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ABSTRACT:

Cartographic generalization is a problem, which poses interesting challenges to automation. Whereas plenty of algorithms have been

developed for the different sub-problems of generalization (e.g. simplification, displacement, aggregation), there are still cases, which

are not generalized adequately or in a satisfactory way. The main problem is the interplay between different operators. In those cases

the benchmark is the human operator, who is able to design an aesthetic and correct representation of the physical reality.

Deep Learning methods have shown tremendous success for interpretation problems for which algorithmic methods have deficits.

A prominent example is the classification and interpretation of images, where deep learning approaches outperform the traditional

computer vision methods. In both domains - computer vision and cartography - humans are able to produce a solution; a prerequisite

for this is, that there is the possibility to generate many training examples for the different cases. Thus, the idea in this paper is to

employ Deep Learning for cartographic generalizations tasks, especially for the task of building generalization. An advantage of this

task is the fact that many training data sets are available from given map series. The approach is a first attempt using an existing

network.

In the paper, the details of the implementation will be reported, together with an in depth analysis of the results. An outlook on future

work will be given.

1. INTRODUCTION

Cartographic generalization is the process of generating smaller

scale representations from large scale spatial data. This process

has been conducted by cartographers ever since; they are apply-

ing different operators, such as selection, simplification or dis-

placement, which - in sum - lead to a simpler and a more clear

representation of the spatial scene at a smaller scale. There are

many interesting solutions to solve this problem and provide au-

tomatic processes. The main challenge today lies in the problem

of the interplay between different operators. Here, the benchmark

is still the human operator, who is able to design an aesthetic and

correct representation of the physical reality.

Deep Learning methods have shown impressive success for inter-

pretation problems for which algorithmic methods are difficult.

A prominent example is the classification and interpretation of

images, where Deep Learning approaches outperform the tradi-

tional computer vision methods. In both domains - computer vi-

sion and cartography - humans are able to produce a solution; this

also implies, that there is the possibility to generate positive ex-

amples for the different cases. Thus, the idea in this paper is to

employ deep learning for cartographic generalizations tasks, es-

pecially for the task of building generalization. Most Deep Learn-

ing approaches are based on supervised learning, i.e. they require

example data with given input-output pairs. Fortunately, in gen-

eralization many training data sets are available from the existing

map series.

To automate the generalization process, various methods are be-

ing applied, namely optimization approaches, rule based ap-

proaches, or agent based approaches. The operations are con-

ducted mostly in vector space, but there are also approaches,
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which apply image processing algorithms to this problem. Thus,

the idea is straightforward to utilize the new powerful Deep

Learning approaches for the generalization problem. This pa-

per is exploring models from so-called semantic segmentation

(Badrinarayanan et al. (2015)). These methods do not provide

one classification for a given image patch, but lead to a classifi-

cation of each pixel. Thus, the output is again an image, how-

ever with a label for each pixel. In this paper we adopt this idea.

We have already used a similar approach for the generalization

of lines from traffic trajectories (Thiemann et al. (2018)), which

was inspired by a work on sketch simplification Simo-Serra et al.

(2016).

In this paper, the problem of building generalization will be ad-

dressed. The traditional approaches to solve it are based on the

application of a set of rules in order to eliminate too small build-

ing parts. In this case, the map generalization software CHANGE

was used Powitz (1992). The paper presents initial experiences

with a straightforward implementation of an existing network.

The details of the implementation will be reported, together with

an in depth analysis of the results. An outlook on future work

will be given.

2. STATE OF THE ART

The automation of generalization has been studied by many re-

searchers in recent years - mainly coming from cartography,

geoinformatics, and computer science, especially computational

geometry (see e.g. Mackaness et al. (2011). The methods are

often based on geometric considerations; the integration of oper-

ators is relying on optimization (e.g. Sester (2005)), rule sets, or

agent based methods (e.g. Renard et al. (2011)).
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The approaches are being mainly applied in vector space, how-

ever, there are also methods using rasterized representations of

the spatial scene. Examples for this kind of operations are ag-

gregation, typification (Müller and Wang (1992)), displacement

Jäger (1991), and also building generalization (Damen et al.

