
 

 

 

Abstract 

 

The DeepGlobe Building Extraction Challenge poses the 

problem of localizing all building polygons in the given 

satellite images. We can create polygons using an existing 

instance segmentation algorithm based on Mask R-CNN. 

However, polygons produced from instance segmentation 

have irregular shapes, which are far different from real 

building footprint boundaries and therefore cannot be 

directly applied to many cartographic and engineering 

applications. Hence, we present a method combining Mask 

R-CNN with building boundary regularization. Through 

the experiments, we find that the proposed method and 

Mask R-CNN achieve almost equivalent performance in 

terms of accuracy and completeness. However, compared 

to Mask R-CNN, our method produces better regularized 

polygons which are beneficial in many applications. 

 

1. Introduction 

Automatic extraction of buildings from massive satellite 

images is still a challenging problem. The DeepGlobe 

Building Extraction Challenge (DG-BEC)1 has encouraged 

people to present automated methods for extracting 

buildings from satellite images. The DG-BEC provides 

satellite images of four urban cities including Las Vegas, 

Paris, Shanghai, and Khartoum. There are four types of 

images including panchromatic (PAN), 8-band 

multi-channel (MUL), pan-sharpened version of RGB 

bands from the multispectral product (RGB-PanSharpen), 

and lastly pan-sharpened version of MUL 

(MUL-PanSharpen). The DG-BEC poses the problem of 

localizing all building polygons in the given images. 

The problem has been normally tackled by the 

combination of two processes: (i) segmentation, the 

extraction of building regions from the given area, and (ii) 

                                                           
1 http://deepglobe.org 

instantiation, the identification of individual buildings. Two 

processes have been combined in a different order. One 

approach [1, 2] is to perform the segmentation first, 

followed by instantiation. Here, the whole area in an image 

is segmented into building and non-building regions. Then, 

each individual building is identified by grouping connected 

pixels in a building region. The other approach [3, 4], 

commonly called instance segmentation, is to perform 

instantiation first and then segmentation. In this approach, 

each individual building is detected in a bounding box. 

Then, each bounding box is segmented into building and 

non-building regions. Because this approach is suitable for 

handling urban areas where separating adjacent buildings is 

needed, we follow this approach of the instance 

segmentation. 

As a base network, we adopt Mask R-CNN [4] due to its 

simplicity in the network structure and hyper-parameter 

tuning. After running Mask R-CNN, we produce polygon 

points of each individual building. These polygon points 

correspond to building boundaries and normally have 

irregular shapes. However, we observe that most of building 

footprints have regularized boundaries. Moreover, such 

irregularly shaped polygons often cause difficulties to be 

directly applied to many cartographic and engineering 

applications. Motivated by this observation we then 

formulate the problem as the creation of regularized 

polygons for buildings. Therefore, we utilize a building 

boundary regularization method, which is adopted from 

works [5, 6]. Then, we convert polygons generated by Mask 

R-CNN into the regularized polygons. In addition, rather 

than training one universal building extractor, we make four 

building extractors, where each building extractor is trained 

for handling a specific city. 

2. Related Works 

We divide building extraction into deep learning 

based-building labeling and building boundary 

regularization and investigate prior work in these two fields 

respectively. 
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2.1. Deep Learning-based Building Labeling 

There have been recent research efforts in applying 

Convolution Neural Network (CNN) for high resolution 

satellite image labeling. However, challenges still exist in 

finding optimal architecture of CNN for the best solution to 

such problems. Mnih [7] created building classification 

datasets over Massachusetts, covering 340 km2 and trained 

a CNN model for building labeling. Maggiori et al. [8] 

proposed a multi- layer perceptron approach to balance the 

trade-off between localization and classification for 

building labeling. By introducing a new cascaded multi-task 

loss and took the boundary distance into account, Bischke et 

al. [9] addressed the problem of preserving semantic 

segmentation boundaries in high resolution satellite 

imagery. In addition to creating new architecture, 

researchers also fused information from different sources. 

Marmanis et al. [10] combined the information from edge 

detection to produce explicit class boundaries for building 

extraction. The use of OpenStreetMap (OSM) data was 

investigated by Audebert et al. [11] to produce a coarse to 

fine solution for semantic labeling of satellite images. 

