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Abstract 

Qualitative and quantitative data are important in construction management. However, despite the capabilities of construction 

informatics, such data and its sources have scarcely been fully and systematically utilized for predictive purposes. Building 

Information Models (BIM) are such a data source. Within BIM, information structures enabling interoperability and providing 

utilizable data throughout the various Levels of Development (LODs) of a building – for example, Industry Foundation Classes 

(IFCs) – can be fully and meaningfully exploited through data mining, and more particularly, via machine learning. In this paper, 

the capabilities of the information structures found in IFCs to be used as data sources for developing machine learning predictive 

models, will be examined. In addition, and by conceptually tying such data with constructability, their suitability for predicting – 

through such machine learning models – the delivery cost and time overheads of a construction project, will be considered. 
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1. Introduction 

Construction management (CM) strives to optimize a project’s performance (namely, its delivery time, cost and 

quality) [1]. A key factor to successful CM is the collection, understanding, and processing of relevant data [2,3]. 

Within construction informatics (CI) – namely, the interdisciplinary applied field combining construction, information 

systems and computer science and studying issues related to design, processing, representation, communication and 

use of construction-specific information in humans and software [4] – methodologies are explored for such meaningful 

data utilization [5], including data mining, machine learning (ML), and Building Information Models (BIM) – with the 

latter also serving as data sources [2,3,5]. Data mining is the set of processes that computationally discover and 

comprehend patterns in datasets, with a combined human-machine effort [2,6]. ML, used in state-of-the-art data mining 

[2,7], is the exploration of algorithms that enable computing systems to “learn” and make data-driven predictions by 

building a model from a sample dataset [7]. While the discretization of ML varies in the relevant literature, it is largely 

categorized into supervised (SML), unsupervised (UML), and hybrid (HML). SML utilizes datasets featuring a known 

structure and labelled instances to train and validate suitable algorithms, assuming that the reasoning of the application 

domain is known [8,9]. UML deals with datasets having unlabelled instances and hidden patterns [7]; after presented 

with some data, the UML system has to develop relational models from that data “on its own” [9]. HML mixes two or 

more approaches and can include semi-supervised and reinforced learning [9]. Finally, BIM are sets of interacting 

policies, processes and technologies for digital building design and lifecycle project data management [2,3]. BIM can, 
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in principle, contain numerous interoperable information structures with ordered utilizable data, applicable throughout 

the lifecycle and the various Levels of Development (LODs) of a building project – for example, Industry Foundation 

Classes (IFCs), aecXML, and change logs [10]. 

Qualitative (e.g. lessons-learned databases) and quantitative (e.g. cost and time overheads) data, found either in BIM 

or elsewhere, can be utilized within CM [2,3,4,11]. However, despite the capabilities of CI, this has scarcely been done 

systematically [2], but rather in a fragmented informatory manner [2], or for more narrow applications [2,12]. 

Empirical knowledge is still the main driving force of construction management, even when aided by construction 

informatics tools like BIM [2,13] and ML [3,14]. But while experience is essential, a more holistic CI-aided utilization 

of existing data could enhance construction managers’ decision-making and action-taking regarding project 

performance [14]. Data found within BIM, and especially in IFCs, can aid in such an effort [10], and ML can help in 

exploiting such data [2,13]. 

In this paper, the capabilities of BIM as data sources for ML models within CM, and their suitability for predicting the 

delivery cost and time overheads of a building, will be examined. In the second section, a literature review on notable 

construction-related ML uses, and the absence of BIM data utilization for project performance prediction, will be 

showcased. In the third section, data structures within IFCs will be highlighted and tied with constructability in a 

conceptual framework for ML modelling. In the fourth section, conclusions regarding the current effort are drawn. 

2. Machine learning modelling within the construction sector 

ML is central within the digital transformation of research and the industry [15], and indeed within construction [16]. 

In the latter, the earliest attempts on ML implementation generally refer to the computer-aided acquisition and 

processing of design- and construction-related expert knowledge [17,18]. Since then, SML systems have been 

developed to support bidding processes, such as in the analysis of contractual texts for relevant requirements [19], and 

building code compliance checking [20,21]. SML inference models have been used to estimate the completion time of 

whole projects or individual components [22,23]. In [24], SML algorithms were tested for developing a building energy 

consumption predicting system, whereas in [25] the energy consumption of office buildings was investigated via a 

hybrid approach. SML for image recognition has been proposed and tested for construction surveillance issues (such 

as concrete quality, on-site worker movement, and construction injury prediction) [12], analysis of pictures of roofs to 

prevent occupational accidents [26], web image processing to detect road surface cracks [27], and automated on-site 