(2008); Li et al. (2004)). Building generalization involves differ-

ent elements, such as selection (according to size, type or usage),

aggregation (in order to close small gaps) and mainly simplifi-

cation of the building outline. During this process, the typical

shape of a building has to be preserved or even enhanced. This

often involves rectifying nearly right angles and enforcing paral-

lel lines in the building footprint, which can be achieved using a

set of rules (e.g. Sester (2005); Powitz (1992)). The factors con-

trolling the generalization depend on the scale, and are the area of

the building, as well as small structures (facade lengths). When

moving to even smaller scales, these parameters would lead to

an elimination of most of the buildings, therefore, then typifica-

tion is applied, i.e. the replacement of the buildings by a building

template (mostly square or rectangle) while preserving their spa-

tial arrangement. This operation is applied at scales 1:40.000 and

smaller.

There have been early attempts to use Machine Learning to ex-

tract cartographic rules from given examples. One goal was to

learn suitable parameters of operations (e.g. Weibel et al. (1995)).

In their work, the authors observed a human cartographer in order

to learn his actions. In a similar way, Mustière (1998) aimed at

identifying optimal sequences of operators using Machine Learn-

ing. Sester (2000) tried to extract spatial knowledge from given

spatial data. While these approaches were very interesting, they

mainly remained proofs of concepts.

Deep Learning as a new paradigm has re-emerged in recent years,

triggered by the now available computational power (especially

exploiting GPUs) – allowing to design also very deep (many lay-

ers) and complex networks – and large quantities of availabele

training data. The success in image interpretation was much in-

fluenced by the development of new modelling schemes like Con-

volutional Neural Networks (CNN). They constrain the number

of connections in the network to local environments, thus mim-

icking the human visual system with it perceptual fields, but also

constraining the relations of neurons based on neighborhood prin-

ciples. There are many architectures of Neural Networks, such as

nets to classify images - like the popular Krizhevsky et al. (2012),

which is able to classify images into 1000 classes. Other net-

works - LSTM - can learn sequences such as texts or recurring

patterns (for an application to derive behaviour of traffic partic-

ipants, see Cheng and Sester (2018)), identify objects within an

image (e.g. Redmon et al. (2016)), or assign a class label to each

pixel - which is called semantic segmentation. Such methods are

being applied in very relevant task such as autonomous driving,

speech recognition, health-care and finance, as well as in topo-

graphic mapping (Marmanis et al. (2018); Chen et al. (2018)).

In the generalization domain, Machine Learning has been pro-

posed for different applications. Xu et al. (2017) use an deep

autoencoder network to asses the quality of building footprint

data by learning the characteristics of quality from OSM and au-

thoritative data. Zhou and Li (2017) compare different Machine

Learning approaches concerning their capability to select impor-

tant road links for road network generalization. Lee et al. (2017)

use different Machine Learning methods to classify buildings as

a prior step for their generalization. An approach for general-

ization of lines from traffic trajectories using Deep Learning has

been presented by Thiemann et al. (2018).

3. APPROACH

Building generalization is composed of different sub-processes:

small buildings are eliminated (selection), small parts of the

building outline are eliminated, the outline is simplified (simpli-

fication), neighboring objects can be merged (aggregation), too

small buildings can be enlarged (enhancement), buidings are dis-

placed (displacement) and finally, groups of buildings may be re-

placed by another group, however, with less objects (typification).

The approach presented in this paper aims at an end-to-end train-

ing scheme, where a given input and a target output is given, and

the system has to learn the ”black box” in between. Thus, the

expectation is that the system learns all these generalization op-

erations in a holistic way.

In order to train the network, examples have to be provided in

terms of corresponding input and output data. Those data sets are

available from existing maps, where situations before and after

generalization are depicted. In our approach, we rely on an image

based approach, which means that the data is prepared in terms

of images. One straightforward option would be to use image

patches around individual buildings as training data; however, we

decided to use the whole map as such, which is cut into regular

image patches of given size b x b. When selecting an appropriate

size for b, this approach ensures, that adequate context around

each building is implicitly used.

3.1 Network Architecture

The structure of the network was designed as Fully Connected

Network (FCN), inspired by Simo-Serra et al. (2016). It con-

sists of a series of convolution layers, which are followed by up-

convolution layers in order to generate images of the original size.

The architecture of the network is shown in table 1. Due to down-

samling and upsampling the network tends to have problems with

preserving the exact boundaries and induces some blurring. In or-

der to mitigate this effect, so called skip connections which link

earlier layers with deeper layers of the network. The inclusion of

the skip-connections is visualized in Figure 1.

