be a
query. Let the global similarity function
G(q, d)= ∑r

i=1 ui · wi and the local sim-
ilarity function L(q, d) = (

∑r
i=1 up

i wp
i)

1
p

(known as p-norm in Salton and McGill
[1983]), p ≥ 1.

Step 1 is to find f (t), which requires
us to minimize (

∑r
i=1 up

i wp
i)

1
p subject to∑r

i=1 ui · wi = t. Using the Lagrange
method, f (t) is found to be t · r (1

p−1). As
this function is an increasing function of t,

for a global threshold T , the tightest local
threshold L(T) is then T · r (1

p−1).

While this method may provide the
tightest local threshold for certain combi-
nations of local and global similarity func-
tions, it has two weaknesses. First, a sep-
arate solution needs to be found for each
different pair of similarity functions and it
is not clear whether a solution can always
be found. Second, it is required that the
local similarity function be known.

7. RESULT MERGING

To provide local system transparency to
the global users, the results returned from
component search engines should be com-
bined into a single result. Ideally, doc-
uments in the merged result should be
ranked in descending order of global simi-
larities. However, such an ideal merge is
very hard to achieve due to the various
heterogeneities among the component sys-
tems. Usually, documents returned from
each component search engine are ranked
based on these documents’ local ranking
scores or similarities. Some component
search engines make the local similari-
ties of returned documents available to
the user while other search engines do not
make them available. For example, Google
and AltaVista do not provide local similar-
ities while Northern Light and FirstGov
do. Local similarities returned from dif-
ferent component search engines, even
when made available, may be incompa-
rable due to the heterogeneities among
these search engines. Furthermore, the
local similarities and the global similari-
ties of the same document may be quite
different.

The challenge here is to merge the doc-
uments returned from different search
engines into a single ranked list in a rea-
sonable manner in the absence of local
similarities and/or in the presence of in-
comparable similarities. A further compli-
cation to the problem is that some doc-
uments may be returned from multiple
component search engines. The question
is whether and how this should affect the
ranking of these documents.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 77

Existing result merging approaches can
be classified into the following two types:

Local similarity adjustment: This
type of approaches adjusts local simi-
larities using additional information
such as the quality of component
databases. A variation is to convert
local document ranks to similarities.

Global similarity estimation: This
type of approaches attempts to com-
pute or estimate the true global sim-
ilarities of the returned documents.

The first type is usually easier to imple-
ment but the merged ranking may be in-
accurate as the merge is not based on the
true global similarities of returned docu-
ments. The second type is more rigorous
and has the potential to achieve the ideal
merging. However, it typically needs more
information from local systems. The two
types of approaches are discussed in the
following subsections.

7.1. Local Similarity Adjustment

Three cases can be identified depending on
the degree of overlap among the selected
databases for a given query.

Case 1: These databases are pairwise dis-
joint or nearly disjoint. This occurs
when disjoint special-purpose search
engines or those with minimal overlap
are selected.

Case 2: The selected databases overlap
but are not identical. An example of
this situation is when several general-
purpose search engines are selected.

Case 3: These databases are identical.

Case 3 usually does not occur in a
metasearch engine environment. Instead,
it occurs when multiple ranking tech-
niques are applied to the same collection
of documents in order to improve the
retrieval effectiveness. The result merg-
ing problem in this case is also known
as data fusion [Vogt and Cottrell 1999].
Data fusion has been studied extensively
in the last decade. One special property
of the data fusion problem is that every
document will be ranked or scored by each

employed ranking technique. A number of
functions have been proposed to combine
individual ranking scores of the same
document, including min, max, average,
sum, weighted average, and other linear
combination functions [Cottrell and
Belew 1994; Fox and Shaw 1994; Lee
1997; Vogt and Cottrell 1999]. One of the
most effective functions for data fusion
is known as CombMNZ, which, for each
document, sums individual scores and
then multiplies the sum by the number of
nonzero scores [Lee 1997]. This function
emphasizes those documents that are
ranked high by multiple systems. More
data fusion techniques are surveyed in
Croft [2000].

We now consider more likely scenarios
in a metasearch engine context, namely
the selected databases are not identical.
We first consider the case where the se-
lected databases are disjoint. In this case,
all returned documents will be unique. Let
us first assume that all returned docu-
ments have local similarities attached. It
is possible that different search engines
normalize their local similarities in dif-
ferent ranges. For example, one search
engine may normalize its similarities be-
tween 0 and 1 and another search engine
between 0 and 1,000. In this case, all local
similarities should be renormalized based
on a common range, say [0, 1], to improve
the comparability of these local similari-
ties [Dreilinger and Howe 1997; Selberg
and Etzioni 1997]. In the following, we as-
sume that all local similarities have been
normalized based on a common range.

When database selection is performed
for a given query, the usefulness or quality
of each database is estimated and is rep-
resented as a score. The database scores
can be used to adjust the local similarities.
The idea is to give preference to documents
from highly ranked databases. In CORI
Net [Callan et al. 1995], the adjustment
works as follows. Let s be the ranking
score of component database D and s̄ be
the average of the scores of all databases
searched. Then the following weight is as-
signed to D: w= 1+N · s−s̄

s̄ , where N is
the number of component databases
searched for the given query. Clearly, if

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

78 Meng et al.

s > s̄, then w will be greater than 1. Fur-
thermore, the larger the difference is, the
larger the weight will be. On the other
hand, if s< s̄, then w will be smaller than
1. Moreover, the larger the difference is,
the smaller the weight will be. Let x be the
local similarity of document d from D.
Then the adjusted similarity of d is com-
puted by w · x. The result merger lists re-
turned documents in descending order of
adjusted similarities. Based on the way
the weight of a database is computed,
it is clear that documents from higher-
ranked databases have a better chance to
be ranked higher in the merged result.

A similar method is used in ProFusion
[Gauch et al. 1996]. For a given query,
a ranking score is calculated for each
database (see the discussion on ProFusion
in Section 5.3.3). The adjusted similarity
of a document d from a database D is the
product of the local similarity of d and the
ranking score of D.

Now let us consider the situation where
the local similarities of the returned doc-
uments from some component search en-
gines are not available. In this case, one
of the following two approaches could be
applied to tackle the merging problem.
Again, we assume that no document is re-
turned from multiple search engines, i.e.,
all returned documents are unique.

