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Abstract

We propose unitary group convolutions (UGConvs), a

building block for CNNs which compose a group convo-

lution with unitary transforms in feature space to learn a

richer set of representations than group convolution alone.

UGConvs generalize two disparate ideas in CNN architec-

ture, channel shuffling (i.e. ShuffleNet [29]) and block-

circulant networks (i.e. CirCNN [6]), and provide unifying

insights that lead to a deeper understanding of each tech-

nique. We experimentally demonstrate that dense unitary

transforms can outperform channel shuffling in DNN ac-

curacy. On the other hand, different dense transforms ex-

hibit comparable accuracy performance. Based on these

observations we propose HadaNet, a UGConv network us-

ing Hadamard transforms. HadaNets achieve similar ac-

curacy to circulant networks with lower computation com-

plexity, and better accuracy than ShuffleNets with the same

number of parameters and floating-point multiplies.

1. Introduction

Deep convolutional neural networks (CNNs) have

proven extremely successful at large-scale computer vision

problems. Research over the past few years has made steady

progress on improving CNN accuracy [26]. Concurrently,

efforts have been made to reduce the number of parame-

ters and floating-point multiplies (fpmuls) in CNNs. One

major trend in this research space is the increasing sparsity

of layer connections. Early networks such as AlexNet [13]

and VGG [19] exclusively utilize dense mappings, i.e. con-

volutional (conv) or fully-connected (FC) layers that form

a weight connection between every input and every out-

put feature. More advanced architectures such as Xcep-

tion [2] and MobileNets [8] make use of depthwise separa-

ble convolutions, which consist of a sparse spatial mapping

(depthwise convolution) and a dense cross-channel map-

ping (pointwise convolution). Even more recently, Shuf-

fleNet [29] replaces the pointwise convolutions with sparse

group convolutions, and additionally proposes a channel

shuffle to allow information to flow between groups. These

changes to layer structure look to remove weight connec-

tions while retaining accuracy performance.

A different line of efficient CNNs research looks to train

networks with circulant or block-circulant 1 weights [1, 20,

6, 22]. An n × n circulant matrix contains only n unique

elements. Moreover, every circulant matrix C can be di-

agonalized by the normalized discrete Fourier matrix F as

follows:

C = F∗DF (1)

giving rise to an asymptotically faster algorithm for matrix

multiplication via the fast Fourier transform (FFT). By ex-

ploiting these properties of circulant weights, these works

can also reduce CNN complexity and model size.

In this paper, we propose the concept of unitary group

convolution (UGConv), defined as a building block for

neural networks that combines a weight layer (most com-

monly a group convolution) with unitary transforms in fea-

ture space. We show that group convs with channel shuf-

fle (ShuffleNet) and block-circulant networks (CirCNN) are

specific instances of UGConvs. By unifying two different

lines of work in CNN literature, we gain a deeper under-

standing into the basic underlying idea — that group con-

volutions exhibit improved learning ability when performed

in a transformed feature basis. Through a series of exper-

iments, we then investigate how different transforms and

UGConv structures affect the learning performance. Specif-

ically, our contributions are as follows:

1. We propose the concept of unitary group convolu-

tions. We show that ShuffleNets and circulant net-

works, techniques from two disparate lines of research,

are in fact both instances of UGConv networks. This

lets us unify the conceptual insights of both works.

1In this paper, block-circulant, block-diagonal, etc. refers to matrices

consisting of square sub-matrices which are circulant, diagonal, etc. This

is different from the canonical definition of a block-diagonal matrix.
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2. We evaluate how different unitary transforms affect

learning performance. Our experiments show that

when the weight layer is highly sparse (i.e. the num-

ber of groups is large), dense transforms outperform

simple permutations.

3. We propose HadaNets, UGConv networks using the

easy-to-compute Hadamard transform. HadaNets ob-

tain similar accuracy as circulant networks at a lower

computation complexity, and outperform ShuffleNets

with identical parameter and fpmul counts.

