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Abstract—Automatic building extraction and delineation from
high-resolution satellite imagery is an important but very chal-
lenging task, due to the extremely large diversity of building ap-
pearances. Nowadays, it is possible to use multiple high-resolution
remote sensing data sources, which allow the integration of dif-
ferent information in order to improve the extraction accuracy
of building outlines. Many algorithms are built on spectral-based
or appearance-based criteria, from single or fused data sources,
to perform the building footprint extraction. But the features for
these algorithms are usually manually extracted, which limits their
accuracy. Recently developed fully convolutional networks (FCNs),
which are similar to normal convolutional neural networks (CNN),
but the last fully connected layer is replaced by another convolution
layer with a large “receptive field,” quickly became the state-of-the-
art method for image recognition tasks, as they bring the possibility
to perform dense pixelwise classification of input images. Based on
these advantages, i.e., the automatic extraction of relevant fea-
tures, and dense classification of images, we propose an end-to-end
FCN, which effectively combines the spectral and height informa-
tion from different data sources and automatically generates a full
resolution binary building mask. Our architecture (FUSED-FCN4S)
consists of three parallel networks merged at a late stage, which
helps propagating fine detailed information from earlier layers to
higher levels, in order to produce an output with more accurate
building outlines. The inputs to the proposed Fused-FCN4s are
three-band (RGB), panchromatic (PAN), and normalized digital sur-
face model (nDSM) images. Experimental results demonstrate that
the fusion of several networks is able to achieve excellent results
on complex data. Moreover, the developed model was successfully
applied to different cities to show its generalization capacity.

Index Terms—Binary classification, building footprint, data fu-
sion, deep learning, fully convolutional networks (FCNs), satellite
images.
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I. INTRODUCTION

S
INCE the launch of the first satellite for earth monitoring,

the development of different sensors significantly increased

the availability of high-resolution remote sensing imagery, pro-

viding a huge potential for meaningful and accurate terrestrial

scene interpretation. The analysis of satellite imagery involves

the identification of building rooftops as one of the most chal-

lenging, but important objects among various terrestrial targets

in an image. This information is useful for many remote sensing

applications, such as urban planning and reconstruction, disaster

monitoring, three-dimensional (3-D) city modeling, etc. A vast

amount of manual work is done on interpretation and identifica-

tion of targets in remote sensing imagery by human interpreters.

However, it is very time-consuming and expensive to distin-

guish buildings from other objects and delineate their contours

manually. Therefore, there was a great number of attempts to

develop methodologies to extract buildings automatically.

Some algorithms for building detection on the basis of

aerial [1] and high-resolution satellite imagery [2], [3] utilize

specific criteria of building appearance like the uniform spectral

reflectance values [4], [5]. The main problem to be encoun-

tered in these approaches is the confusion of the building with

other objects with similar spectral reflectance. Many automatic

building extraction methods from multispectral imagery or dig-

ital surface models (DSMs), providing height information for

a scene, define the criteria such as the shapes of relatively ho-

mogeneous buildings follow a certain pattern [6]–[8]. However,

these methodologies are very limited, because the defined crite-

ria work only for certain types of buildings but fail to generalize

to areas with complex and heterogeneous buildings. Different

data sources can provide complementary information to each

other. As a result, the integration of different data sources cre-

ates the opportunity for improving accuracy and robustness of

the extraction results. Therefore, recently developed methodolo-

gies apply the use of fusing data sources, such as multispectral

images with either stereo DSM or light detection and ranging

(LIDAR) DSM rather than the use of only a single data source [9],

[10]. Although many approaches have been proposed for build-

ing footprint extraction, this topic remains a complex problem

for scientists.

With the revolutionary development of deep learning tech-

niques, the definition of task-specific features is not under
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demand anymore for learning-based image analysis tasks. In-

stead, the most suitable features can be discovered automatically

during the training procedure on a big dataset through the or-

ganization of multilayer neural networks. Convolutional neural

networks (CNNs) [11], [12] are one of the most successful deep

learning architectures. They achieved the state-of-the-art results

and became the dominant approach for image understanding in

computer vision. The main objective of this paper is to adapt

the CNNs for remote sensing imagery understanding with high

accuracy. This is a challenging task since the satellite imagery

is very different from usual computer vision images in a sense

of size, perspective view, and semantic meaning of every pixel

within the whole scene.

In this paper, we analyze the potential of end-to-end CNN

learning and apply it to a dense pixelwise binary classification

problem of building versus nonbuilding identification. In order

to take advantage of multiple remote sensing data, we design

a hybrid fully convolutional network (FCN) architecture, based

on approach [13], to produce dense binary classification maps

from raw images. The network performs a late fusion of the

pretrained model derived from ImageNet data for spectral im-

ages (RGB and PAN) with DSM features trained from scratch.

Besides, the network is augmented with additional connections,

which provide the top classification layers with the access to

high-frequency information and, as a result, makes it possible

to predict at a finer spatial resolution. Moreover, we compare

the proposed framework with “naı̈ve” fusion of a triple-stream

architecture, which naı̈vely averages the predictions from multi-

source data and show that the proposed merged neural network

improves the prediction accuracy.

Code is available at https://gitlab.com/ksenia_bittner/fused-

fcn4s.

The remainder of this paper is organized as follows. In

Section II, related work for building extraction from earlier

approaches to more advanced using CNNs is summarized. The

background of CNNs, their transformation to FCNs, and details

of our deep network architecture are described in Section III. In

Section IV, we introduce the dataset and present implementation

details and training strategies. The experimental results on two

different datasets applying the proposed deep network architec-

ture, together with their quantitative evaluation, are shown and

discussed in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

A significant amount of work has been done on building

extraction from remote sensing imagery. In general, the

existing methods can be grouped into two classes according

to the information used for building extraction: aerial or

high-resolution satellite imagery and 3-D information in the

form of DSMs. The earlier studies introduce methodologies

based on low-level feature extraction—such as edges, line

segments, and corners—which were grouped together to form

building hypotheses [14]–[17].

It was observed that building rooftops within relatively ho-

mogeneous areas have more regular shapes represented by rect-

angles or combinations of them. As a result, the methodologies

employing the shape information were developed. Karantzalos

and Paragios [18] integrate multiple shape priors into the seg-

mentation process, for extracting the building footprints from

a PAN image. Sirmacek et al. [19] extract building boundaries

from DSM data based on building skeletons, which are split

into various pieces and introduced to a box-fitting algorithm.