(1) Use the local document rank infor-
mation directly to perform the merge.
Local similarities, if available, will
be ignored in this approach. First,
the searched databases are arranged
in descending order of usefulness or
quality scores obtained during the
database selection step. Next, a round-
robin method based on the database or-
der and the local document rank order
is used to merge the local document
lists. Specifically, the first document
in the merged list is the top-ranked
document from the highest-ranked
database and the second document in
the merged list is the top-ranked docu-
ment from the second-highest-ranked
database. After the top-ranked doc-
uments from all searched databases
have been selected, the next docu-

ment in the merged list will be the
second-highest-ranked document in
the highest-ranked database and the
process continues until the desired
number of documents are included in
the merged list. One weakness of this
solution is that it does not take into
consideration the differences between
the database scores (i.e., only the
order information is utilized).

A randomized version of the above
method is proposed in Voorhees et al.
[1995b]. Recall that in the MRDD
database selection method, we first
determine how many documents to re-
trieve from each component database
for a given query to maximize the pre-
cision of the retrieval. Suppose the de-
sired number of documents have been
retrieved from each selected com-
ponent database and N local docu-
ment lists have been obtained, where
N is the number of selected compo-
nent databases. Let Li be the local
document list for database Di. To
select the next document to be placed
in the merged list, the rolling of a die is
simulated. The die has N faces corre-
sponding to the N local lists. Suppose
n is the total number of documents
yet to be selected and ni documents
are still in the list Li. The die is made
biased such that the probability that
the face corresponding to Li will be
up when the die is rolled is ni/n.
When the face for Li is up, the current
top-ranked document in the list Li will
be selected as the next-highest-ranked
document in the merged list. After
the selection, the selected document
is removed from Li, and both ni and n
are reduced by 1. The probabilities are
also updated accordingly. In this way,
the retrieved documents are ranked
based on the probabilistic model.

(2) Convert local document ranks to
similarities. In D-WISE [Yuwono and
Lee 1997], the following method is
employed. For a given query, suppose
ri is the ranking score of database Di,
rmin is the lowest database ranking
score (i.e., rmin= min{ri}), r is the local

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 79

rank of a document from database Di,
and g is the converted similarity of the
document. The conversion function is
g = 1−(r−1)·Fi, where Fi is defined to
be (rmin)/(m · ri) and m is the number of
documents desired across all searched
databases. Intuitively, this conversion
function has the following properties.
First, all top-ranked documents from
local systems will have the same con-
verted similarity 1. This implies that
all top-ranked documents from local
systems are considered to be equally
potentially useful. Second, Fi is used
to model the distance between the
converted similarities of two consecu-
tively ranked documents in database
Di. In other words, the difference
between the converted similarities
of the j th- and the (j + 1)th-ranked
documents from database Di is Fi. The
distance is larger for databases with
smaller ranking scores. As a result, if
the rank of a document d in a higher-
rank database is the same as the
rank of document d ′ in a lower rank
database but none of d and d ′ is top-
ranked, then the converted similarity
of d will be higher than that of d ′. In
addition, this method tends to select
more documents from databases with
higher scores into the merged result.

As an example, consider two data-
bases D1 and D2. Suppose r1 = 0.2 and
r2 = 0.5. Furthermore, suppose four
documents are desired. Then, we have
rmin = 0.2, F1 = 0.25, and F2 = 0.1.
Based on the above conversion func-
tion, the top three ranked documents
from D1 will have converted similari-
ties 1, 0.75, and 0.5, respectively, and
the top three ranked documents from
D2 will have converted similarities 1,
0.9, and 0.8, respectively. As a result,
the merged list will contain three docu-
ments from D2 and one document from
D1. The documents will be ranked
in descending order of converted
similarities in the merged list.

Now let us consider the situation where
the selected databases have overlap. For
documents that are returned by a single

search engine, the above discussed simi-
larity adjustment techniques can be ap-
plied. We now consider how to deal with
documents that are returned by multiple
search engines. First, each local similarity
can be adjusted using the techniques dis-
cussed above. Next, adjusted similarities
for the same document can be combined
in a certain way to produce an overall ad-
justed similarity for the document. The
combination can be carried out by utilizing
one of the combination functions proposed
for data fusion. Indeed, this has been prac-
ticed by some metasearch engines. For ex-
ample, the max function is used in Pro-
Fusion [Gauch et al. 1996] and the sum
function is used in MetaCrawler [Selberg
and Etzioni 1997]. It should be pointed out
that an effective combination function in
data fusion may not necessarily be effec-
tive in a metasearch engine environment.
In data fusion, if a document is not re-
trieved by a retrieval technique, then it
is because the document is not considered
useful by the technique. In contrast, in a
metasearch engine, there are two possible
reasons for a document not to be retrieved
by a selected search engine. The first is the
same as in the data fusion case, namely
the document is not considered sufficiently
useful by the search engine. The second is
that the document is not indexed by the
search engine. In this case, the document
did not have a chance to be judged for its
usefulness by the search engine. Clearly, a
document that is not retrieved due to the
second reason will be put at a disadvan-
tage if a combination function such as sum
and CombMNZ is used. Finding an effec-
tive combination function in a metasearch
engine environment is an area that still
needs further research.

7.2. Global Similarity Estimation

Under certain conditions, it is possible to
compute or estimate the global similari-
ties of returned documents. The following
methods have been reported.

7.2.1. Document Fetching. That a docu-
ment is returned by a search engine typi-
cally means that the URL of the document

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

80 Meng et al.

is returned. Sometimes, additional in-
formation associated with the document,
such as a short summary or the first couple
of sentences, is also returned. But the doc-
ument itself is typically not returned.

The document fetching method down-
loads returned documents from their local
servers and computes or estimates their
global similarities in the metasearch en-
gine. Consider the case in which the global
similarity function is the cosine function
and the global document frequency of each
term is known to the metasearch engine
(note that if local databases have little or
no overlap, then the global document fre-
quency of a term can be computed or ap-
proximated as the sum of the local doc-
ument frequencies of the term). After a
document is downloaded, the term fre-
quency of each term in the document can
be obtained. As a result, all statistics
needed to compute the global similarity
of the document will be available and the
global similarity can be computed. The
Inquirus metasearch engine ranks docu-
ments returned from different search en-
gines based on analyzing the contents of
downloaded documents and a ranking for-
mula that combines similarity and prox-
imity matches is employed [Lawrence and
Lee Giles 1998].