2.2. Building Boundary Regularization 

For recent research on building boundary regularization, 

Jung et al. [5] proposed a data-driven modeling approach to 

reconstruct 3D rooftop models at city-scale from airborne 

laser scanning (ALS) data. The focus of the proposed 

method is to implicitly derive the shape regularity of 3D 

building rooftops from given noisy information of building 

boundary in a progressive manner. Maggiori et al. [12] 

proposed a novel method, which formulated the 

polygonization problem into a mesh-based approximation 

of the input binary classification map. The regularization 

problem was also investigated in [13] applying a new CNN 

architecture which introduced the polygon boundary loss 

into the loss function. 

3. Methodology 

Our pipeline for building extraction is a combination of 

Mask R-CNN and polygon regularization, as in Figure 1. 

Given an input image, Mask R-CNN generates initial 

polygons for buildings. Then, by our polygon regularization 

method, the initial polygons are converted into regularized 

ones. 

3.1. Mask R-CNN for Initial Polygon Generation 

 The Mask R-CNN [4] is an extension of Faster R-CNN 

[14], which adds a network branch to the original Faster 

R-CNN for predicting segmentation masks on each Region 

of Interest (RoI). The added branch is a small FCN [15] 

which is applied to each RoI and predicts a pixel-wise 

segmentation mask for building and non-building regions.  

 
Figure 1. Our pipeline for building polygon generation. 

 

By tracing the border of a building region, we get the initial 

polygon for the building. 

 Input: Among the given four types of images, we only 

use RGB-PanSharpen images considering that they have the 

highest resolution, sharpened characteristic and smaller 

memory size. The image has 3 channels and its image size is 

650×650. However, as the input of the network, we enlarge 

the images from 650×650 to 1024×1024 to handle buildings 

in various scales. 

   Network Configuration: The Mask R-CNN consists of 

two parts: (i) the convolutional backbone architecture used 

for feature extraction over an entire image, and (ii) the 

network head for classification, bounding box recognition 

and mask prediction that is applied separately to each RoI. 

We apply ResNet-101-FPN as the backbone architecture 

and Faster R-CNN with ResNet as the head architecture. 

We follow the publicly open implementation2 of the Mask 

R-CNN and adopt most of the hyper-parameters used for 

training the COCO dataset. However, the hyper-parameters 

MINI_MASK_SHAPE, MASK_SHAPE, which are used 

for improving the training speed, are found to largely affect 

the overall detection performance. The instance masks are 

resized to a smaller size, MINI_MASK_SHAPE to save 

loading memory and we use MASK_SHAPE as the size of 

the output masks. For the hyper-parameters, we therefore 

set [128, 128] and [28, 28] as MINI_MASK_SHAPE and 

MASK_SHAPE, respectively. The full list of the 

hyper-parameters will be posted in our project website3. 

Training: Inspired by the training process on COCO 

dataset in [4], we train the network through the following 

three phases: the first phase for training the head with 40 

epochs, the second phase for training 4th and more rear 

stage of ResNet-101 with 20 epochs, and the last phase for 

training all layers with 20 epochs. 

3.2. Building Boundary Regularization 

The initial polygons produced by Mask R-CNN show 

irregular and noisy outlines due to the locality of pixel-wise 

labeling conducted by Mask R-CNN. To convert the initial 

polygons into regularized ones, we modify previous work 

[5, 6] to be applicable in an image domain for implicitly 

regularizing noisy building boundaries in an iterative 

manner. The boundary regularization process, described in 

Figure 2, takes the following steps: Initial modeling, 

                                                           
2 https://github.com/matterport/Mask_RCNN 
3 https://github.com/yorku-ausml/deep_satellite_image_segmentation 
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(a)                              (b)                                 (c) 

Figure 2. Building boundary regularization process: (a) Initial 

polygon points (the red points) from the result of Mask R-CNN; 

(b) Simplified shaped polygons (the black lines) from 

Douglas-Peucker algorithm; (c) Polygons with regularized 

boundary (the black lines) from our algorithm. 

 

 
Figure 3. Examples of hypothesis generation from initial polygon 

points given at the left of the figure. 

 

Hypothesis generation, and Minimum Description Length 

(MDL) optimization. 

Initial Modeling: The initial polygon points are first 

converted into simplified shaped polygons, by the 

Douglas-Peucker (DP) algorithm [16]. A set of 

representative line slopes are estimated based on the results  

of DP, with which the initial polygon is adjusted by 

applying weighted least-square adjustment method. 