Then, the active rectangular shape growing is performed, until

the difference between the previously extracted building edges

and the rectangle is reduced. Guercke and Sester [16] first de-

tect building edges and separate them from other above-ground

information using DSM data and normalized difference vege-

tation index (NDVI), and then iteratively fit a rectangle to the

building contour until all building parts become rectangles. Al-

though the algorithms based on geometrical primitives achieve

good results, they experience difficulties especially with more

complex, nonrectangular building shapes.

Geometrical information, like shape, is a very useful feature

for segmentation of remotely sensed images. For example, the

shadow information can serve as hints for building location [4],

[5] or prediction of its shape and height properties [15]. More-

over, the spectral information also presents another useful data

source. The NDVI data extracted from red (R) and near-infrared

(IR) channels of a multispectral image indicate vegetation and,

as a result, can help to eliminate trees. The early approaches for

image classification typically employ task-specific features like

color histograms or local binary patterns and pass them to ma-

chine learning algorithms to generate a labeled image [20]–[22].

Ngo et al. [23] decompose an image into small homogeneous

regions, which are then grouped into clusters. The assumption

that buildings are typically accompanied with shadows is used

to merge these building segments with their neighboring regions

in the same cluster to produce final building proposals. But the

features can be extracted not only from spectral images.

In recent years, data fusion has received significant attention

not only in remote sensing but also in many other domains.

Its applications include medical and industrial robotics, where

pattern recognition and inference techniques are used to perform

tasks ranging from 3-D object recognition, to determination

of object orientation and localization [24]–[27], human action

recognition [28], surveillance systems designed to detect, track,

and identify targets and events [29], autonomous driving [30],

[31], etc.

In remote sensing, the increasing number of airborne and

spaceborne sensors also led to the emergence of several mixed

datasets [32]. The combination of imagery and DSMs is the

most prominent application for data fusion, as both modalities

have their advantages and limitations. Their integration can help

to improve building extraction accuracy as well as robustness.

Sohn and Dowman [9] first identify the isolated building objects

by investigating the height property of laser points and NDVI

from IKONOS imagery. Then, a full description of building

outlines is accomplished by merging convex polygons obtained

from the hierarchical division of proposed building region by

rectilinear lines using the binary space partitioning (BSP) tree.

Rottensteiner et al. [33] fuse features extracted from the nor-

malized digital surface model (nDSM) and RGB images using

the Dempster–Shafer methodology [34]. Zabuawala et al. [35]
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extract the initial building footprint based on an iterative mor-

phological filtering approach. This initial segmentation result is

enhanced afterward with color aerial imagery by first generating

a combined gradient surface and then applying the watershed

algorithm to find ridge lines on the surface. Turlapaty et al. [36]

first obtain an initial test dataset by thresholding those sam-

ples from DSM that certainly do not correspond to buildings.

Then, the block-based features are extracted from the potential

building segments. Finally, these features are used for support

vector machine (SVM) classification to discriminate buildings

from nonbuilding objects in the initial test dataset. Although

the methodologies based on hand-crafted features have shown

promising results, their main drawback is that they are not ro-

bust to the natural large variety of shapes and appearances of

buildings within remote sensing images of different scales.

With a tremendous jump in development in the field of artifi-

cial neural networks, it became possible to learn image features

automatically instead of extracting them by classical methods.

A pioneering work in learning large-extent spatial contextual

features for labeling an aerial image is given by Mnih [37]. It

utilizes a specific patch-based architecture, where instead of the

inference of a single value to classify a whole image, a dense

classification patch is retrieved as a final outcome. In order to

enhance the performance of the proposed algorithm, the results

were processed by conditional random fields (CRFs), as this

approach improves the predictions by encouraging smoothness

between similar adjacent pixels. However, due to cropping the

images to a fixed size, the procedure introduces discontinuities

on the border of the classified patches. In our earlier work [38],

we present a four-layer fully connected (FC) neural network for

building footprint extraction from nDSMs. This approach is able

to extract the complete building footprints to a high degree of

accuracy. But the computation of such network is heavily influ-

enced by the FC layers and the level of details, which directly

depends on the patch size.

Since Krizhevsky et al. [11] introduced the innovative archi-

tecture based on earlier works on deep CNNs [39], [40], they

became state of the art for image recognition tasks. Although

CNNs are well established for image classification problems,

the methodologies related to segmentation tasks are still un-

der exploration. Socher et al. [41] introduce a model based on

convolution and pooling layers. In other words, the low-level

features learned from CNN layer are given as inputs to multiple

recursive neural networks (RNNs) in order to build higher order

features. Like in the present paper, this work uses, additionally

to RGB, a depth image, which is processed in a separate stream.

However, in contrast to this paper, there is no end-to-end train-

ing. Farabet et al. [42] assign patchwise predictions from a CNN

with three convolutional layers and an FC layer to superpixels,

which are combined into meaningful regions after applying a

CRF. Similar to this paper, that approach processes each scale

from the generated image pyramids separately with the CNN

but the filter weights are shared across scales.

In the field of semantic segmentation, it became more pop-

ular to follow the idea of FCNs proposed by Long et al. [13].