A document-fetching-based method that
combines document selection and result
merging is reported in Yu et al. [1999b].
Suppose that the m most similar docu-
ments across all databases with respect to
a given query are desired for some positive
integer m. In Section 5.2.5, we introduced
a method to rank databases in descending
order of the similarity of the most simi-
lar document in each database for a given
query. Such a rank is an optimal rank for
retrieving the m most similar documents.
This rank can also be used to perform doc-
ument selection as follows.

First, for some small positive integer
s (e.g., s can start from 2), each of the
s top ranked databases are searched to
obtain the actual global similarity of its
most similar document. This may re-
quire downloading some documents from
these databases. Let min sim be the
minimum of these s similarities. Next,

from these s databases, retrieve all doc-
uments whose actual global similarities
are greater than or equal to the tenta-
tive threshold min sim. The tightest lo-
cal threshold for each of these s databases
could be determined and used here. If m or
more documents have been retrieved, then
this process stops. Otherwise, the next top
ranked database (i.e., the (s+ 1)th-ranked
database) will be considered and its most
similar document will be retrieved. The
actual global similarity of this document
is then compared with min sim and the
minimum of these two similarities will
be used as a new global threshold to re-
trieve all documents from these s + 1
databases whose actual global similarities
are greater than or equal to this threshold.
This process is repeated until m or more
documents are retrieved. Retrieved docu-
ments are ranked in descending order of
their actual global similarities. A poten-
tial problem with this approach is that the
same database may be searched multiple
times. This problem can be relieved to
some extent by retrieving and caching a
larger number of documents when search-
ing a database.

This method has the following two
properties [Yu et al. 1999b]. First, if the
databases are ranked optimally, then all
the m most similar documents can be
retrieved while accessing at most one
unnecessary database, for any m. Second,
for any single-term query, the optimal
rank of databases can be achieved and, as
a result, the m most similar documents
will be retrieved.

Downloading documents and analyzing
them on the fly can be an expensive under-
taking, especially when the number of doc-
uments to be downloaded is large and the
documents have large sizes. A number of
remedies have been proposed. First, down-
loading from different local systems can
be carried out in parallel. Second, some
documents can be analyzed first and dis-
played to the user so that further analy-
sis can be done while the user reads the
initial results [Lawrence and Lee Giles
1998]. The initially displayed results may
not be correctly ranked and the overall
rank needs to be adjusted when more

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 81

documents are analyzed. Third, we may
consider downloading only the beginning
portion of each (large) document to ana-
lyze [Craswell et al. 1999].

On the other hand, downloading-based
approaches also have some clear advan-
tages [Lawrence and Lee Giles 1998].
First, when trying to download docu-
ments, obsolete URLs can be identified.
As a result, documents with dead URLs
can be removed from the final result list.
Second, by analyzing downloaded docu-
ments, documents will be ranked by their
current contents. In contrast, local sim-
ilarities may be computed based on old
versions of these documents. Third, query
terms in downloaded documents could be
highlighted when displayed to the user.

7.2.2. Use of Discovered Knowledge. As
discussed previously, one difficulty with
result merging is that local document sim-
ilarities may be incomparable because in
different component search engines the
documents may be indexed differently
and the similarities may be computed
using different methods (term weighting
schemes, similarity functions, etc.). If the
specific document indexing and similar-
ity computation methods used in differ-
ent component search engines can be dis-
covered, for example, using the techniques
proposed in Liu et al. [2000], then we can
be in a better position to figure out (1) what
local similarities are reasonably compara-
ble; (2) how to adjust some local similar-
ities so that they will become more com-
parable with others; and (3) how to derive
global similarities from local similarities.
This is illustrated by the following exam-
ple [Meng et al. 1999b].

Example 3. Suppose it is discovered
that all the component search engines
selected to answer a given user query
employ the same methods to index local
documents and to compute local similari-
ties, and no collection-dependent statistics
such as the idf information are used. Then
the similarities from these local search en-
gines can be considered as comparable. As
a result, these similarities can be used di-
rectly to merge the returned documents.

If the only difference among these com-
ponent search engines is that some remove
stopwords and some do not (or the stop-
word lists are different), then a query may
be adjusted to generate more comparable
local similarities. For instance, suppose a
term t in query q is a stopword in compo-
nent search engine E1 but not a stopword
in component search engine E2. In order
to generate more comparable similarities,
we can remove t from q and submit the
modified query to E2 (it does not matter
whether the original q or the modified q is
submitted to E1).

If the idf information is also used, then
we need to either adjust the local similar-
ities or compute the global similarities di-
rectly to overcome the problem that the
global idf and the local idf ’s of a term
may be different. Consider the following
two cases. It is assumed that both the local
similarity function and the global similar-
ity function are the cosine function.

Case 1: Query q consists of a single
term t. The similarity of q with a doc-
ument d in a component database can
be computed by

sim(d , q) = qtft(q)× lidft × dtft(d)
|q| · |d | ,

where qtft(q) and dtft(d) are the tf
weights of term t in q and in d , respec-
tively, and lidft is the local idf weight of
t. If the local idf formula has been dis-
covered and the global document fre-
quency of t is known, then this local
similarity can be adjusted to the global
similarity by multiplying it by gidft

lidft
,

where gidft is the global idf weight of t.
Case 2: Query q has multiple terms

t1, . . . , tk. The global similarity be-
tween d and q in this case is

s =
∑k

i=1 qtfti
(q)× gidfti

× dtfti
(d)

|q| · |d |

=
k∑

i=1

qtfti
(q)
|q| ·

dtfti
(d)
|d | · gidfti

.