2. Related Work

2.1. Depthwise Separable and Group Convolutions

In a traditional convolutional layer, each 3D filter must

learn both spatial and cross-channel correlations. A depth-

wise separable convolution decouples this into two steps:

a depthwise convolution which only performs spatial filter-

ing, and a pointwise convolution which only learns cross-

channel mappings. The idea originated in Sifre 2014 [18]

and was subsequently popularized by networks like Xcep-

tion [2] and MobileNets [8]. These works showed that

depthwise separable convolutions can outperform tradi-

tional convolutions using fewer parameters and fpmuls.

A group convolution divides the input and output fea-

tures into mutually independent groups and performs a con-

volution in each one. Depthwise convs are specific cases of

group convs with group size 1. Group convolutions were

part of the original AlexNet, but only to facilitate training

on multiple GPUs [13]; they gained popularity as a build-

ing block of efficient CNNs as part of ResNeXt [25] and

ShuffleNet [29]. The latter proposed channel shuffling to

promote cross-channel information flow, surpassing Mo-

bileNets in accuracy and parameter efficiency.

Interleaved group convolutions [28, 24, 21] examines in-

terleaving group convs and channels shuffles, and showed

how a specific combination of width and sparsity (i.e. num-

ber of groups) can maximize accuracy. Deep Roots [10]

uses group convolutions with increasing group size deeper

into the network to improve numerous existing models. Dis-

tinct from these works, we study the composition of group

convs with dense unitary transforms.

2.2. Circulant and BlockCirculant Networks

An n-by-n circulant matrix requires only O(n) storage

space and O(n log n) operations for the matrix-vector prod-

uct (see Equation (1)). Circulant weights can reduce the

model size and computational complexity of CNNs in a

deterministic manner. Cheng et al. in 2015 applies this

to achieve 18x parameter reduction on AlexNet with only

0.7% Top-1 accuracy loss [1]. Other authors proposed vari-

ations of circulant structure. Moczulski et al.’s ACDC used

cosine transforms to avoid complex values that arise with

DFTs and added a second channel-wise filter [16]. Sind-

hwani et al. studied the superset of generalized Toeplitz-like

matrices [20]. These works exclusively worked on struc-

tured FC layers.

More recently, Wang et al. [6, 23] proposed to use block-

circulant matrices and applied them to both FC and convolu-

tional layers. Block-circulant structure elegantly addresses

the long-standing issue of non-square weight matrices. The

same authors also leveraged the butterfly structure of the

DFT to construct efficient accelerators for circulant nets in

dedicated hardware [6, 22]. A more recent follow-up in this

line of work proposed to use permuted block-diagonal ma-

trices in specialized hardware [4].

2.3. Random Projections and Hadamard Networks

Our study on random orthogonal and Hadamard trans-

forms is partly inspired by the Fastfood transform [14] and

its application to CNNs [27]. This work is a well-known

example of using random embeddings and Hadamard trans-

forms in machine learning.

A recent work from Devici et al. [5] used Hadamard-

transformed images as CNN inputs. Their work differs sig-

nificantly from ours; they applied a single 2D Hadamard on

the input image to extract frequency features while we use

Hadamard throughout the network for channel mixing.

3. Unitary Group Convolutions

The basic idea of a UGConv is a group convolution sand-

wiched between two unitary transforms in feature space.

Let X be an M -channel input tensor to a conv/FC layer.

Each channel is a 2D feature map (for a dense layer the di-

mensions are 1× 1). Let x(i) denote the i’th channel in X.

Similarly, let Y be the N -channel output tensor, and let W

be the weight tensor consisting of M × N filters. We can

now define an ordinary conv layer below:

y(j) =
M
∑

i=1

x(i) ∗W(ij), 1 ≤ j ≤ N

Figure 1(a) illustrates such a conv or dense layer. Note that

although the figure looks like matrix multiplication, each

square represents a 2D weight filter or feature map.

A group convolution is simply a collection of G disjoint

convolutions (G is the number of groups). Each conv takes

M/G input channels and produces N/G output channels.