The FCNs are the type of CNNs that consist of convolutional

and pooling layers plus activation functions. Thus, there are no

FCs layers in this type of network. As a result, they can com-

pute spatially explicit label maps efficiently and are independent

from input size. To deal with the loss of spatial resolution due

to the pooling layers or filters applied not on every pixel but

skipping some convolutions through, the series of papers pro-

pose to upsample the probability maps back to the resolution

of the input image. A similar approach to ours for recovering

high-frequency information is presented in the U-Net architec-

ture [43]. Each step of the upper part of the network is comprised

of 2 × 2 convolutions (“up-convolution”) concatenated with the

correspondingly cropped feature maps from the lower part of

the network and 3 × 3 convolutions. The final layer is a 1 × 1

convolution, which brings the number of layers in the last layer

to the desired number of classes. In contrast, fully convolutional

DenseNet [44] approach recovers higher frequencies by using

a so-called transition-up block. This block is composed of a

transposed convolution to upsample the incoming feature map,

then a skip connection is used to concatenate the input of the

transition-up block with the upsampled features, producing the

final output of the block at the target resolution. In the con-

text of building footprint extraction, Yuan [45] proposes a type

of FCNs architecture where the outputs of each stage of the

network are upsampled, stacked together, and fed into a con-

volutional layer with a filter of size 1 × 1 × n (where n is the

number of stacked feature maps). A sort of prediction map is

generated, where, in contrast to this paper, the values of pixels

correspond to their distance to the building boundaries. Going

even further, Zuo et al. [46] propose a hierarchically fused FCN

(HF-FCN), which approaches a similar strategy as Yuan [45] by

hierarchically fusing the information from multiscale receptive

fields of the network built on the basis of VGG-16 architec-

ture. Maggiori et al. [47] convert the FC network proposed by

Mnih [37] to FCN and generate a building mask out of RGB

satellite imagery by, first, training the network on possibly in-

accurate OpenStreetMap (OSM) data, and, finally, refining the

model on a small amount of hand-labeled data. The major differ-

ences from this paper are that the network architecture is much

shallower and does not produce the output map of the same size

as the input image. On the other hand, like in this paper, the

approach combines coarse and fine information from different

layers in order to produce more detailed results. In continuation

of their previous work, Maggiori et al. [48] investigate the net-

work built on the basis of FCN proposed by Long et al. [13]

combined with a multilayer perceptron (MLP) on top of it. How-

ever, MLP is an FC network applied to every pixel individually

and it significantly enlarges the number of parameters in the

network. In our earlier work [49], we propose to use a deep

learning network FCN8s developed by Long et al. [13] for seg-

menting the buildings only from nDSM data. In contrast to this

paper, we copy the nDSM three times and initialize the network

with the model pretrained on RGB images. However, there is

no influence on the final result, as the elevation information has

a different statistics in comparison to spectral information and,

thus, requires different feature representation.

An important milestone for semantic segmentation of remote

sensing images with deep learning was multi-stream architec-

tures that learn separate convolution layers for different data
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modalities. A study of Lagrange et al. [50] shows that com-

bining image and DSM is essential for retrieving some specific

classes. A further development of deeper networks and the late

fusion of the spectral and height information were investigated

in the work of Marmanis et al. [51]. This work is most closely

related to ours, motivated by the interaction of multisource in-

formation and integration of more detailed information from

earlier layers to top. The difference from this paper is an ensem-

ble learning of the developed model, which is a naive averaging

after training the model with different initializations. This strat-

egy is not integrated in this paper as we want to demonstrate the

model strength to make good predictions after only one com-

plete training. Besides, we do not engage the gradual training,

which does not guarantee the improvements of final results.

A similar architecture strategy is approached by Sherrah [52].

However, in contrast to many deep learning architectures, this

paper presents a novel no-downsampling network to maintain

the full resolution of the imagery at every layer in the FCN.

This is achieved by using the “atrous” algorithm [53], which

removes the pooling layers that caused the downsampling ef-

fect. In contrast to this paper, the fusion is done much earlier

in the FC layers. However, the fusion at this point did not lead

to significant improvement. Besides, in opposite to our strat-

egy, the authors did not upsample the resulted output image

from the network but used bilinear interpolation afterward to

achieve the same size as the input image. Both works [51], [52]

advocate using pretrained networks for the spectral channels,

but train the network for height channel from scratch. Audebert

et al. [54] investigate the hybrid encoder–decoder architecture

from Badrinarayanan et al. [55] for dealing with diverse data

sources by concatenating the intermediate feature maps of sep-

arately trained dual-stream architecture and feeding the merged

results to a three-convolution layers network. Besides, they in-

troduce multikernel convolutional layers in the decoder part to

aggregate multiscale information while upsampling. Although

their fusion network is similar to ours, the main difference is

the additional combination of the output from the fusion net-

work with average scores of the two independent branches. In

our case, the fusion is supposed to correct errors within one fu-

sion network without additional concatenations by giving more

weight to the activations of the most suitable information among

complementary sources. Moreover, the presented architecture,

in contrast to ours, does not have any “skip” connections, which

allow the decoder to recover important details that are lost due

to the downsampling in the encoder. Another difference to this

paper is the data they used. The addition to spectral image in

this paper is a composite image consisting of DSM, nDSM, and

NDVI information. As NDVI is a good indicator for vegetation,

the authors believe that this kind of auxiliary information helps

to improve vegetation detection. But, as the components of the

index calculation (the IR and R channels) are already given to

the network as input, the network is capable to distinguish the

vegetation itself. Another reason not to take NDVI into account,

at least for the building detection, is that we do not need a

precise vegetation prediction but only buildings discrimination

from above-ground objects.

In the context of urban scene understanding, not only the

DSM can provide complementary knowledge. Recently, efforts

have been made for joint edge detection and semantic classifi-

cation. Marmanis et al. [56] present an end-to-end ensemble of

CNNs for semantic segmentation with an explicit awareness of

semantically meaningful class boundaries. The boundary detec-

tion significantly improves semantic segmentation results and

the overall accuracy achieved more than > 90% on the ISPRS

Vaihingen benchmark. Hu et al. [57] investigate the fusion of

spectrum information of hyperspectral image and the scattering

mechanism of PolSAR data. They propose a novel architec-

ture that fuses two separated streams in a balanced manner.

Since spaceborne remote sensing videos are becoming essential

resources for remote sensing applications, Mou and Zhu [58]

propose to fuse multispectral images and space videos for spa-

tiotemporal analysis to achieve a fine-resolution spatial scene

labeling map.

Currently, generative adversarial networks (GANs) are also

investigated in the remote sensing domain. Isola et al. [59]

attempt to generate a mapping function to convert a satellite

photo into a map and vice versa. Marmanis et al. [60] propose

to use the GAN for artificial synthetic aperture radar (SAR)

images generation in order to increase the training dataset.

In this paper, we explore the potential of multisource data

fusion, within one FCN architecture, for fully automated end-

to-end building footprint extraction from high-resolution remote

sensing images. Our contributions are as follows.

1) We efficiently adapt the FCN8s architecture developed by

Long et al. [13] from generic everyday images to satellite

images and analyze it for three different data sources:

RGB, nDSM, and PAN images.

2) We augment the FCN8s with additional “skip” connec-

tion, which combines the predictions at an earlier stage

with the later one, for improving the segmentation results.