Clearly,
qt f ti

(q)
|q| and gidfti

, i = 1, . . . , k,
can all be computed by the metasearch

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

82 Meng et al.

engine as the formulas for computing
them are known. Therefore, in order
to find s, we need to find

dtfti
(d)
|d | , i =

1, . . . , k. To find
dtfti

(d)
|d | for a given term

ti without downloading document d, we
can submit ti as a single-term query.
Let si = sim(d , ti) = qtfti

(ti)× lidfti
×dtfti

(d)
|ti |·|d |

be the local similarity returned. Then

dtfti
(d)
|d | =

si × |ti|
qtfti

(ti)× lidfti

(16)

Note that the expression on the right-
hand side of the above formula can
be computed by the metasearch engine
when all the local formulas are known
(i.e., have been discovered). In sum-
mary, k additional single-term queries
can be used to compute the global sim-
ilarities between q and all documents
retrieved by q.

8. NEW CHALLENGES

As discussed in previous sections, much
progress has been made to find efficient
and accurate solutions to the problem of
processing queries in a metasearch en-
gine environment. However, as an emerg-
ing area, many outstanding problems re-
main to be solved. In this section, we list
a few worthwhile challenges in this area.

(1) Integrate local systems employing dif-
ferent indexing techniques. Using dif-
ferent indexing techniques in differ-
ent local systems can have serious
impact on the compatibility of local
similarities. Careful observation can
reveal that using different indexing
techniques can in fact affect the esti-
mation accuracy in each of the three
software components (i.e., database se-
lection, document selection, and result
merging). New studies need to be car-
ried out to investigate more precisely
what impact it poses and how to over-
come or alleviate the impact. Previous
studies have largely been focused on
different local similarity functions and
local term weighting schemes.

(2) Integrate local systems supporting dif-
ferent types of queries (e.g., Boolean
queries versus vector space queries).
Most of our discussions in this article
are based on queries in the vector space
model [Salton and McGill 1983]. There
exist metasearch engines that use
Boolean queries [French et al. 1995; Li
and Danzig 1997; NCSTRL n.d.] and
a number of works on dealing with
Boolean queries in a metasearch en-
gine have been reported [Gravano et al.
1994; Li and Danzig 1997; Sheldon
et al. 1994]. Since very different meth-
ods may be used to rank documents for
Boolean queries (traditional Boolean
retrieval systems do not even rank re-
trieved documents) and vector space
queries, we are likely to face many
new problems when integrating local
systems that support both Boolean
queries and vector space queries.

(3) Discover knowledge about component
search engines. Many local systems
are not willing to provide sufficient
design and statistical information
about their systems. They consider
such information proprietary. How-
ever, without sufficient information
about a local system, the estimation
about the usefulness of the local
system with respect to a given query
may not be made accurately. One
possible solution to this dilemma is to
develop tools that can learn about a
local system regarding the indexing
terms used and certain statistical
information about these terms as
well as the similarity function used
through probe queries. These learning
or knowledge discovering tools can be
used to facilitate not only the addition
of new component search engines to
an existing metasearch engine but
also the detection of major upgrades
or changes of existing component sys-
tems. Some preliminary work in this
area has started to be reported. Using
sampling technique to generate ap-
proximate database representatives
for CORI Net is reported in Callen
et al. [1999]. In Liu et al. [2000], a

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 83

technique is proposed to discover how
term weights are assigned in compo-
nent search engines. New techniques
need to be developed to discover knowl-
edge about component search engines
more accurately and more efficiently.

(4) Develop more effective result merging
methods. Up to now, most result merg-
ing methods that have under gone
extensive experimental evaluation
are those proposed for data fusion.
These methods may be unsuitable in
the metasearch engine environment
where databases of different compo-
nent search engines are not identical.
New methods that take into consid-
eration the special characteristics of
the metasearch engine environment
need to be designed and evaluated.
One such special characteristic is that
when a document is not retrieved by
a search engine, it may be because the
document is not indexed by the search
engine.

(5) Study the appropriate cooperation be-
tween a metasearch engine and the
local systems. There are two extreme
ways to build a metasearch engine.
One is to impose an interface on top
of autonomous component search en-
gines. In this case, no cooperation from
these local systems can be expected.
The other is to invite local systems
to join a metasearch engine. In this
case, the developer of the metasearch
engine may set conditions, such as
what similarity function(s) must be
used and what information about the
component databases must be pro-
vided, that must be satisfied for a local
system to join the metasearch engine.
Many possibilities exist between the
two extremes. This means it is likely,
in a practical environment, that differ-
ent types of database representatives
will be available to the metasearch
engine. How to use different types of
database representatives to estimate
comparable database usefulnesses is
still a largely untouched problem.
An interesting issue is to come up with
guidelines on what information from

local systems are useful to facilitate
the construction of a metasearch en-
gine. Search engine developers may
use such guidelines to design or up-
grade their search engines. Multiple
levels of compliance should be allowed,
with different compliance levels guar-
anteeing different levels of estimation
accuracy. A serious initial effort in this
regard can be found in Gravano et al.
[1997].

(6) Incorporate new indexing and weigh-
ting techniques to build better meta-
search engines. Some new indexing
and term weighting techniques have
been developed for search engines
for HTML documents. For example,
some search engines (e.g., WWWW
[McBryan 1994], Google [Brin and
Page 1998], and Webor [Cutler et al.
1997]) use anchor terms in a Web
page to index the Web page that is
hyperlinked by the URL associated
with the anchor. The rationale is that
when authors of Web pages add a
hyperlink to another Web page p, they
include in the anchor tag a description
of p in addition to its URL. These de-
scriptions have the potential of being
very important for the retrieval of p
because they include the perception
of these authors about the contents of
p. As another example, some search
engines also compute the weight of a
term according to its position in the
Web page and its font type. In SIBRIS
[Wade et al. 1989], the weight of a
term in a page is increased if the term
appears in the title of the page. A
similar method is also employed in
AltaVista, HotBot, and Yahoo. Google
[Brin and Page 1998] assigns higher
weights to terms in larger or bold
fonts. It is known that co-occurrences
and proximities of terms have signif-
icant influence on the relevance of
documents. An interesting problem
is how to incorporate these new tech-
niques into the entire retrieval process
and into the database representatives
so that better metasearch engines can
be built.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