Type Kernel Strides Output Size

Input - - 1×H ×W
Convolution 3× 3 1× 1 24×H ×W
Convolution 3× 3 1× 1 24×H ×W
Down Convolution 3× 3 2× 2 24× H/2 × W/2
Convolution 3× 3 1× 1 64× H/2 × W/2
Convolution 3× 3 1× 1 64× H/2 × W/2
Down Convolution 3× 3 2× 2 64× H/4 × W/4
Convolution 3× 3 1× 1 128× H/4 × W/4
Convolution 3× 3 1× 1 256× H/4 × W/4
Convolution 3× 3 1× 1 256× H/4 × W/4
Convolution 3× 3 1× 1 256× H/4 × W/4
Convolution 3× 3 1× 1 256× H/4 × W/4
Convolution 3× 3 1× 1 128× H/4 × W/4
Up Convolution 4× 4 1/2 × 1/2 64× H/2 × W/2
Convolution 3× 3 1× 1 64× H/2 × W/2
Convolution 3× 3 1× 1 64× H/2 × W/2
Up Convolution 4× 4 1/2 × 1/2 24×H ×W
Convolution 3× 3 1× 1 12×H ×W
Convolution 3× 3 1× 1 1×H ×W

Table 1. Model architecture for our building generalization

network
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Figure 1. Model architecture for our building generalization

network

3.2 Data preparation

Building polygons available at OpenStreetMap were used as in-

put data for training our network. This data has an approx.

scale of 1:5000. We generalized the buildings using the soft-

ware CHANGE. Three different target scales were calculated,

1:10.000, 1:15.000 and 1:25.000. The target scale controls dif-

ferent parameters, such as the minimum length of a facade ele-

ment (3m, 4,5m 7.5m) or the minimum area (9, 20, 56 m2) to be

preserved.

After the generalization with CHANGE, buildings in the origi-

nal layer and in the target layers were available. Both the input

and output were rasterized in 0.5m×0.5m grids. This grid size

ensures that the details of the building ground plan are preserved

during the rasterization process.

3.3 Training the network

In total, 19.000 image tiles (b=128px×128px) without overlap

were used for training and 1000 image tiles were used for testing.

The training was scheduled for 80 epochs, with batch size 32.

The Keras / Tensorflow environment was used.

During the training process, we used binary cross entropy as the

loss function and Adadelta (Zeiler (2012)) to optimize the loss

function. Data augmentation with randomly given rotations was

used to avoid duplicated training inputs at each epoch. The train-

ing would stop when the loss on the validation data set is not

improved over 10 epochs. Only the model which performed the

best on the validation set was used for further independent tests.

We also investigated and tested using different network architec-

tures and hyper parameters (including dropout rate, learning rate,

batch size and tile size), based on its behavior on validation set,

the current structure (as shown in Table 1) was selected.

The accuracy score is one of the most often used metrics for eval-

uation of classification tasks, measuring the correspondence be-

tween prediction and target output. However, for building gen-

eralization, there are only slight differences between input and

output: the differences mainly occur on the boundary of the ob-

jects; areas within and outside the objects (especially the large

areas without buildings) may lead to huge amount of True Nega-

tive (TN) pixels. Thus, when we simply compare the source and

target images, we can directly achieve an accuracy of over 98%

(see Table 2, second column). Thus, this metric does not reflect

the optimization we did for generalization. Therefore, we used

not only the accuracy score but also the pixel wise IoU (Inter-

section Over Union) as a second metric for our evaluation. In

that way, we neglect the huge areas without buildings and only

consider if the predicted building are similar to the targets.

For all the three target scales, the networks were trained sepa-

rately with the same parameters. We conducted an independent

test on a map with an extent of 4270px×2560px. For each target

scale, we compared input and prediction with respect to the target

using the accuracy score and pixel-wise IoU as shown in Table 2.

The figures show, that the accuracy values are very high and there

is hardly an improvement when going from the input to the pre-

diction. This changes, however, when the IuU is used as a metric

for evaluation: for the smaller scales (15k and 25k) the values

improve, e.g. from 0.88 to 0.92 in 1:25k. This is not the case for

the target scale 1:10k, where there is a small deterioration of the

quality.