We name the network FCN4s and inspect the improve-

ments on RGB, nDSM, and PAN images in comparison

to FCN8s.

3) Inspired by the possibility to fuse multisource data within

one deep convolutional framework, we propose a Fused-

FCN4s architecture, which employs a late fusion approach

of three identical parallel FCN4s networks, carrying in-

formation from RGB, nDSM, and PAN images. To our

knowledge, this is the first work that applies in a direct

way a deep convolutional architecture on RGB, nDSM,

and PAN satellite data for building footprint extraction.

4) As generalization is a key point for remote sensing appli-

cations, we demonstrate the generalization capability of

the proposed network by applying it to a different urban

landscape, unseen by the model before.

III. METHODOLOGY

A. Convolutional Neural Networks

CNNs are a category of artificial neural networks that have

been successfully applied to visual imagery understanding.

They are commonly organized in a series of layers. This
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hierarchy allows the network to learn multiple levels of data

representation, starting from low-level features at the bottom

layers, such as edges and corners, proceeding to generate coarse

feature maps with high-level semantic information at the top

layers. CNNs take advantage of the 2-D structure of an input

image by applying on it learnable 2-D convolutional filters

yl
j = σ

⎛

⎝

∑

k∈−W
2 ×W

2

wjk · yl−1
k + bl

j

⎞

⎠ (1)

which connect each neuron at level l with a specially localized

region of fixed size W × W from previous layer l − 1, and takes

a weighted sum over all neurons followed by some activation

function σ. The bl
j corresponds to a bias. Due to the weights wjk

being shared across all neurons for each dimension per layer, the

number of free parameters is significantly reduced in the model,

compared to the standard MLP, which differs mainly by the fact

that no weight sharing takes place in this type of neural networks.

Additionally, the weight sharing introduces translation equivari-

ance [61], another desirable attribute for the network. The bias

can be considered yet another weight (with yi=0 = 1). The merit

of the activation function is to introduce nonlinearity into the net-

work. The most common activation function applied after each

convolutional layer in CNNs is the rectified linear unit (ReLU)

yl
relu = max (0, yl) (2)

which sets all negative numbers in the convolution matrix to

zero and keeps the positive values unchanged.

The main advantages of using ReLU in neural networks are:

first, it induces sparsity in the hidden units, and second, it does

not suffer from the gradient vanishing problem [62].

As CNNs were originally developed for image classification

problems, their goal was to predict the correct class associated

with the input image. Therefore, the top layers of the network are

usually FC layers, which merge the information of the whole

image. The final layer is a 1-D array and consists then of as

many output neurons as there are possible classes, representing

class assignment as probabilities, most often using softmax
normalization on each of the neurons.

The classifier computed by the network is determined by

the weights and biases parameters. To generate an optimal net-

work classifier means to find such weights and biases that will

minimize the difference between predicted values and target

values. The misclassifications are penalized by a loss function

L(x, t,p). The commonly used cross-entropy loss function

L(x, t,p) = −
∑

i

ti log p(xi) (3)

avoids the problem of slowing down the learning (in compari-

son to, for instance, the Euclidean distance loss function) and

provides a more numerically stable gradient when paired with

softmax normalization [47]. Here, x = {x1 , . . . , xn} is the set

of input examples in the training dataset and t = {t1 , . . . , tn} is

the corresponding set of target values for those input examples.

The p(xi) represents the output of the neural network for given

input xi . We minimize the logistic loss of the softmax outputs

over the whole patch.

A standard technique to minimize the loss function is gradient

descent, which computes the derivatives of the loss function with

respect to parameters ∂L
∂w i

and ∂L
∂bi

and updates the parameters

with learning rate λ in the following way:

wi ← wi − λ
∂L

∂wi

(4)

bi ← bi − λ
∂L

∂bi

. (5)

The derivatives ∂L
∂w i

and ∂L
∂bi

are calculated by the backprop-

agation algorithm [63] commonly used in the stochastic gra-

dient descent (SGD) optimization algorithm in small batches

for efficiency. In this model, we used SGD with momentum,

an extent to the vanilla SGD method. Additional methods have

been suggested recently like ADAM [64] and RMSProp [65].

Although the optimization technique is very critical in the case

of training from scratch, its role is muted in the case of pretrain-

ing, because the network is hindered from rapidly changing the

weights, typically by using a very small learning rate. There-

fore, the technique itself plays finally a less important role in the

convergence. A good overview of gradient descent optimization

algorithms is given by Ruder [66].

B. FCN Architecture

In this paper, we address a full pixelwise binary labeling

problem for building versus nonbuilding classes. It means that

we want to give the network an image and receive an output

image of the same size, with meaningful shape and structure

of building footprints. The original CNNs were constructed for

recognition tasks where only one label is assigned to each im-

age. The recently developed FCNs became the state-of-the-art

methodology for semantic segmentation. They are the exten-

sions of the traditional CNN architecture, where all FC layers

are replaced with convolutional layers. The advantage of this

transformation is the independence of the input image size. Ad-

ditionally, in contrast to the basic CNNs, FCNs do not lose the

spatial information in the top layers but allow to track it back.

The per-class probability maps cli(x, y), which the FCNs gener-

ate, have a coarse resolution due to the pooling and convolution

with stride larger than one operations along the network. The

number of probability maps cli(x, y) in the last convolutional

layer is equal to the number of classes of the task. So, for our

binary classification problem, this number is equal to 2. In order

to upsample the feature maps from the previous layer, the FCNs

are augmented with “deconvolution” layers. This type of layer

performs a learned interpolation from a set of nearby points. The

construction of the network with several deconvolution layers at

its top part allows obtaining the resulted class probability maps

of the same size as the input image. In our network, we initial-

ize the deconvolution weights with a set of bilinear interpolation

parameters.

1) FCN4s Network: Applying several upsampling layers

and, as a result, bringing the classification maps to the origi-

nal size, does not guarantee very detailed and accurate object

boundaries in the resulting images. Long et al. [13] were the

first who suggested to use the high-frequency information from
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Fig. 1. Schematic representation of our FCN4s architecture.

the feature representations of the shallow part of the network,

bypassing several layers of nonlinear processing, and combin-

ing it using an elementwise addition with the output from the

deconvolution layers at the same resolution. This type of struc-

ture received the name of “skip” connection and is depicted in

Fig. 1 by a long arrow in violet color. In this way, the FCN8s

network proposed by Long et al. [13] hierarchically includes the

earlier layers pool4 and pool3 to the upper layers of the network,

adding more detailed information.