84 Meng et al.

(7) Improve the effectiveness of meta-
search. Most existing techniques rank
databases and documents based on the
similarities between the query and the
documents in each database. Similari-
ties are computed based on the match
of terms in the query and documents.
Studies in information retrieval indi-
cate that when queries have a large
number of terms, the correlation be-
tween highly similar documents and
relevant documents exists provided
appropriate similarity functions and
term weighting schemes, such as the
cosine function and the tfw ∗ idfw
weight formula, are used. However,
for queries that are short, typical in
the Internet environment [Jansen
et al. 1998; Kirsch 1998], the above
correlation is weak. The reason is that
for a long query, the terms in the query
provide context to each other to help
disambiguate the meanings of differ-
ent terms. In a short query, the partic-
ular meaning of a term often cannot
be identified correctly. In summary, a
similar document to a short query may
not be useful to the user who submit-
ted the query because the matching
terms may have different meanings.
Clearly, the same problem also exists
for search engines. Methods need to be
developed to address this issue. The
following are some promising ideas.
First, incorporate the importance of a
document as determined by linkages
between documents (e.g., PageRank
[Page et al. 1998] and authority
[Kleinberg 1998]) with the similarity
of the document with a query [Yu et al.
2001]. Second, associate databases
with concepts [Fan and Gauch 1999;
Ipeirotis et al. 2001; Meng et al. 2001].
When a query is received by the
metasearch engine, it is first mapped
to a number of appropriate concepts
and then those databases associated
with the mapped concepts are used for
database selection. The concepts asso-
ciated with a database/query are used
to provide some contexts for terms in
the database/query. As a result, the
meanings of terms can be more accu-

rately determined. Third, user profiles
may be utilized to support personal-
ized metasearch. Fourth, collaborative
filtering (CF) has been shown to be
very effective for recommending useful
documents [Konstan et al. 1997] and
is employed by the DirectHit search
engine (www.directhit.com). The CF
technique may also be useful for
recommending databases to search for
a given query.

(8) Decide where to place the software
components of a metasearch engine.
In Section 3, we identified the major
software components for building a
good metasearch engine. One issue
that we have not discussed is where
should these components be placed.
An implicit assumption used in this
article is that all components are
placed at the site of the metasearch
engine. However, valid alternatives
exist. For example, instead of having
the database selector at the global
site, we could distribute it to all local
sites. The representative of each local
database can also be stored locally.
In this scenario, each user query will
be dispatched to all local sites for
database selection. Each site then es-
timates the usefulness of its database
with respect to the query to determine
whether its local search engine should
be invoked for the query. Although this
placement of the database selector will
incur a higher communication cost, it
also has some appealing advantages.
First, the estimation of database
usefulness can now be carried out in
parallel. Next, as database representa-
tives are stored locally, the scalability
issue becomes much less significant
than when centralized database selec-
tion is employed. Other components
such as the document selector may
also have alternative placements. We
need to investigate the pros and cons of
different placements of these software
components. New research issues may
arise from these investigations.

(9) Create a standard testbed to evaluate
the proposed techniques for database

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 85

selection, document selection, and re-
sult merging. This is an urgent need.
Although most papers that report
these techniques include some exper-
imental results, it is hard to draw gen-
eral conclusions from these results due
to the limitations of the documents and
queries used. Some studies use vari-
ous portions of some old TREC collec-
tions to conduct experiments [Callan
et al. 1995; Voorhees et al. 1995b; Xu
and Callan 1998] so that the informa-
tion about the relevance of documents
to each query can be utilized. How-
ever, the old TREC collections have
several limitations. First, the number
of queries that can be used for different
portions of TREC collections is small
(from 50 to 250). Second, these queries
tend to be much longer on the aver-
age than typical queries encountered
in the Internet environment [Abdulla
et al. 1997; Jansen et al. 1998]. Third,
the documents do not reflect more
structured and more extensively hy-
perlinked Web documents. In Gravano
and Garcia-Molina [1995], Meng et al.
[1998, 1999a], and Yu et al. [1999a]
a collection of up to more than 6,000
real Internet queries is used. However,
the database collection is small and
there is no document relevance infor-
mation. An ideal testbed should have
a large collection of databases of vari-
ous sizes, contents, and structures, and
a large collection of queries of vari-
ous lengths with the relevant docu-
ments for each query identified. Re-
cently, a testbed based on partitioning
some old TREC collections into hun-
dreds of databases has been proposed
for evaluating metasearch techniques
[French et al. 1998, 1999]. However,
this testbed is far from being ideal
due to the problems inherited from
the used TREC collections. Two new
TREC collections consisting of Web
documents (i.e., WT10g and VLC2;
WT10g is a 10GB subset of the 100GB
VLC2) have been created recently. The
test queries are also typical Inter-
net queries. It is possible that good
testbeds can be derived from them.

(10) Extend metasearch techniques to differ-
ent types of data sources. Information
sources on the Web often contain mul-
timedia data such as text, image and
video. Most work in metasearch deals
with only text sources or the text as-
pect of multimedia sources. Database
selection techniques have also been
investigated for other media types. For
example, selecting image databases
in a metasearch context was studied
in Chang et al. [1998]. As another
example, for data sources that can be
described by attributes, such as book
title and author name, a necessary
and sufficient condition for ranking
databases optimally was given in Kirk
et al. [1995]. The database selection
method in Liu [1999] also considered
only data sources of mostly structured
data. But there is a lack of research on
providing metasearch capabilities for
mixed media or multimedia sources.

The above list of challenges is by no
means complete. New problems will arise
with a deeper understanding of the issues
in metasearch.

9. CONCLUSIONS

With the increase of the number of search
engines and digital libraries on the World
Wide Web, providing easy, efficient, and
effective access to text information from
multiple sources has increasingly become
necessary. In this article, we presented
an overview of existing metasearch tech-
niques. Our overview concentrated on the
problems of database selection, document
selection, and result merging. A wide va-
riety of techniques for each of these prob-
lems was surveyed and analyzed. We also
discussed the causes that make these
problems very challenging. The causes in-
clude various heterogeneities among dif-
ferent component search engines due to
the independent implementations of these
search engines, and the lack of informa-
tion about these implementations because
they are mostly proprietary.