ỹ(g,j) =

M/G
∑

i=1

x̃(g,i) ∗ W̃(g,ij), 1 ≤ j ≤ N/G (2)

Here g denotes the group (1 ≤ g ≤ G), and we re-index

x and y with two indices (group, channel in group). Fig-

ure 1(b) illustrates how non-zero weights in a group conv

11304



=

Regular Conv

*

11

22

33

12

13 23

21 31

32

43

41

42

3414 24 44

x1

x2

x3

x4

y1

y2

y3

y4

y(j) =iW(ij) ∗ x(i)
(a)

=

Group Conv

*

x1,1

x1,2

x2,1

x2,2

y1,1

y1,2

y2,1

y2,2

1,11

1,22

2,11

1,12

1,21

2,21

1,12 1,22

y(g,j) =iW(g,ij) ∗ x(g,i)
(b)

11,1

11,2

22,112,1

21,1

21,2

12,2 22,2

=

Block-Diagonal 

Conv

*

y(j,d) =iW(ij,d) ∗ x(i,d)
x1,1

x1,2

x2,1

x2,2

y1,1

y1,2

y2,1

y2,2

(c)

=

Block-Circulant 

Conv

*

1

1

7

2

5 6

2 3

4

8

4

3

86 5 7

x1

x2

x3

x4

y1

y2

y3

y4

(d)

1 2 75
3 4

6 8
F*

F*

F

F
=*

Block-Circulant Conv (Decomposed via 𝐶 = 𝐹∗𝐷 𝐹)

x1

x2

x3

x4

y1

y2

y3

y4

(e)

Figure 1. Relation between group convs and circulant weights – each square represents a 2D feature/filter, which can be 1× 1 for an FC

layer. (a) regular conv layer; (b) group conv with 2 groups; (c) same group conv reordered to show the block-diagonal weight structure; (d)

block-circulant conv layer; (e) same block-circulant conv decomposed into block-DFTs and a block-diagonal conv layer.

form M
G × N

G blocks along the main diagonal. A group conv

reduces parameter size and fpmuls by a factor of G relative

to an ordinary conv. However, this is achieved by remov-

ing all weight connections between groups and negatively

impacts learning behavior.

A UGConv recovers this lost learning ability by sand-

wiching the group conv between two cross-channel unitary

transforms P and Q (Figure 2(a)). More formally, we can

define a UGConv is:

X̃k = PXk ∀k

ỹ(g,j) =

M/G
∑

i=1

x̃(g,i) ∗ W̃(g,ij), 1 ≤ j ≤ N/G

Yl = QỸl ∀l

(3)

For a tensor X containing M channels, Xk is defined as the

M -length vector formed by taking the k’th element/pixel

from each channel. P ∈ C
M×M and Q ∈ C

N×N are

unitary matrix transforms applied element-wise over the in-

put and output channels. We use tilde (x̃, ỹ,W̃) to indi-

cate tensors in the transformed feature space. Note that: (1)

P and Q can be identity transforms, and thus UGConv in-

cludes group convolutions; (2) unitary transforms preserve

inner products, thus they should not diminish gradient mag-

nitudes in the network; (3) UGConv can also be applied to

FC layers (using 1×1 feature maps and a 1×1 group conv).

One key point to make is the equivalence between a

group conv and a convolution with block-diagonal weights

(i.e. weights which consist of sub-blocks of square diagonal

matrices). Figure 1(c) shows a block-diagonal conv, which

visually already looks identical to the group conv in Fig-

ure 1(b). More formally, divide X and Y into size D × 1
sub-blocks, and W into D ×D sub-blocks which are diag-

onal. Let i index the input sub-blocks (0 ≤ i ≤ M/D− 1),

j index the output sub-blocks (0 ≤ j ≤ N/D − 1), and d
index the channels within each sub-block (1 ≤ d ≤ D). We
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Figure 2. CNN block architectures – (a) a general block for unitary group convolutions; (b) a ShuffleNet block reproduced from the

original paper [29]; (c) our proposed HadaNet variation. Note that both ShuffleNet and HadaNet blocks contain the UGConv pattern.

can express the block-diagonal conv as follows:

y(j∗D+d) =

M/D−1
∑

i=0

x(i∗D+d) ∗W(i∗D+d j∗D+d)

Only D convs need to be performed for each D × D sub-

block because they are diagonal. Similar to Equation 2,

we can simplify notation by re-labeling using a tuple (sub-

block, channel in sub-block). This removes the multiplies

by D and allows i and j to start from 1. Then:

y(j,d) =

M/D
∑

i=1

x(i,d) ∗W(ij,d), 1 ≤ j ≤ N/D (4)

It is easy to see that Equation 4 matches Equation 2.