detection of workers and heavy equipment [28]. Apart from the system in [12], SML has also been deployed to identify 

root causes of occupational accidents [29], and has been coupled with the cross-industry standard process for data 

mining (CRISP-DM) framework to develop on-site safety leading indicators [30]. Moreover, SML has been 

intertwined with plot analysis to assess key project performance indicators [31], and with deep learning (namely, 

gradient-based optimization to adjust parameters throughout a multilayered network, based on errors at its output [32]) 

for the electroencephalography-based recognition of construction workers’ stress while performing on-site tasks [33] 

and the detection of non-certified work on-site [34]. In a SML deployment touching on the Internet of Things (IoT), 

data was collected from sensors in an operating building, and then used to reduce the occurrence of design errors [35]. 

Construction productivity has also been assessed with SML [36], as well as buildability during the project design phase 

[37]. SML has even been tested to predict construction costs [38] and the attributes of structural materials [39]. There 

are far fewer notable examples of UML deployment, such as in aiding design integration by implementing construction 

knowledge and experience [40], and deriving construction project risk sources [41]. Moreover, HML implementation 

has been relatively scarce (e.g. [25]). There have been mixed systems, utilizing SML and UML either complementarily 

or interchangeably, such as cooling control systems in office buildings [42], and the use of the results of [41] in a SML 

system appraising the constructability of technical projects [43,44]. 

The study and ML-induced utilization of BIM data has been given smaller attention, even less so for predicting project 

performance (e.g. in terms of time and cost) [45]. Among the few related efforts, the following are the most notable: 

• Data pre-processing in: (a) the development of as-built BIM models (e.g. through the classification of apartment 

rooms [46], heritage buildings [47], sensor-independent point cloud data as part of the scan-to-BIM process [48], 
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and through masonry wall defect surveying [49]), and (b) the textual classification of maintenance work orders for 

the integration of BIM with facilities management [50]. 

• Leveraging the capabilities of BIM for quality control and code compliance [51,52]. 

• Knowledge discovery within BIM, as part of cognitive assistance frameworks [53,54,55,56,57,58]. 

The efforts especially mentioned in the last bullet present the most advanced cases of processing and exploiting BIM 

data; however, they mainly focus on the improvement and back-propagation of BIM models themselves. In [53,57,58] 

this approach is indeed coupled with the development of predictive systems, but in distinct contexts (e.g. energy 

performance prediction [55]), and not for assessing major indicators of project performance (time, cost and quality). 

3. Data in IFCs and constructability for machine learning predicting indicators of project performance 

The Industry Foundation Classes (IFCs), were designed to provide a universal basis for information sharing over the 

whole building lifecycle [10,47], as de facto standards for representing BIM. IFCs define entity-relationship data 

models, encompassing entities organized into object-based inheritance hierarchies [10,47]. IFCs are considered 

comprehensive and support a wide variety of buildings objects, such as IfcWall, IfcBeam, IfcWindow and IfcRoof, 

together with the option of interconnecting an unlimited set of properties and quantities to each object. All base objects 

have globally unique identifiers (GUID) that can be made persistent for the project – thus allowing multiple IFCs to 

merge deterministically, while keeping their data integrity without human intervention. Using the IfcRelation feature, 

any object can also relate to other objects, making it possible to form constraints and relations between building parts. 

A major difference between IFC and general 3D-file formats is the representation of space – every instance of an IFC-

object must belong to a spatial context. Special space-enclosing structures are the sites (IfcSite), buildings 

(IfcBuilding), storeys (IfcBuildingStorey), and rooms (IfcSpace). In addition, IFCs have a, less used, support for 

processes and resources. IfcProcess is the base class for processes (e.g. tasks and events) and may be assigned to 

products to indicate the output of performed work. IfcResource is the base class for resources (e.g. materials, labor, 

equipment) and their associated cost- and time-related constraints, and may be assigned to processes to indicate tasks 

performed on behalf of a resource. 

Data ordered with IFC can be reviewed and studied with BIM model checking software tools, such as Solibri. Then, it 

can be suitably mined manually, with semantic and/or latent techniques ([53,54,55,56,57,58]), or with dedicated data 

parsers [59], and exported into file formats as input for ML suites; examples of such formats are .arff files for the 