Accuracy IoU

Input vs Target (25k) 0.9818 0.8836

Prediction vs Target (25k) 0.9878 0.9203

Input vs Target (15k) 0.9908 0.9395

Prediction vs Target (15k) 0.9937 0.9582

Input vs Target (10k) 0.9948 0.9652

Prediction vs Target (10k) 0.9936 0.9572

Table 2. Comparison of the accuracy values for different scales

and the two metrics Accuracy and IoU

Another model was generated by including the skip connections

and also augment the input data by rotating the input patches (see

Figure 1. This generated the following accuracy measures shown

in Table 3.

Accuracy IoU

Input vs Target (25k) 0.9818 0.8836

Prediction vs Target (25k) 0.9901 0.9369

Input vs Target (15k) 0.9908 0.9395

Prediction vs Target (15k) 0.9949 0.9671

Input vs Target (10k) 0.9948 0.9652

Prediction vs Target (10k) 0.9963 0.9761

Table 3. Comparison with skip connections and data

augmentation with rotations

This model leads to improvements, i.e. a higher similarity be-

tween prediction and target map for all three different scales; the

accuracy levels measured by the IoU are between 93 and 97 %.

4. EXPERIMENTS AND RESULTS

4.1 Experiments with specific buildings and orientations

In order to evaluate the behaviour of the network with respect to

typical building shapes, a test series of buildings has been pro-

duced. All the buildings have offsets and extrusions of different

extents. In this test, also the potential dependency on the orienta-

tion was investigated by rotating the shapes in 4 different direc-

tions. The results are shown in Figures 2 to 5. Please note that
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the size of the buildings is different - ranging from approx. 80 m

to 25m. The figures visualize the original image on the top and

the three generalizations below.

Figure 2. L-shaped building: 1 row: original, 2 row: 1:10k, 3

row: 1:15k, 4: 1:25k

Figure 3. L-shaped building: 1 row: original, 2 row: 1:10k, 3

row: 1:15k, 4: 1:25k

Figure 4. Rectangular building with offsets: 1 row: original, 2

row: 1:10k, 3 row: 1:15k, 4: 1:25k

Figure 5. Small building with annex: 1 row: original, 2 row:

1:10k, 3 row: 1:15k, 4: 1:25k

It can be observed that the extrusions and intrusions are con-

tinuously eliminated with increasing scale. It is also clear, that

the modifications of the building outlines are very subtle for the

larger scales, and get more and more visible for the smaller scales.

In Figure 4 the offsets vanish with smaller scales, so does the an-

nex in Figure 5. The purpose of this experiment was mainly to

check, if there is a dependency on the orientation of the build-

ings. This is not the case – obviously, the network has ”seen”

enough examples of extrusions, intrusions and offsets in different

orientations, and is able to generalized them appropriately.

A general observation can be made: the outlines of the gener-

alized buildings are not necessarily exactly straight-lined. Also,

in some corners a kind of ”overshoot” can be observed (see, e.g.

Figure 2, last row).

4.2 Experiments with specific scales

The following tests have been conducted for target scale

1:15.000. The first experiment investigates certain building struc-

tures (Figures 6, 7 and 8). The three encircled areas in Figure 8

visualize the generalization capabilities of the model: A shows

that the intrusions at the corners are filled; B shows that the F-

shaped building is simplified to a rectangle - similar to the tar-

get output produced by CHANGE. The area encircled in C vi-

sualizes that the system is capable of simplifying very complex

building outlines: the many extrusions and intrusions are replaced

by a smooth outline. Still, however, the outlines are not exactly

straight lines, nor are the corners exact right angles, as given in

the target output. Note, however, that these visualizations are

enlarged substantially in order to show the generalization effect

appropriately. To illustrate the real size, Figure 9 shows input,

Figure 6. Building Polygons from OpenStreetMap

output and the prediction of our model in the dedicated target

scale (here 1:15.000). It can be stated, that the effect of gener-

alization of our prediction is clearly positive: as opposed to the

original image (left) scaled down to 1:15.000, the forms are sim-

pler, no tiny details disturb the visual impression.

Figure 10 shows the input and target, together with the prediction

of our model. Clearly, the outlines are simplified. The z-shaped

buildings in the center have been generalized different from the

target generalization - however, their is also a valid simplification.
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Figure 7. Target output by CHANGE for scale 1:15.000

Figure 8. Prediction with Deep Learning for scale 1:15.000

Figure 9. Buildings shown in original size of scale 1:15.000

In addition to this visual inspection, quantitative tests have been

conducted. We compared the map before generalization, map

after generalization with CHANGE and map after generalization

with our proposed building generalization network (shown in Fig-

ure 6 and 10). Based on these two independent test sets, we com-

pared accuracy score and pixelwise IoU of the input and predic-

tion w.r.t. the target as shown in Table 4.