Our survey and investigation seem to
indicate that better solutions to each of the

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

86 Meng et al.

three main problems, namely database
selection, document selection, and re-
sult merging, require more information/
knowledge about the component search
engines such as more detailed database
representatives, underlying similarity
functions, term weighting schemes, in-
dexing methods, and so on. There are
currently no sufficiently efficient methods
to find such information without the coop-
eration of the underlying search engines.
A possible scenario is that we will need
good solutions based on different degrees
of knowledge about each local search en-
gine, which we will then apply accordingly.

Another important issue is the scalabil-
ity of the solutions. Ultimately, we need
to develop solutions that can scale in two
orthogonal dimensions: data and access.
Specifically, a good solution must scale
to thousands of databases, with many of
them containing millions of documents,
and to millions of accesses a day. None of
the proposed solutions has been evaluated
under these conditions.

ACKNOWLEDGMENTS

We are very grateful to the anonymous reviewers and
the editor, Michael Franklin, of the article for their
invaluable suggestions and constructive comments.
We also would like to thank Leslie Lander for reading
the manuscript and providing suggestions that have
improved the quality of the manuscript.

REFERENCES

ABDULLA, G., LIU, B., SAAD, R., AND FOX, E. 1997.
Characterizing World Wide Web queries. In
Technical report TR-97-04, Virginia Tech.

BAUMGARTEN, C. 1997. A probabilistic model for
distributed information retrieval. In Proceed-
ings of the ACM SIGIR Conference (Philadel-
phia, PA, July 1997), 258–266.

BERGMAN, M. 2000. The deep Web: Surfacing
the hidden value. BrightPlanet, www.complete-
planet.com/Tutorials/DeepWeb/index.asp.

BOYAN, J., FREITAG, D., AND JOACHIMS, T. 1996. A
machine learning architecture for optimizing
web search engines. In AAAI Workshop on
Internet-Based Information Systems (Portland,
OR, 1996).

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-
scale hypertextual Web search engine. In Pro-
ceedings of the Seventh World Wide Web Confer-
ence (Brisbane, Australia, April 1998), 107–117.

BUCKLEY, C., SALTON, G., AND ALLAN, J. 1993. Auto-
matic retrieval with locality information using
smart. In Proceedings of the First Text Retrieval
Conference, NIST Special Publication 500–207
(March), 59–72.

CALLAN, J. 2000. Distributed information re-
trieval. In Advances in Information Retrieval:
Recent Research from the Center for Intelligent
Information Retrieval, W. Bruce Croft, ed.
Kluwer Academic Publishers. 127–150.

CALLAN, J., CONNELL, M., AND DU, A. 1999. Auto-
matic discovery of language models for text
databases. In Proceedings of the ACM SIGMOD
Conference (Philadelphia, PA, June 1999), 479–
490.

CALLAN, J., CROFT, B., AND HARDING, S. 1992. The
inquery retrieval system. In Proceedings of the
Third DEXA Conference (Valencia, Spain, 1992),
78–83.

CALLAN, J., LU, Z., AND CROFT, W. 1995. Searching
distributed collections with inference networks.
In Proceedings of the ACM SIGIR Conference
(Seattle, WA, July 1995), 21–28.

CHAKRABARTI, S., DOM, B., KUMAR, S., RAGHAVAN, P.,
RAJAGOPALAN, S., TOMKINS, A., GIBSON, D., AND

KLEINBERG, J. 1999. Mining the web’s link
structure. IEEE Comput. 32, 8 (Aug.), 60–67.

CHAKRAVARTHY, A. AND HAASE, K. 1995. Netserf: Us-
ing semantic knowledge to find internet informa-
tion archives. In Proceedings of the ACM SIGIR
Conference (Seattle, WA, July 1995), 4–11.

CHANG, C. AND GARCIA-MOLINA, H. 1999. Mind your
vocabulary: query mapping across heteroge-
neous information sources. In Proceedings of the
ACM SIGMOD Conference (Philadelphia, PA,
June 1999), 335–346.

CHANG, W., MURTHY, D., ZHANG, A., AND SYEDA-
MAHMOOD, T. 1998. Global integration of
visual databases. In Proceedings of the IEEE
International Conference on Data Engineering
(Orlando, FL, Feb. 1998), 542–549.

COTTRELL, G. AND BELEW, R. 1994. Automatic com-
bination of multiple ranked retrieval systems.
In Proceedings of the ACM SIGIR Conference
(Dublin, Ireland, July 1994), 173–181.

CRASWELL, N., HAWKING, D., AND THISTLEWAITE, P.
1999. Merging results from isolated search en-
gines. In Proceedings of the Tenth Australasian
Database Conference (Auckland, New Zealand,
Jan. 1999), 189–200.

CROFT, W. 2000. Combining approaches to infor-
mation retrieval. In Advances in Information Re-
trieval: Recent Research from the Center for In-
telligent Information Retrieval, W. Bruce Croft,
ed. Kluwer Academic Publishers. 1–36.

CUTLER, M., SHIH, Y., AND MENG, W. 1997. Using
the structures of html documents to improve
retrieval. In Proceedings of the USENIX Sym-
posium on Internet Technologies and Systems
(Monterey, CA, Dec. 1997), 241–251.

DREILINGER, D. AND HOWE, A. 1997. Experiences
with selecting search engines using metasearch.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 87

ACM Trans. Inform. Syst. 15, 3 (July), 195–
222.

FAN, Y. AND GAUCH, S. 1999. Adaptive agents for in-
formation gathering from multiple, distributed
information sources. In Proceedings of the 1999
AAAI Symposium on Intelligent Agents in Cy-
berspace (Stanford University, Palo Alto, CA,
March 1999), 40–46.

FOX, E. AND SHAW, J. 1994. Combination of multi-
ple searches. In Proceedings of the Second Text
REtrieval Conference (Gaithersburg, MD, Aug.
1994), 243–252.

FRENCH, J., FOX, E., MALY, K., AND SELMAN, A. 1995.
Wide area technical report service: technical re-
port online. Commun. ACM 38, 4 (April), 45–46.

FRENCH, J., POWELL, A., CALLAN, J., VILES, C., EMMITT,
T., PREY, K., AND MOU, Y. 1999. Comparing the
performance of database selection algorithms.
In Proceedings of the ACM SIGIR Conference
(Berkeley, CA, August 1999), 238–245.