Waikato Environment for Knowledge Analysis (WEKA), or structured .csv files to be incorporated in ML libraries of 

the Surprise Scikit, a Python-powered scientific toolkit for recommender systems. But for this data to be translated 

into meaningful independent input variables, and then connected with meaningful dependent output variables as part 

of a ML modelling (and especially SML) addressing the research gap mentioned in the previous section (namely, the 

absence of BIM data utilization for the prediction of a building project’s performance, and especially its delivery cost 

and time overheads), it needs to be incorporated in a suitable theoretical and conceptual framework. One such 

framework is constructability, namely the optimal use of construction knowledge and experience in planning, design, 

procurement, and field operations to achieve the project objectives of time, cost and quality [43]. Situations where 

construction knowledge and experience are not implemented properly, resulting in the widening of the gap between 

the “as-designed” and “as-built” project states and ultimately in sub-optimal project objectives, are defined as 

constructability problems [43]. In the data mined from IFC-ordered BIM (e.g. components types and system types, 

manufactured products), the elements mainly translated into constructability problems are geometric and dimensional 

discrepancies, detected design clashes, construction site spatial and schedule clashes, timeframe conflicts, logistics and 

material quantity problems, and the number of reworks. By exploiting (a) the direct connection of constructability to 

the overall project objectives rather than narrow applications, (b) its affiliation with construction knowledge and 

experience implementation, and (c) the capabilities of CI technologies to extract and process data that can be interpreted 

as constructability problems, a novel predicting system that will holistically extend the perception and enhance the 

decision-making and action-taking of construction managers, can be formulated. Derived from the aforementioned 

insights, an early conceptual framework of such a formulation can be delineated in the following steps: 
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Step 1. Data collection. For a large number of building projects, BIM data displaying the as-designed and (whenever 

applicable) the as-built states will be sought; this data may be (a) quantitative, including components and system 

types, manufactured products, geometric and dimensional discrepancies, and design clashes; and (b) qualitative, 

such as descriptions of spatial and schedule clashes, timeframe conflicts, logistics and material quantity problems, 

and the number of reworks. This data will reveal constructability problems (i.e. the input variables of the ML 

system), and will be extracted and exported into suitable file formats. Then, for the same projects, documented data 

on the corresponding delivery cost and time overheads (i.e. the output variables) will be sought via expert input.  

Step 2. Variable formulation. Independent variables: Depending on the form of the constructability problems-

related data, meaningful independent variables (e.g. “Number of reworks”) measured through the values of the 

collected data will be produced through UML techniques such as vector quantization and linguistic clustering 

[43,44], or qualitative techniques relying on expert input (e.g. brainstorming sessions). Dependent variables: 

Depending on whether the building delivery time and cost data is discrete or continuous (e.g. whether a building’s 

completion delay is expressed in months or with yes/no statements), the dependent variables (namely, “Overheads 

on the intended cost” and “Delay in the time of completion”), will be formulated to be used for classification or 

regression, respectively. This will also lead to the choice of the relative SML scheme in Step 3. 

Step 3. System formulation. The choice of the SML scheme to be trained and validated depends on the data form 

and amount, and the variables’ type and number. Multiple experiments will be conducted within a suitable ML 

platform, with numerous SML schemes. In the current research and practice, support vector machines (SVM) and 

support vector regression (SVR) are, respectively, the most widely used schemes for binomial classification or 

regression, and variations of the random forest scheme are the most widely used for the multinomial cases [9,43]. 

Auxiliary mathematical, methodological and software tools may be utilized within Steps 1-3, e.g.: (a) non-negative 

matrix factorization for data normalization and pre-processing (Steps 1-2), (b) multi-input Analytical Hierarchy 

Process (AHP), for variable labelling (Step 2), (b) the “kernel trick”, to aid in the non-linear function SVM or SVR 

(Step 3), (d) n-fold cross-validation, for the simultaneous SML training and validation (Step 3), (e) the WEKA platform 

(Step 3), (f) Surprise Scikit (Steps 2-3), and (g) the programming language Python (Steps 2-3). 

Step 4. Integration of results. The ML system can be integrated as a working prototype within BIMs of new 

buildings, for the verification of its predicting results – namely, whether a new building will display delivery cost 

and time overheads, in relation to the detected constructability problems affecting it. This will take place through 

suitable programming routines and/or graphical user interfaces (such as PyQt, featured in the Anaconda platform). 

Such a novel methodological framework and subsequent modelling can furtherly strengthen the placement of ML 

within CI (and particularly, BIM), for the benefit of construction managers and related disciplines. 

4. Conclusions 

IFC-ordered data contained in BIMs, are a rich and utilizable source for optimizing construction management. They 

can be understood and processed through the lens of constructability, extracted via the relative tools and 

methodologies, coupled with expert input, and used for training and validating machine learning systems predicting 

the delivery cost and time overheads of a building. This paper offers the first theoretical and conceptual insights of 

such a process.  Future work will hopefully encompass the actual realization of the conceptual framework through data 

mining and expert processes, as well as the related ML algorithm deployment and experimentation for the derivation 

of the final results. 
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