3.1. UGConv and ShuffleNet

ShuffleNet is a variant of the MobileNets architecture

in which the pointwise convolutions (which take up 93.4%
of the multiply-accumulate operations [29]) are converted

into group convolutions. However, when multiple group

convs are stacked together, the lack of connections between

groups over many layers prevents the learning of cross-

group correlations. To address this, ShuffleNet shuffles the

output channels groups in a fixed, round-robin manner —

for each group, the first channel is shuffled into group 1, the

second channel into group 2, etc. This shuffle can be ex-

pressed as a permutation in feature space, and ShuffleNets

are thus an example of of UGConvNets where P is identity

and Q is a fixed permutation matrix.

ShuffleNet shows experimentally that it is beneficial

to shuffle information across groups when stacking group

convs. However, shuffling channels is not the only way to

accomplish such information mixing.

3.2. UGConv and Circulant Networks

Circulant and block-circulant neural networks [6, 23]

utilize layers that impose a block-circulant structure on

their weight tensors. For an FC layer, the 2D weight

matrix is made to be circulant. For a conv layer, the

circulant structure is applied over the input and out-

put channels axes. That is to say, given a 4D convo-

lutional weight tensor with shape (height, width,

in channels, out channels), each 2D slice of this

tensor [i,j,:,:] becomes circulant.

Figure 1(d) shows a block-circulant layer where each

2× 2 sub-block of the weight tensor is circulant. By Equa-

tion (1), each D × D circulant matrix can be decomposed

into a D-length DFT, a diagonal matrix, and a correspond-

ing IDFT. In Figure 1(e), each D×D sub-block is diagonal-

ized in this fashion. We use tilde to indicate weight values in

the DFT-transformed space. The resulting weight structure

is block-diagonal, and the weight layer sits between two

block-DFT transforms. We know from the previous sec-

tion that block-diagonal weights correspond to group con-

volutions. Therefore, a block-circulant layer is just a group

convolution in a transformed feature space. This of course

falls within the definition of a UGConv, with P and Q being

block-DFT/IDFT transforms. Note that these DFTs are ap-

plied along the channels, and so circulant networks are not

examining the spatial frequency components of the image.

We make a few additional notes about block-circulant

layers. First, the size of the circulant blocks D is equal

to the number of groups in the equivalent group conv (not

the group size). Thus each D-length DFT touches a single

channel in every group, fully mixing information between

groups. Second, though our example uses a ”square” weight

tensor (i.e. M = N ), non-square block-circulant tensors
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can be diagonalized as well. As long as both M and N
are divisible by D, the ’rectangular’ weight tensor can be

divided into D×D blocks. In this case, P ∈ C
M×M is not

the inverse of Q ∈ C
N×N, but each sub-block along the

diagonal of P is the inverse of the corresponding sub-block

in Q. We say that P is the block-inverse of Q.

Because P and Q are block-inverses, if we directly stack

multiple such blocks many of the transforms will cancel

out. However, practical DNNs include batch norm and/or

nonlinearities between linear layers. The block-DFTs (and

orthogonal transforms in general) do not commute with

channel-wise or pointwise operations, which prevents triv-

ial cancellation. However, note that channel shuffles do

commute and cancel out in this manner.

3.3. Discussion of UGConvs

We have provided two specific examples from literature

(ShuffleNet [29] and CirCNN [6]) which combine a struc-

tured sparse weight layer (group convolution) with unitary

transforms. The transforms help to improve cross-channel

representation learning without adding additional parame-

ters. However, the two techniques have important differ-

ences. ShuffleNet’s permutations are very lightweight as

they require no arithmetic operations. However, permu-

tations do not affect the sparsity of weight layer. On the

other hand, CirCNN composes block-DFTs with a group

conv to create an effective weight structure (i.e. circulant

weights) which is dense. Moreover, it does so while still

having less asymptotic computational complexity than un-

structured dense weights.