However, the FCN8s were originally created for semantic la-

beling in the field of computer vision, where objects are big

and well separated. Remote sensing imagery, in contrast to mul-

timedia images, is very different. First of all, due to the big

difference in the ground sampling distance (GSD), even if the

resolution of remote sensing images is high, still, the containing

information is very heterogeneous. It consists of many objects

like trees, buildings, roads, etc. Second, those objects can be

represented only by a small number of pixels. Therefore, it is

more challenging to extract very accurate boundaries and struc-

tures from such images. As a result, we modify the FCN8s

network to an FCN4s by adding yet another “skip” connec-

tion from pool2 layer, which incorporates even finer details,

allowing more efficient building footprint reconstruction (see

Fig. 1). We also adapt the number of channel dimensions from

21 to 2. The training is done by fine-tuning the weights of the

model, which is pretrained on the large image collection of

ImageNet.

2) Fused-FCN4s Network: For the semantic segmentation

task, the data used are often three-channel imagery. In this

paper, we propose a new network that integrates image

information from RGB and PAN images, together with depth

information from nDSM, as the latter provides geometrical sil-

houettes, which allow a better separation of buildings from the

background. Besides, depth images are invariant to illumination

and color variations. Since depth information and intensity have

different physical meaning, we propose a hybrid network where

three separate networks with the same architecture are used:

we feed one part with the red, green, and blue spectral bands

and initialize it with the weights pretrained on ImageNet, as

mentioned in Section III-B1. The second part we feed with the

PAN image converted to three channel by copying it three times.

The network is initialized the same way as the first part. The

Fig. 2. Schematic representation of the proposed Fused-FCN4s architecture.

reason to use pretrained weights for gray scale image is twofold:

first, the pretrained networks demonstrate a strong ability to

generalize to images outside the ImageNet dataset via transfer

learning. Thus, we make modifications in the preexisting model

by fine-tuning it. Second, the PAN image has the same topology

as our RGB image. So, as the visual filters from generic images

can be built upon for RGB images, they are applicable for PAN

images too. The third branch is fed with one-channel nDSM,

initializing the convolutional layers randomly since elevation

data and intensity data have different modalities and, as a

result, require different feature representations. We examine

two fusion strategies: 1) a naı̈ve averaging of three branches

after softmax, and 2) merging by the neural network itself.

The schematic diagram of the proposed network architecture

is illustrated in Fig. 2. First, it stacks the sets of spectral and

height features from three streams at a very top level, but be-

fore the last up_4 upsampling layer, as depicted in Fig. 2. As

a result, the number of features increases three times. Second,

the upsampling is applied to bring the combined feature maps

to the final size. Finally, the resulting intermediate features are

sent as an input to three additional convolutional layers of size

1 × 1, which play the role of information fusion from different

modalities, and can correct small deficiencies in the predic-

tions, by automatically learning which stream of the network

gives the best prediction result. This architecture is similar to

the one presented by Marmanis et al. [51]. Although our imple-

mentation is based on the paper description, we made additional

modifications that experimentally improve our final results. For

example, the number of feature maps at the higher layers of the

network is set to a larger number to allow the network to learn

a wider range of features. However, we decreased the number

of channels suggested by Marmanis et al. [51] from 60 to 30

and, experimentally, obtained better results. Besides, having a

network with a huge number of parameters but rather small

training set can lead to overfitting. Additionally, in contrast to

Marmanis et al. [51], we did not find it necessary to introduce

local response normalization (LRN) to the last layer of three

independent branches for spectral intensities and height before

merging as the network is able itself to balance the activations
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Fig. 3. Test area. (a) RGB. (b) nDSM. (c) PAN. (d) Ground truth building mask.

between heterogeneous data. It also prevents from additional

tuning of the hyperparameters for LRN.

The network can only see a part of the image when it is

centered at a pixel. This region in the input is the receptive field

for that pixel and can be computed by the formula mentioned

by Le and Borji [67]

Rk = Rk−1 + (fk − 1)

k−1
∏

i=1

si (6)

where Rk is the current layer, Rk−1 is the previous layer, fk

represents the filter size of layer k, and si is the stride of layer i.

The receptive field of the output unit of the network that we use

in this paper is 404 × 404 pixels.

IV. STUDY AREA AND EXPERIMENTS

We performed experiments on WorldView-2 data showing

the Munich city, Germany, consisting of a color image with red,

green, and blue channels, a very high-resolution stereo PAN im-

agery and a DSM derived from it using the semiglobal matching

(SGM) method [68]. The RGB and PAN images used in the ex-

periment have been orthorectified, because it is important for

building detection to have images where every pixel in the im-

age is depicted as if viewed at nadir, so that occlusions do not

pose a challenge.

As a ground truth for our training, a building mask from the

municipality of the city of Munich, covering the same region as

the satellite imagery, is used for learning the parameters in the

neural network.

In order to investigate the prediction model capacity over a

different urban landscape, a second WorldView-2 dataset show-

ing a small part of Istanbul city, Turkey, was considered. As the

ground truth for this area is not available, a building mask was

extracted from OSM. However, only a few building footprints

are available for this area and the rest is missing. Therefore, a

small area of around 0.5 km2 was selected over the available

building footprints. The rest was manually delineated.

A. Data Preprocessing

To perform a network training from the multiple data sources,

first a PAN image with a GSD of 0.5 m was used to pansharpen

the color image with a GSD of 2 m using the pansharpening

method proposed by Krauß et al. [69].

Second, in order to obtain above-ground information only,

namely to generate an nDSM, the topographical information

was removed from DSM based on the methodology described

by Qin et al. [70]. Additionally, by investigating the histogram of

height data in the nDSM, it was found that there are about 0.05%
outliers, which enlarge the distribution range dramatically (to

205 m height), although the majority of values lay within a

much smaller range. The explanation to these outliers can be the

presence of noise, due to the absence of information because of

clouds. Therefore, the decision was made to remove this 0.05%
of outliers and use linear spline interpolation to find the values of

thresholded points. It should be mentioned that even if there are

some buildings in the image higher than the selected threshold,

for our binary classification task it is not very critical to loose

the true height of very high buildings within the city area, since

we are only interested in footprints. Another advantage of the

suggested data preprocessing is the simplicity of the network

training.