FRENCH, J., POWELL, A., AND VILES, C. 1998. Evalu-
ating database selection techniques: a testbed
and experiment. In Proceedings of the ACM
SIGIR Conference (Melbourne, Australia,
August 1998), 121–129.

GAUCH, S., WANG, G., AND GOMEZ, M. 1996. Pro-
fusion: intelligent fusion from multiple, dis-
tributed search engines. J. Univers. Comput.
Sci. 2, 9, 637–649.

GRAVANO, L., CHANG, C., GARCIA-MOLINA, H., AND

PAEPCKE, A. 1997. Starts: Stanford proposal
for Internet meta-searching. In Proceedings of
the ACM SIGMOD Conference (Tucson, AZ, May
1997), 207–218.

GRAVANO, L. AND GARCIA-MOLINA, H. 1995. General-
izing gloss to vector-space databases and broker
hierarchies. In Proceedings of the International
Conferences on Very Large Data Bases (Zurich,
Switzerland, Sept. 1995), 78–89.

GRAVANO, L. AND GARCIA-MOLINA, H. 1997. Merging
ranks from heterogeneous Internet sources. In
Proceedings of the International Conferences on
Very Large Data Bases (Athens, Greece, August
1997), 196–205.

GRAVANO, L., GARCIA-MOLINA, H., AND TOMASIC, A.
1994. The effectiveness of gloss for the text
database discovery problem. In Proceedings of
the ACM SIGMOD Conference (Minnesota, MN,
May 1994), 126–137.

HAWKING, D. AND THISTLEWAITE, P. 1999. Methods
for information server selection. ACM Trans.
Inform. Syst. 17, 1 (Jan.), 40–76.

IPEIROTIS, P., GRAVANO, L., AND SAHAMI, M. 2001.
Probe, count, and classify: categorizing hidden-
Web databases. In Proceedings of the ACM
SIGMOD Conference (Santa Barbara, CA, 2001),
67–78.

JANSEN, B., SPINK, A., BATEMAN, J., AND SARACEVIC, T.
1998. Real life information retrieval: a study
of user queries on the Web. ACM SIGIR
Forum 32, 1, 5–17.

KAHLE, B. AND MEDLAR, A. 1991. An information
system for corporate users: wide area informa-
tion servers. Technical Report TMC199, Think-
ing Machine Corporation (April).

KIRK, T., LEVY, A., SAGIV, Y., AND SRIVASTAVA, D. 1995.
The information manifold. In AAAI Spring Sym-
posium on Information Gathering in Distributed
Heterogeneous Environments (1995).

KIRSCH, S. 1998. Internet search: Infoseek’s
experiences searching the internet. ACM SIGIR
Forum 32, 2, 3–7.

KLEINBERG, J. 1998. Authoritative sources in hy-
perlinked environment. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms
(San Francisco, CA, January 1998), 668–677.

KONSTAN, J., MILLER, B., MALTZ, D., HERLOCKER, J.,
GORDON, L., AND RIEDL, J. 1997. Grouplens:
Applying collaborative filtering to usenet news.
Commun. ACM 40, 3, 77–87.

KOSTER, M. 1994. Aliweb: Archie-like indexing in
the Web. Comput. Netw. and ISDN Syst. 27, 2,
175–182.

LAWRENCE, S. AND LEE GILES, C. 1998. Inquirus, the
neci meta search engine. In Proceedings of the
Seventh International World Wide Web Confer-
ence (Brisbane, Australia, April 1998), 95–105.

LAWRENCE, S. AND LEE GILES, C. 1999. Accessibility
of information on the web. Nature 400, 107–109.

LEE, J.-H. 1997. Analyses of multiple evidence
combination. In Proceedings of the ACM SIGIR
Conference (Philadelphia, PA, July 1997), 267–
276.

LI, S. AND DANZIG, P. 1997. Boolean similarity mea-
sures for resource discovery. IEEE Trans. Knowl.
Data Eng. 9, 6 (Nov.), 863–876.

LIU, K., MENG, W., YU, C., AND RISHE, N. 2000.
Discovery of similarity computations of search
engines. In Proceedings of the Ninth ACM Inter-
national Conference on Information and Knowl-
edge Management (Washington, DC, Nov. 2000),
290–297.

LIU, K., YU, C., MENG, W., WU, W., AND RISHE, N. 2001.
A statistical method for estimating the useful-
ness of text databases. IEEE Trans. Knowl. Data
Eng. To appear.

LIU, L. 1999. Query routing in large-scale digi-
tal library systems. In Proceedings of the IEEE
International Conference on Data Engineering
(Sydney, Australia, March 1999), 154–163.

MANBER, U. AND BIGOT, P. 1997. The search broker.
In Proceedings of the USENIX Symposium on
Internet Technologies and Systems (Monterey,
CA, December 1997), 231–239.

MANBER, U. AND BIGOT, P. 1998. Connecting diverse
web search facilities. Data Eng. Bull. 21, 2
(June), 21–27.

MAULDIN, M. 1997. Lycos: design choices in an in-
ternet search service. IEEE Expert 12, 1 (Feb.),
1–8.

MCBRYAN, O. 1994. Genvl and wwww: Tools for
training the Web. In Proceedings of the

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

88 Meng et al.

First World Wide Web Conference (Geneva,
Switzerland, May 1994), 79–90.

MENG, M., LIU, K., YU, C., WANG, X., CHANG, Y., AND

RISHE, N. 1998. Determine text databases to
search in the internet. In Proceedings of the
International Conferences on Very Large Data
Bases (New York, NY, Aug. 1998), 14–25.

MENG, M., LIU, K., YU, C., WU, W., AND RISHE, N.
1999a. Estimating the usefulness of search
engines. In Proceedings of the IEEE Interna-
tional Conference on Data Engineering (Sydney,
Australia, March 1999), 146–153.

MENG, W., WANG, W., SUN, H., AND YU, C. 2001. Con-
cept hierarchy based text database categoriza-
tion. Int. J. Knowl. Inform. Syst. To appear.

MENG, W., YU, C., AND LIU, K. 1999b. Detection of
heterogeneities in a multiple text database en-
vironment. In Proceedings of the Fourth IFCIS
Conference on Cooperative Information Systems
(Edinburgh, Scotland, September 1999), 22–33.