We hypothesize that the representation learning capabil-

ity of a UGConv layer is a function of both the sparsity

of the weights as well as that of the transform. An un-

structured dense weight layer offers the best learning ca-

pability; grouping introduces sparsity and degrades cross-

channel learning performance, some of which can be recov-

ered via transforms. Because dense transforms create dense

weight structures (i.e. circulant weights), we believe they

enable learning a richer set of representations compared to

sparse transforms (i.e. channel shuffling). When the weight

sparsity is low (i.e. number of groups is small), the differ-

ence between the two may be negligible in terms of network

accuracy. However, we expect dense transforms to outper-

form shuffling when using many groups.

Another difference is that ShuffleNet applies channel

shuffle on only one side of the weight layer, while CirCNN

effectively applies transformations on both sides. We use

the terms 1-sided and 2-sided UGConvs to refer to these

two cases, and test both in our experiments.

3.4. The Hadamard Transform

One drawback of dense transforms such as DFT is that

they require more computational overhead as compared to

Table 1. Hadamard vs. Discrete Fourier transforms – The en-

tries of the DFT matrix are the complex roots of unity. The entries

of the Hadamard matrix are +1 or −1. The last column shows

the structure of P∗DP where D is a diagonal matrix and P is the

transform; differences are bolded.
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shuffling. Even using the ’fast’ algorithm, each n× n DFT

requires O(n log n) floating-point multiplies and adds. Fur-

thermore, the fact that the DFT uses complex numbers may

further complicate software/hardware implementations. Fi-

nally, the DFT is taken over the channels where there is no

spatial structure — the transform exists purely to mix infor-

mation across channels and not to perform domain-specific

analysis. Given this, we would like to find a more efficient

alternative.

The Hadamard transform [17] is defined as a matrix con-

taining only +1/−1 elements and whose rows and columns

are mutually orthogonal. Table 1 shows a 4 × 4 Hadamard

matrix. Because all coefficients have magnitude 1, the

transform can be computed without multiplies, i.e. using

adds/subtracts only. This is extremely important as floating-

point multiplies are typically the computational bottleneck

for DNN computation on both GPUs and specialized hard-

ware. In addition, the Hadamard transform can be gener-

ated recursively like the Fourier transform, meaning that a

fast Hadamard transform (FHT) exists similar to the FFT

to compute a n-length Hadamard transform in O(n log n)
adds/subtracts [17]. The recursive nature of FHT also en-

ables Hadamard kernels to be implemented without explic-

itly storing the matrix itself; instead the matrix can be gener-

ated on the fly (similar to existing implementations of FFT

kernels). This means neither FHT nor FFT requires storing

additional parameters.

Hadamard is more efficient that DFT, but does it achieve

the same learning performance? There is some high-level

intuition that this would be the case: Table 1 compares the

weight structure imposed by P∗DP when P is DFT and

Hadamard. DFT results in a circulant matrix; Hadamard re-

sults in a nearly identical weight matrix with only a few dif-

ferent elements. We hypothesize that there will be no accu-
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Table 2. Test error on a toy MNIST network – a ’G’ in the layer width columns indicates a group layer. In the transform columns, P and

Q denote 1-sided pre-conv and post-conv transforms, respectively; PQ denotes a 2-sided transform. All values are averaged over 5 runs

and 90% confidence bounds for each value are at most ±5%.

Layer Width Transform

L2 L3 L4 None Rand Ortho Rand Perm

Conv3x3 FC FC P Q PQ P Q PQ

20 20,G 10 6% 4% 4% 4% 5% 6% 5%

20 20,G 10,G 27% 10% 8% 4% 27% 26% 25%

20,G 20,G 10 25% 10% 10% 10% 27% 20% 21%

20,G 20,G 10,G 60% 23% 17% 20% 57% 55% 57%

racy impact in replacing circulant weights with Hadamard-

diagonalizable weights in neural nets.

We further speculate that dense unitary transforms in

general, including DFT and Hadamard, achieve comparable

learning performance. This is again because the ordering of

channels in DNNs is essentially random (i.e. the channel

order encodes no useful information), meaning there are

no patterns that can be exploited by one particular cross-

channel transform and not others. The transforms in UG-

Conv exist solely to connect different channel groups, and

any dense transform will work as well as another. To test

this hypothesis, we experiment with randomly generated or-

thogonal transforms in addition to DFT and Hadamard.

4. Experimental Validation

We first present ablation studies on a toy MNIST net-

work followed by deeper CIFAR-10 models. These experi-

ments build up insights on UGConv. We then demonstrate

the utility of Hadamard using grouped ResNets and a Shuf-

fleNet model from literature trained on ImageNet.