4.3 Map series in different scales

The next visualizations show the same spatial extend in the three

different target scales (Figure 11). In the upper row, the solution

with CHANGE is given, whereas in the lower row the predictions

with the Deep Learning models are shown.

Figure 12 shows the target scales in their respective size.

(a) Building Polygons from OpenStreetMap

(b) Target output by CHANGE

(c) Our prediction

Figure 10. Second test on independent Data

Accuracy IoU

Input vs Target (Test1) 0.9764 0.8856

Prediction vs Target (Test1) 0.9906 0.9536

Input vs Target (Test2) 0.9829 0.9261

Prediction vs Target (Test2) 0.9937 0.9723

Table 4. Comparison of quality of results using accuracy and

IoU

It is nicely visible, that the models are able to both simplify exist-

ing outlines, eliminate too small buildings, and also merge adja-

cent buildings; i.e. the models contain a combination of different

individual operators.

4.4 Results with large extent of data set

Figure 13 shows the result of a larger area in the target scales

1:15.000 and 1:25.000. The extend comprises both residential

buildings and industrial buildings, as well as an inner city area. It

can be seen, that the Deep Learning model is able to produce ap-

propriate simplifications for the different building types, i.e. more
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Figure 11. comparison of target scales (top) and predicted presentations (bottom).
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Figure 12. comparison of target scales (top) and predicted presentations (bottom): visualization original target scale size.

rectangular shaped residential buildings, more irregular shaped

buildings in the city center, where different individual buildings

are merged. It is also visible that small buildings have been elim-

inated in the smaller scales.

5. DISCUSSION AND OUTLOOK ON FUTURE WORK

The quality of the results can be evaluated both quantitatively

and qualitatively. As described above, the general measure of a

pixel-wise comparison of the correct predictions is not able to

capture the generalization effect. Instead, using the IoU leads to

meaningful accuracy values.

A visual inspection of the results clearly indicates that the net-

works have learned the simplification of the buildings for the re-

spective scales: small buildings are eliminated in smaller scales;

close, neighboring buildings are aggregated, and outlines are sim-

plified by eliminating small extrusions and indentations. This can

nicely be observed in Figure 8, where the buildings with the com-

plicated ground plans in the right part of the image have been

simplified to L-shaped outlines. The detailed analysis, however,

also showed that characteristic features of most of the individual

buildings, namely rectangularity and parallelism are not neces-

sarily preserved or enhanced. Also, it can be observed that some

of the corners are rounded out, or small peaks are introduced. A

remedy could be to clean up such small irregularities in a post-

processing step, using e.g. an approach proposed by Sester and
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Figure 13. Scales 1:15.000 (left) and 1:25.000 (right) – residential and industrial buildings, inner city

Neidhart (2008), which explicitly takes these constraints into ac-

count and optimises it in an adjustment process.

The visualizations showing the original sizes of the target scales

(e.g. Figures 9 and 13) reveal that the result of the prediction

can be used for simple presentation graphics: the generalization -

simplification of the outline, reducing the content, as well as pre-

serving the overall structure of the buildings and building struc-

ture is clearly achieved with the approach.

This work was intended to be a proof-of-concept whether apply-

ing or slightly modifying existing Deep Learning networks could

achieve satisfying generalization results. The results indicate,

that this was successful.

However, there are several avenues to go in the near future: Ob-

viously, the simple loss function included does not enforce that

characteristic building shapes are preserved (parallelism, rectan-

gularity). Future work will be devoted to investigate which other

loss functions could be applied. Also, other generalization func-

tion will be tested, such as typification or displacement. Finally,

we want to explore the use of learning in vector space by creat-

ing a representation of the building outline, which can be simpli-

fied using approaches such as LSTMs. A possible representation

could be a vocabulary, which was proposed for a streaming gen-

eralization approach (Sester and Brenner (2005)). Another poten-

tial approach is to use GANs (Generalized Adversarial Networks)

in order to synthesize a new representation based on a given input

(see e.g. Isola et al. (2017); Peters and Brenner (2018)).
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