B. Implementation and Training Details

We developed our FCN4s and Fused-FCN4s models based on

the FCN8 implemented in Caffe deep learning framework [71].

For learning process, we prepared the training data consisting

of 22 057 pairs of patches, and validation data of 3358 pairs,

selected from a different area. The patches cropped from the

satellite image have a size of 300 × 300 pixels. Having a large

receptive field size of the architecture leads to the question about

the relative influence of boundary effects on the predictions. In

our case, as the context information is available only within

300 × 300 pixels, each output unit of the network is influenced



2622 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 8, AUGUST 2018

Fig. 4. Relative performance of the FCN8s model for building mask generation on individual data sources: (a) RGB, (b) nDSM, and (c) PAN images. Image
(d) illustrates the ground truth.

by the boundary effect. Therefore, to prevent artifacts and dis-

continuity at patch boundaries, we used an overlap of 200 pixels

out of 300 (67%) when sliding the window across the satellite

image in both directions. To further improve the prediction on

boundaries, all overlapping patches are stacked together first,

then the final prediction is calculated as the average at each

pixel. As a result, some pixels are predicted once, twice, or four

times like the ones at the corners. This is a commonly used

approach for remote sensing problems [54].

As mentioned in Section III-B2, the two branches of the net-

work corresponding to spectral images were initialized with a

pretrained model. This applies to the network before the fully

convolutional layers. All layers above the fully convolutional

layers were initialized within a range defined inversely pro-

portional to the number of input neurons. For a layer with N

neurons, the weights were initialized in the range [− 1
N

, 1
N

]

using uniform sampling. The network branch corresponding to

nDSM data is trained from scratch for the reasons explained

in Section III-B2. We start the training process of our network

with learning rate λ = 0.01 for all randomly initialized layers

and λ = 0.001 for layers initialized with the pretrained model,

decreasing them by a factor of 10 for each 20 000 iterations.

The total number of iterations was set to 60 000 with batch size

of one on a single NVIDIA TITAN X (Pascal) GPU with 12

GB memory. A weight decay η and momentum factor m were

set to η = 0.0005 and m = 0.9, respectively. All parameters

were obtained empirically during investigation of the training

process on the validation dataset. Within the training, random

shuffling of the samples was performed before feeding them

into the network.

C. Comparison With Alternative Methods

Apart from the developed FCN4s network, presented in

Section III-B1, we also compare our approach with the FCN8s

network proposed in [13]. We directly employed it for RGB and

nDSM images, by changing only the number of outputs to 2 in

order to be consistent with our binary classification task. During

the fine-tuning of the FCN8s on RGB and PAN images using

the pretrained ImageNet model, the base learning rate was set

to λ = 0.0001. For training the FCN8s from scratch for nDSM

image, the base learning rate was set to λ = 0.01.

In order to demonstrate the advantage of end-to-end deep

learning data fusion, we compare the designed architecture with

naı̈ve prediction fusion. Moreover, to indicate the influence of

every data source we compare our approach with two-stream

fusions: 1) RGB and nDSM and 2) PAN and nDSM.

Besides, we conduct a comparison on DSM-based building

detection method proposed by Krauß et al. [69]. This method,

first, generates a height map by distinguishing the above ground

objects from the ground level ones using nDSM. The extracted

height map is used then for buildings delineation from the sur-

roundings by applying the advanced rule-based fuzzy spectral

classification [69]. The implementation distributed by the au-

thors is applied to the nDSM and eight-channel multispectral

image covering the test area.

V. RESULTS AND DISCUSSION

In the following section, the results of the considered exper-

iments for FCN8s, FCN4s, and the proposed Fused-FCN4s, on

different data sources, are presented. Their respective perfor-

mance is discussed, in order to evaluate the introduced architec-

ture for binary building mask generation, both qualitatively and

quantitatively. To demonstrate the effectiveness of the models,

we fed a new test dataset to the network, unseen before neither

for training nor for the validation. A test area from the city of

Munich and its corresponding ground truth image is depicted in

Fig. 3.
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Fig. 5. Relative performance of the FCN4s model for building mask generation on individual data sources: (a) RGB, (b) nDSM, and (c) PAN images. Image
(d) illustrates the ground truth.

TABLE I
RESULTS OF DETAILED INVESTIGATION ON FUSED-FCN4S MODEL PERFORMANCE WITH RESPECT TO MODIFICATIONS IN ARCHITECTURE

We vary the number of feature maps (fmaps) in the top layers together with the number of convolutional layers after merging the streams from three data sources. The

np indicates a number of parameters in the network, tf is the average time for one forward pass on a single NVIDIA Titan X (Pascal) GPU, tb is the average time for

one backward pass, and tf −b is the average time for one forward–backward pass.

A. Qualitative Evaluation

1) FCN8s Network: The building masks generated by the

FCN8s network separately on RGB, nDSM, and PAN images

are presented in Fig. 4. As can be seen from the results, the

FCN8s model, generated for multimedia imagery semantic

segmentation, is applicable to remote sensing data too. More-

over, not only intensity images but also the nDSM representing

depth information can be used for building footprints extraction

using FCNs. This has been also analyzed by Davydova et al. [38]

and Bittner et al. [49]. As illustrated in the figures, the FCN8s

model is able to extract the buildings from each given data source

without any influence of other above-ground objects such as

trees, cranes, etc. However, as it can be noticed, some footprints

are better extracted from intensity images and some of them

from the depth image. For example, there are two big buildings

in the bottom right corner. Referring to the original RGB image

in Fig. 3(a), one can see that the roofs of both constructions

have a color similar to the asphalt. Therefore, we deduct that

the network confuses these buildings with the road. From PAN

images, the network could learn different features and, as a re-

sult, enable the network to identify the area as buildings, but not

optimally yet. On the other hand, from the height information

provided by the nDSM, it was easier for the network to distin-

guish these buildings from the ground. As can be seen from the

results, many buildings are missing in the building mask, even

the one extracted from the nDSM. This can be caused by trees

occluding some buildings, or inaccurate height data in these

locations.