4.1. Dense Transforms vs. Shuffle

Our first experiment uses a toy MNIST network. This al-

lows us to isolate the UGConv block and to compare dense

orthogonal transforms versus permutations in a simple set-

ting. We stress that the goal here is not to build a realistic

classifier. The layer architecture is denoted below, where

each layer is described as (number of channels)(layer type):

10Conv3x3− 20Conv3x3− 20FC − 10FC

We perform 2×2 max pooling before each 3×3 conv layer,

and a global average pool before the first FC layer. Each

layer is followed by batch normalization and ReLU.

We convert the first FC layer of the network (20FC1,

shown in bold) into a UGConv block (i.e. it becomes a

grouped FC with transforms). The group number is equal

to the number of channels to maximize sparsity. From this

base architecture we derive three variations: (1) convert the

preceding Conv3x3 layer into group conv; (2) convert the

following FC layer into group FC; (3) convert both sur-

rounding layers into group layers. These test the perfor-

mance of transforms in the context of stacked group layers.

Two types of transform are evaluated: randomly generated

dense orthogonal and random permutation transforms. We

test with both 1-sided (using one of P or Q and setting the

other to identity) and 2-sided UGConvs (P = Q−1). All

results are averaged over five runs, and we regenerate the

random transformation matrices between runs.

Table 2 shows our results. Due to the small size of the

network, the 90% confidence bound for these values can

be as large as ±5%. Nevertheless, differences between

transforms are clearly demonstrated. When L3 is the only

grouped layer in the network (row 1), transforms have little

to no effect. However, when two or more group layers are

stacked together, the dense orthogonal transforms achieve

improved accuracy. Permutations did not improve accuracy

in any experiment. This is a clear (albeit artificial) demon-

stration that when the number of groups is very large, dense

transforms outperform permutations in learning ability.

Another interesting observation is that there is little dif-

ference between 1-sided and 2-sided transforms, regardless

of whether the UGConv block is stacked before or after an-

other group layer. For example, in Table 2 row 3, a dense

orthogonal transform improves accuracy even when it is

placed after both group layers. It may be surprising that

a transform affects layers preceding it. But keep in mind

that the transform also affects gradients on the backwards

pass, allowing the same weights to ’see’ more downstream

activations during backpropagation. Alternatively, we can

view the UGConv layer as a learnable structured weight

layer (see Section 3.2) — within this perspective, the weight

structure is a function of transforms both before or after.

4.2. Evaluation of Different Transforms

We have shown that dense orthogonal transforms can im-

prove over shuffles in small DNNs with large group sizes.

To validate our results on more realistic architectures, we

perform experiments on CIFAR-10 [12] using ResNet [7].

We use UGConvs to replace the two 3 × 3 convolutions in
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Table 3. Test error for UGConvs on CIFAR-10 – The first three columns show the number of groups used in the three stages (S1-S3).

The Base column shows the test error with no transforms, and the other columns show improvement in test error over this baseline. Some

entries are blank due to insufficient time to complete the experiments.