MILLER, G. 1990. Wordnet: An on-line lexical
database. Int. J. Lexicography 3, 4, 235–312.

NCSTRL. n.d. Networked computer science tech-
nical reference library. At Web site http://
cstr.cs.cornell.edu.

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T.
1998. The pagerank citation ranking: bring
order to the web. Technical report, Stanford Uni-
versity, Palo, Alto, CA.

ROBERTSON, S., WALKER, S., AND BEAULIEU, M. 1999.
Okapi at trec-7: automatic ad hoc, filtering, vlc,
and interactive track. In Proceedings of the Sev-
enth Text Retrieval Conference (Gaithersburg,
MD, Nov. 1999), 253–264.

SALTON, G. 1989. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Infor-
mation by Computer. Addison Wesley, Reading,
MA.

SALTON, G. AND MCGILL, M. 1983. Introduction to
Modern Information Retrieval. McGraw-Hill,
New York, NY.

SELBERG, E. AND ETZIONI, O. 1995. Multi-service
search and comparison using the metacrawler.
In Proceedings of the Fourth World Wide Web
Conference (Boston, MA, Dec. 1995), 195–208.

SELBERG, E. AND ETZIONI, O. 1997. The metacrawler
architecture for resource aggregation on the
web. IEEE Expert 12, 1, 8–14.

SHELDON, M., DUDA, A., WEISS, R., O’TOOLE, J., AND

GIFFORD, D. 1994. A content routing system
for distributed information servers. In Pro-
ceedings of the Fourth International Conference
on Extending Database Technology (Cambridge,
England, March 1994), 109–122.

SINGHAL, A., BUCKLEY, C., AND MITRA, M. 1996. Piv-
oted document length normalization. In Pro-
ceedings of the ACM SIGIR Conference (Zurich,
Switzerland, Aug. 1996), 21–29.

SUGIURA, A. AND ETZIONI, O. 2000. Query routing
for Web search engines: architecture and exper-
iments. In Proceedings of the Ninth World Wide

Web Conference (Amsterdam, The Netherlands,
May 2000), 417–429.

TOWELL, G., VOORHEES, E., GUPTA, N., AND JOHNSON-
LAIRD, B. 1995. Learning collection fusion
strategies for information retrieval. In Proceed-
ings of the 12th International Conference on
Machine Learning (Tahoe City, CA, July 1995),
540–548.

TURTLE, H. AND CROFT, B. 1991. Evaluation of an
inference network-based retrieval model. ACM
Trans. Inform. Syst. 9, 3 (July), 8–14.

VOGT, C. AND COTTRELL, G. 1999. Fusion via a linear
combination of scores. Inform. Retr. 1, 3, 151–
173.

VOORHEES, E. 1996. Siemens trec-4 report: further
experiments with database merging. In Pro-
ceedings of the Fourth Text Retrieval Conference
(Gaithersburg, MD, Nov. 1996), 121–130.

VOORHEES, E., GUPTA, N., AND JOHNSON-LAIRD, B.
1995a. The collection fusion problem. In Pro-
ceedings of the Third Text Retrieval Conference
(Gaithersburg, MD, Nov. 1995), 95–104.

VOORHEES, E., GUPTA, N., AND JOHNSON-LAIRD, B.
1995b. Learning collection fusion strategies.
In Proceedings of the ACM SIGIR Conference
(Seattle, WA, July 1995), 172–179.

VOORHEES, E. AND TONG, R. 1997. Multiple search
engines in database merging. In Proceedings of
the Second ACM International Conference on
Digital Libraries (Philadelphia, PA, July 1997),
93–102.

WADE, S., WILLETT, P., AND BAWDEN, D. 1989. Sibris:
the sandwich interactive browing and ranking
information system. J. Inform. Sci. 15, 249–260.

WIDDER, D. 1989. Advanced Calculus, 2nd ed.
Dover Publications, Inc., New York, NY.

WU, Z., MENG, W., YU, C., AND LI, Z. 2001. Towards a
highly-scalable and effective metasearch engine.
In Proceedings of the Tenth World Wide Web
Conference (Hong Kong, May 2001), 386–395.

XU, J. AND CALLAN, J. 1998. Effective retrieval with
distributed collections. In Proceedings of the
ACM SIGIR Conference (Melbourne, Australia,
1998), 112–120.

XU, J. AND CROFT, B. 1996. Query expansion us-
ing local and global document analysis. In Pro-
ceedings of the ACM SIGIR Conference (Zurich,
Switzerland, Aug. 1996), 4–11.

XU, J. AND CROFT, B. 1999. Cluster-based language
models for distributed retrieval. In Proceedings
of the ACM SIGIR Conference (Berkeley, CA,
Aug. 1999), 254–261.

YU, C., LIU, K., WU, W., MENG, W., AND RISHE, N.
1999a. Finding the most similar documents
across multiple text databases. In Proceedings
of the IEEE Conference on Advances in Digital
Libraries (Baltimore, MD, May 1999), 150–162.

YU, C. AND MENG, W. 1998. Principles of Database
Query Processing for Advanced Applications.
Morgan Kaufmann Publishers, San Francisco,
CA.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Building Efficient and Effective Metasearch Engines 89

YU, C., MENG, W., LIU, K., WU, W., AND RISHE, N.
1999b. Efficient and effective metasearch for a
large number of text databases. In Proceedings of
the Eighth ACM International Conference on In-
formation and Knowledge Management (Kansas
City, MO, Nov. 1999), 217–224.

YU, C., MENG, W., WU, W., AND LIU, K. 2001. Effi-
cient and effective metasearch for text databases
incorporating linkages among documents. In
Proceedings of the ACM SIGMOD Conference
(Santa Barbara, CA, May 2001), 187–198.

YUWONO, B. AND LEE, D. 1996. Search and ranking
algorithms for locating resources on the World
Wide Web. In Proceedings of the IEEE Inter-
national Conference on Data Engineering (New
Orleans, LA, Feb. 1996), 164–177.

YUWONO, B. AND LEE, D. 1997. Server ranking for
distributed text resource systems on the In-
ternet. In Proceedings of the 5th International
Conference On Database Systems for Advanced
Applications (Melbourne, Australia, April 1997),
391–400.

Received March 1999; revised October 2000; accepted May 2001

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