2) FCN4s Network: It is always good to have additional

information that can be added to the system, as it makes the

system more powerful. CNNs are capable of extracting repre-

sentative features for a classification task if enough information

is present. Therefore, as we wanted to improve the building out-

lines without any postprocessing steps, it was decided to enrich

the system by adding more detailed information from earlier

network layers. As a general rule, CNNs gradually abandon

lower level features in the pursuit of higher levels, which leads

to a more abstract description of the image. This strategy can be

countered by passing lower level features up the hierarchy in a

separate path (skip connection). In this way, the network itself

automatically learns higher detailed building representations.

The effectiveness of the suggested FCN4s approach is illus-

trated in Fig. 5. First of all, in each resulting image, for every

data source, one can notice that more buildings are extracted.
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Second, the shapes of the footprints, even for the complex build-

ing structures, are closer to the ground truth and better in com-

parison to the one extracted by FCN8s architecture. Finally, the

addition of the pool2 skip connection enables the network to

recognize even the low-rise buildings.

3) Fused-FCN4s Setup: In this section, we investigate dif-

ferent setups of Fused-FCN4s architecture. Setting the number

of convolution layers to 2 for performing a fusion from differ-

ent network streams and increasing the number of feature maps

at the top layers lead to a tendency to improve the result (see

Table I). This happens due to the fact that the increase of the

parameters number in the network raises its capacity and, thus,

makes it possible to perform better generalization. However, at

some point the network can reach too much complexity, which

comes with the risk of overfitting. This effect can be observed

with a configuration of 60 feature maps and three convolutional

layers. The results of generalization degrade in comparison to

a fusion network with 30 feature maps and three convolutional

layers. Growing the number of feature maps in the network

increases the computation time, respectively, as depicted in

Table I. However, it helps to improve the results significantly.

Hence, we choose the model with 30 feature maps and three

convolutional layers as it provides the best results in this

experiment.

4) Fused-FCN4s Versus FCN8s and FCN4s: The Fused-

FCN4s architecture, which combines the spectral information

from RGB and PAN images, together with the height infor-

mation from nDSM, delivers the best performance in discrim-

inating buildings from background, in comparison to FCN8s

and FCN4s shown in Figs. 4 and 5, respectively. The results

obtained by Fused-FCN4s architecture are shown in Fig. 6.

For visualization and better interpretation, the extracted build-

ing footprints are also overlapped with the reference building

footprints in Fig. 6(b). The significant improvement of the build-

ings outlines can be easily observed. The footprints are more ac-

curate and their shapes are more complete without missing parts

of the various structures. It also can be seen that the network

really benefits from all data sources, which allow it to extract

more detailed information of building construction compared to

the reference image in Fig. 3(d). For example, the building in

the left bottom corner obviously has some additional structures

in the middle, which can be easily identified on the nDSM im-

age, but they are missing in the ground truth. The extraction of

low-rise buildings, on which the selected scene is rich, is more

accurate now, and their pattern of placement is very close to the

ground truth. Some of them are still missing, but that is explain-

able due to their really small size, difficult to distinguish even

for the human eye.

Besides, it is experimentally proven that the proposed net-

work benefits from three remote sensing images used for train-

ing in comparison to two-stream networks of RGB and nDSM

and PAN and nDSM (see Table II). We can see that the use

of the PAN image leads to improvements of 2.2% on intersec-

tion over union (IoU) and from 0.7% to 2% on the rest of the

metrics.

5) Fused-FCN4s Versus Naı̈ve Fusion: The experimental re-

sults from Table II demonstrate that naı̈ve fusion by averaging

Fig. 6. Comparison of generated building mask over test area obtained
(a) directly from Fused-FCN4s and (b) from Krauß et al. [69]. Image (c) depicts
the extracted building footprints in respect to reference building footprints of
Fused-FCN4s.

the predicted maps improves the IoU metrics only by 1% in

comparison to the results achieved by FCN4s model trained on

RGB. But the proposed Fused-FCN4s boost the IoU metrics

by 8%. Thus, the shapes of generated building footprints are

enhanced in comparison to those obtained by single FCN4s.

Additionally, a significant improvement of other metrics is also

achieved. This proves that the network learns by itself from

which multisource data the better prediction of the pixel can be

gained.

6) Fused-FCN4s Versus DSM-Based Building Detection

Method: As can be seen from Fig. 6(c), the DSM-based build-

ing detection method proposed by Krauß et al. [69] is able to

extract a similar building mask as our proposed approach. How-

ever, a close investigation shows that Fused-FCN4s are able

to find more buildings than the DSM-based building detection

method (see Fig. 7). Additionally, one can notice that the ex-

traction of low-rise buildings by our approach is significantly

better. Besides, the footprints outlines are more accurate and

rectilinear, which makes them look qualitatively more realistic

and, as a result, similar to the ground truth.
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TABLE II
QUANTITATIVE EVALUATION OF THE PROPOSED FUSED-FCN4S ON THREE DATA SOURCES IN COMPARISON TO DIFFERENT METHODOLOGIES AND SETUPS

Fig. 7. Detailed comparison between (a) Fused-FCN4s and (b) DSM-based
building detection method proposed by Krauß et al. [69]. Image (c) depicts the
ground truth.

B. Quantitative Evaluation

For quantitative evaluation of the obtained results, we eval-

uated the metrics commonly used in semantic segmentation

problem. The first group of metrics is described in Long

et al. [13]. They are mean accuracy, mean IoU, and overall

accuracy

Mean accuracy =
1

ncl

∑

i

nii

ti
(7)

Mean IoU =
1

ncl

∑

i

nii

ti +
∑

j nj i − nii

(8)

Overall accuracy =

∑

i nii
∑

i ti
(9)

where nij is the number of pixels belong to class i, but predicted

as class j, ncl is the number of different classes, and ti =
∑

j nij

is the total number of pixels belong to class i.

The second group of selected metrics, suitable for binary clas-

sification evaluation, are based on predicted values represented

by the total number of true positive (TP), false positive (FP), and

false negative (FN). Based on these values, the F − measure

is defined as

Fmeasure =
(1 + β2)TP

(1 + β)2TP + β2FN + FP
(10)

where for this paper the parameter β was set to 1. Additionally,

we use the IoU metric

IoU =
TP

TP + FN + FP
(11)

adapted for the task, where the amount of pixels belonging

to the objects (buildings) are much smaller compared to those

belonging to the background. This metric is represented by the

proportion of the number of pixels classified as buildings, both in

the predicted image and in the ground truth, to the total number

of pixels classified as buildings in each of them [47].