# of Groups Base 1-sided Transforms 2-sided Transforms Params

S1 S2 S3 Shuffle Hada Ortho Shuffle* Fourier Hada Ortho

ResNet-20 4 8 16 19.5% 3.3% 4.0% 4.0% 3.1% 4.1% 4.2% 3.8% 25K

8 16 32 23.8% 2.9% 4.3% 3.9% 4.1% 5.4% 5.4% 5.3% 14K

ResNet-56 4 8 16 16.0% 4.0% 4.4% 4.2% 4.0% 4.7% 4.5% 4.6% 76K

8 16 32 20.6% 5.4% 6.1% 6.4% 5.8% 7.1% 7.2% 6.8% 41K

ShuffleNet-29 4 8 16 18.3% 2.7% 2.4% 3.1% 3.8% 4.9% 4.5% 4.2% 23K

8 16 32 22.1% 0.6% 3.4% 3.6% 3.8% 5.1% 5.0% 5.3% 17K

ShuffleNet-56 4 8 16 16.2% 3.6% 3.5% 3.4% 3.9% 4.6% 4.5% 4.7% 41K

8 16 32 19.7% 4.3% 4.4% 4.9% 5.2% 6.0% 6.0% 6.0% 29K

Mean 4 8 16 17.5% 3.4% 3.6% 3.7% 3.7% 4.6% 4.4% 4.3%

8 16 32 21.5% 3.3% 4.6% 4.7% 4.7% 5.9% 5.9% 5.9%

each ResNet block, and to replace the 1× 1 projection lay-

ers. ResNets are divided into three stages (S1, S2, S3), with

later stages having more channels. We use more groups in

later stages, keeping the ratio of channels to groups con-

stant. Two models are tested: ResNet-20 (3 block per stage)

and ResNet-56 (9 blocks per stage). We also experiment

with the same high-level architecture but using the build-

ing block from ShuffleNet [29]. This block which con-

tains two 1 × 1 convs and a 3 × 3 depthwise conv (see

Figure 2(b)). Following ShuffleNet we apply transforma-

tions around the first 1 × 1 group conv only and make no

changes to the second group conv. Again, two models are

tested: ShuffleNet-29 (3 block per stage) and ShuffleNet-

56 (6 blocks per stage).

We use layer widths and training hyperparameters from

[7] and make use of standard data augmentations: padding

8 pixels on each side and randomly cropping back to origi-

nal size, combined with a random horizontal flip [7, 9, 15].

Each network is trained for 200 epochs, and we report the

mean test error over the last 5 epochs.

We test the following transforms: identity (None),

ShuffleNet permutation (Shuffle), block-Hadamard (Hada),

block-DFT (Fourier), and block-random-orthogonal (Or-

tho). The block transforms follow the same structure de-

scribed in Section 3.2. For each transform, both 1-sided

(letting Q be the transform and P identity) and 2-sided (P

and Q are block-inverses) versions are tested where rea-

sonable. The 1-sided DFT is left out because it introduced

complex numbers into the network. For the 2-sided chan-

nel shuffle (Shuffle*), we set P = Q to essentially perform

additional shuffling; this is done since using block-inverse

shuffles will lead to trivial cancellation. All results are dis-

played in Table 3 — the error rate with no transforms is

given first followed by the accuracy improvement achieved

with each UGConv setup. Our base error rates are high for

CIFAR-10 because group convolutions significantly com-

press the network

A key result here is that dense orthogonal transforms per-

form similarly in accuracy. Fourier, Hada, and Ortho obtain

results which are within a spread of 0.4% in both 1-sided

and 2-sided settings. On the other hand, the shuffle trans-

forms (1 and 2-sided) clearly perform worse for the larger

group sizes. This confirms our hypothesis that Hadamard

is comparable to DFT in learning performance while being

much easier to compute. It also provides evidence that all

dense UGConvs achieve comparable learning performance.

Another observation is that 2-sided transforms signifi-

cantly outperform their 1-sided variants, which is different

from the MNIST data. We currently do not have an explana-

tion for this effect. One speculation was that 2-sided trans-

forms perform better when the number of input and output

channels did not match. However, further testing with the

small MNIST network showed that this was not the case.

Finally, note that the accuracy trends remained the same

whether the transforms were applied to 3×3 group convs in

ResNet or 1×1 group convs in ShuffleNet. This is evidence

that spatial and cross-channel dependencies are effectively

decoupled in convolutional layers, and that the size of the

filter does not significantly affect channel-space transforms.

4.3. Hadamard Networks on ImageNet

The data from previous sections point to two regimes:

at low weight sparsity (i.e. small group numbers) a simple

shuffle is sufficient to maximize accuracy. At large group

numbers, however, dense transforms outperform shuffles.

This section evaluates the 2-sided block-Hadamard trans-

form against shuffle on ImageNet. Hadamard was chosen

as it is far more efficient than other dense unitary transforms
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Table 4. Top-1 classification error on ImageNet – we include data on both the original ShuffleNet (with our own code) and our pre-

activation variation. Our baseline ShuffleNet implementation is close to the literature results (52.7%). For each model we show the number

of parameters and fpmuls, as well as the overhead in additions from the Hadamard transform.