 Hypothesis Generation: A triplet of vertices are 

selected (non-selective to the selection order) from the 

initial polygon, as described in Figure 3. We label the triplet 

points as Anchor Point (AP), Floating Point (FP) and 

Guiding Point (GP) in a sequential order. Then, we generate 

two basis lines: Floating Line FL, which is a set of AP and 

FP, and Guiding Line GL, which is a set of GP and FP. A 

group of local hypothetical models are generated by moving 

FP along GL following the representative line directions 

estimated. We also allow the elimination of FP for 

hypothetical model generation. In this case, new FP and GP 

are selected by shifting the previously selected point triplet 

in a sequential order. Both clock-wise and 

counter-clockwise are selected to generate local model 

hypotheses for each point triplet. 

MDL Optimization: MDL framework [6] is selected for 

determining an optimal model hypothesis among the 

generated candidate models. The description length (DL) of 

a model in MDL framework is decomposed into two parts: 

(i) model closeness favoring low residuals between 

boundary points extracted by boundary tracing algorithm 

and hypothesized model; (ii) model complexity favoring 

simpler model with respect to the number of vertices, the 

number of representative line slopes and closeness to   

Method 

F1 Score (Individual City) Total 

F1 

Score 
Las 

Vegas 
Paris 

Shang- 

hai 

Khar- 

toum 

Nofto 0.787 0.584 0.520 0.424 0.579 

Wleite 0.829 0.679 0.581 0.483 0.643 

XD_XD 0.885 0.745 0.597 0.544 0.683 

Mask 

R-CNN 
0.881 0.760 0.646 0.578 0.717 

Ours 0.879 0.753 0.642 0.568 0.713 

Table 1. F1 Scores of building extraction results. 

 

orthogonal angles. The detail of the MDL encoder adopted 

in this study is described in [6]. The MDL optimization 

process is applied for determining the best model 

hypothesis locally over point triplet selected. Then, a 

globally optimized hypothesis is chosen by selecting a 

model to produce the minimum DL among all local 

optimum solutions. The same process is sequentially 

applied to all point triplets. 

4. Experimental Results 

4.1. Training and Testing 

For training, we used a pre-trained model trained on the 

COCO dataset. It took three days for training the networks  

for all the cities using NVIDIA GeForce 1080 Ti. The 

dataset is divided into training (80%) and validation sets 

(20%). For testing, we ran our pipeline on about 3500 test 

images. 

4.2. Evaluation 

The performance of the algorithm is evaluated based on 

the Intersection over Union (IoU) metric. The DG-BEC 

provides F1 score, a harmonic average of precision and 

recall, combining the accuracy in the precision measure and 

the completeness in the recall measure. We analyze our 

results by the following aspects: 

Accuracy and completeness of building extraction: 

The round 2 of the SpaceNet Building Detection Challenge4 

is chosen as a baseline result because both SpaceNet 

Challenge and DG-BEC use the same data, evaluation 

metric and evaluation code. Table 1 describes our F1 scores 

compared to that of the top3 winners (Nofto, Wleite, and 

XD_XD) of the SpaceNet Challenge. Our algorithm 

outperforms all the others in terms of F1 score. 

Effect of building boundary regularization on 

building extraction: Table 1 also shows the comparison of 

F1 scores of Mask R-CNN and our method. Although 

MASK R-CNN shows slightly higher F1-score than our 

method, two scores from both methods are almost 

                                                           
4 https://www.topcoder.com/spacenet 
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                  (a)                                        (b) 

Figure 4. Polygons results produced by (a) Mask R-CNN, and (b) 

our method. 

 

 
                 (a)                                               (b)      

Figure 5. Extraction of special types of buildings: (a) small 

buildings in red circle, and (b) multiple buildings in close distance. 

Different colors are used to represent different building footprints 

extracted. 

 

equivalent. However, our methods cut off the number of 

polygon points by 86%, thus dramatically simplified the 

generated polygons. These polygons can be directly 

imported to many applications. Figure 4 shows examples of 

the results from Mask R-CNN and our method. Our method 

produces obviously better representation of building 

footprints with more regular boundaries. 

 Handling special types of buildings: Extracting some 

special types of buildings such as small buildings and 

closely located buildings is challenging. As shown in Figure 

5, our method can successfully recognize and localize them 

for both cases.  

5. Conclusions 

We present a building extraction method combining 

Mask R-CNN with building boundary regularization. The 

proposed method and Mask R-CNN produced almost 

equivalent F1 scores which are the evaluation metric from 

DG-BEC. However, compared to Mask R-CNN that 

generates irregular shaped polygons, our method produces 

regularized polygons, which are directly applicable to 

numerous cartographic and engineering applications. 
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