The summarized performances of FCN8s, FCN4s, Fused-

FCN4s networks, and DSM-based building detection method

proposed by Krauß et al. [69] using above-described metrics

are grouped in Table II. From the quantitative statistics we can

see that, first, the performance of all networks on spectral images

is better than on the image representing the height information.

This is reasonable, as the DSM images themselves are obtained

from the multiview stereo PAN pair and some information can

be unavailable, due to occlusions by different objects or clouds

within the scene. Second, by further augmenting the architecture

with “skip” connection from the pool2 layer, to generate FCN4s

network, we gain improvements of performance on nDSM and

RGB images. However, for PAN image the improvement is not

very significant. This is due to the fact that the network be-

came more complicated using the additional connection as a

result of an enlarged number of parameters, but the extracted

information comes only from the three times duplicated im-

age and is not enough to provide the network with much more

features. Finally, the proposed Fused-FCN4s network obtains

the best performance for all metrics in comparison to other

networks and the DSM-based building detection method. The

overall accuracy gained 2% points in comparison to FCN8s

for RGB and PAN images, and around 4% points related to

FCN8s for the nDSM image. It should be mentioned that the IoU
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Fig. 8. Prediction over Istanbul city, Turkey on WorldView-2 data. (a) RGB
image. (b) nDSM. (c) PAN. (d) Resulted mask from Fused-FCN4s.

metric on Fused-FCN4s network increased over 15% and 30% in

comparison with FCN8s on spectral and depth images, respec-

tively. That indicates a significant improvement of the building

footprint delineation accuracy. Besides, the difference of the

IoU metric of 13.3% between the Fused-FCN4s and DSM-based

building detection method, in favor of the first, points out that

applying our approach there is no need for any postprocessing

steps for building outline refinement as it already provides very

accurate building mask.

Processing a selected test area of 1300 × 2500 pixels with

Fused-FCN4s network takes 25.89 s on a single NVIDIA Ti-

tan X Pascal GPU with a 100 pixels stride and around 2 min

for stitching the overlapped patches for the final full image

generation.

C. Model Generalization Capability

In order to investigate the model capacity to capture the es-

sential features separating buildings from nonbuildings, Istanbul

dataset was used [see Fig. 8(a)–(c)]. This dataset is very differ-

ent from the Munich dataset, and it is very challenging in itself

due to the dense placement of buildings, and the vastly differ-

ent construction and architecture style. Without retraining the

model on the new dataset, the building footprint map was di-

rectly obtained by passing the WorldView-2 data through the

FCN4s and Fused-FCN4s networks. From the resulting mask

shown in Fig. 8(d), it can be seen that the proposed model man-

aged to predict reasonable building mask even from a new and

quite complicated dataset. As it was mentioned in Section IV,

for quantitative evaluation a small area of around 0.5 km2 was

selected (see Fig. 9). The predicted results and ground truth of

this area are presented in Fig. 10.

Fig. 9. Selected area over Istanbul city for statistical evaluation. (a) RGB.
(b) nDSM. (c) PAN.

Fig. 10. Small area of initial Istanbul dataset. Image (a) shows the ground truth,
partially obtained from OSM and partially completed by manually drawing the
footprints. Image (b) illustrates the predicted map.

The statistical results of the experiment over the small area

can be found in Table III. We can see that the model achieves

high performance on this dataset as well. Besides, the advantage

of using fused data versus only one is also demonstrated in

Table III.

It can be clearly seen that the model successfully extracts the

shapes of building footprints, without missing any of them. The

IoU metric confirms this statement by its high value of about

∼ 68.1%. Additionally, no influence of other above-ground ob-

jects such as trees is observed. However, one can notice a small

improvement between using one spectral image or two together

with an nDSM. Both RGB & nDSM and PAN & nDSM models

already gave good results using the advantages from spectral

and height information. Inserting additional spectral informa-

tion only helps to improve minor errors, especially on building

outline as the IoU shows high values. But it is still a significant

progress as commonly used methodologies for building extrac-

tion are not very flexible and cannot be easily generalized on

different city areas. Moreover, it can be identified that the quan-

titative results are lower than the ones from Munich dataset.

This can be explained by scene complexity: the network did not

experience such types of constructions, their close placement

to each other and the narrow streets. Besides, the maximum

height within Munich nDSM area is 58.37 m and for Istanbul

is 24.66 m, which also can influence the performance. Another

reason is that the manually generated ground truth is far from

ideal, due to the subjective interpretation of human. The proba-

ble solution to those small problems can be a fine-tuning of the

proposed model on some small areas of different cities, which

will contribute to the model performance by introducing a new

dataset for model learning, even if it is only a small part of the

area.
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TABLE III
PREDICTION ACCURACIES OF FCN4S AND FUSED-FCN4S MODELS ON ALL INVESTIGATED METRICS OVER ISTANBUL DATASET

VI. CONCLUSION

We presented a novel method to segment buildings in com-

plex urban areas using multiple remote sensing data on the basis

of FCNs. The designed end-to-end Fused-FCN4s framework in-

tegrates the automatically learned relevant contextual features

from spectral and height information from RGB, nDSMs, and

PAN images, respectively, within one architecture for pixel-

wise classification, and produces a unique binary building mask.

Both, spectral images and nDSMs have their strong and weak

sides, but they can complement each other significantly, as, for

example, the nDSMs provide elevation information of the ob-

jects, but spectral images provide texture information and more

accurate boundaries. The trained system was tested on two un-

seen areas of Munich city, Germany, and Istanbul city, Turkey,

and achieved accurate results. Experimental results have shown

that even small objects with tiny details in their building foot-

print can be successfully extracted from satellite images by

applying the deep neural network framework. The proposed ar-

chitecture can be generalized over diverse urban and industrial

building shapes, without any difficulties due to their complexity

and orientation. Additionally, we show that the designed model

does not need any postprocessing. Some noise or still present

inaccuracies in the resulting building mask can be a result of

buildings totally covered by trees, or very complex areas that

are difficult to recognize even for the human eye, for accurately

extracting the building outlines. Besides, noisy nDSMs can in-

fluence the results to a great extent, as the height information is

crucial to identify buildings. We believe that the presented tech-

nique has a great potential to provide a robust solution to the

problem of building footprint extraction from remote sensing

imagery at a large scale.
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