Shuffle Hada Delta Params FPmuls Hada Adds

ResNet-18 g8 46.4% 44.6% (-1.8%) 1.9M 330M 7.8M

ResNet-18 g16 55.8% 52.3% (-3.5%) 1.2M 226M 10.4M

ShuffleNet-x0.25 g8 53.6% 52.6% (-1.0%) 0.46M 17M 0.95M

(see Section 3.4, and ShuffleNet was used for comparison as

it is highly related work and a strong baseline. We refer to

networks using Hadamard UGConvs as HadaNets. Figure 2

compares the residual blocks of ShuffleNet and HadaNet.

Due to hardware constraints, we chose small models

with fairly large group size — this is the setting where dense

transforms should perform the best compared to shuffle.

We evaluate ResNet-18 following the ImageNet architec-

ture from [7] and using group sizes 8 and 16 throughout

the network. We also test with the ShuffleNet-x0.25 g8,

which is the smallest ShuffleNet variant from [29]. This

network has 50 layers and also uses 8 groups. Each net-

work was trained with the hyperparameters and learning

rate schedule described in their respective papers. We com-

pare 1-sided shuffle to 2-sided block-Hadamard (note that

ShuffleNet from literature already contains the 1-sided shuf-

fle). All results are displayed in Table 4. Our reproduction

of ShuffleNet-x0.25-g8 achieved a Top-1 error of 53.6%,

which is close to the 52.7% reported in Table 2 of [29].

The results demonstrate that the Hadamard transform

can indeed outperform shuffling in terms of accuracy on

large scale datasets. ResNet-18 with group convs is a non-

standard model, but it serves to show that the trends ob-

served in CIFAR-10 ResNets carry over to ImageNet. On

the other hand, ShuffleNet is a well-optimized baseline

which obtains good accuracy performance on a very tight

parameter and fpmul budget. In addition, despite very lit-

tle hyperparameter tuning, HadaNet was able to improve

slightly over ShuffleNet.

4.4. Practicality of HadaNet

HadaNet slightly outperforms ShuffleNet on accuracy,

but requires extra floating-point adds. An N -channel group

conv with B groups requires N2/B fpmuls for the weight

layer and 2N logB adds for the two block-Hadamard trans-

forms. Compared to multiplies, additions are already much

cheaper in hardware. The last column of Table 4 shows

the number of additions needed for each network if the

fast Hadamard transform is used. The relative overhead of

HadaNet is fairly small: the extra adds amount to only 2-5%
of existing multiply-accumulates in those networks.

However, the overhead of the Hadamard transform de-

pends on a well-optimized implementation. The reason we

did not show runtime on GPU is that an O(n log n) fast

Hadamard kernel operating along the channels is not cur-

rently available — as a result our own HadaNet implemen-

tation is fairly slow.

On the other hand, we believe the Hadamard transform

might be useful for specialized DNN accelerators imple-

mented with FPGAs [3] or ASICs [11]. Top computer hard-

ware conferences already contain works demonstrating the

use of circulant matrices for DNN compression in dedicated

hardware [6, 22, 4]. These works show that DFTs can be

very efficiently implemented in a dedicated module due to

its recursive nature. We choose Hadamard because it also

has the same recursive properties, meaning it should be even

simpler in hardware due to lower computational complex-

ity. All-in-all, this paper reveals that in high weight spar-

sity regimes, dense transforms outperform simple shuffling.

HadaNet is more efficient than the existing state-of-the-art

dense transform (i.e. DFT transforms) while achieving sim-

ilar accuracy performance in DNNs.

5. Conclusions and Future Work

We introduce the concept of unitary group convolutions,

a composition of group convolutions with unitary trans-

forms in feature space. We use the UGConv framework

to unify two disparate ideas in CNN literature, ShuffleNets

and block-circulant networks, and provide valuable insights

into both techniques. UGConvs with dense unitary trans-

forms demonstrate superior ability to learn cross-channel

mappings versus ordinary and shuffled group convolutions.

Based on these these observations we propose HadaNet,

a variant of ShuffleNet that improves accuracy on the Im-

ageNet dataset without incurring additional parameters or

floating-point multiplies.

One future work is to replace the Hadamard transform

with a trained 0,+1,−1 transform; training may allow the

transform to adapt to the weights, and introducing zeros en-

ables sparse compute reduction.
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