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Abstract

To be useful as a mobility assistant for a human driver,

an intelligent robotic wheelchair must be able to distinguish

between safe and hazardous regions in its immediate envi-

ronment. We present a hybrid method using laser range-

finders and vision for building local 2D metrical maps that

incorporate safety information (called local safety maps).

Laser range-finders are used for localization and mapping

of obstacles in the 2D laser plane, and vision is used for

detection of hazards and other obstacles in 3D space. The

hazards and obstacles identified by vision are projected into

the travel plane of the robot and combined with the laser

map to construct the local 2D safety map. The main contri-

butions of this work are (i) the definition of a local 2D safety

map, (ii) a hybrid method for building the safety map, and

(iii) a method for removing noise from dense stereo data

using motion.

1. Introduction

We present a hybrid laser and vision based method for

building local 2D metrical maps that incorporate safety in-

formation for mobile robots.

The intended application of this work is to develop an

autonomous robotic wheelchair to serve as a mobility as-

sistant for people who have movement disabilities but nor-

mal perception and cognition. The wheelchair should have

the ability to autonomously explore and navigate the envi-

ronment with the driver maintaining executive control. The

expected environmental settings are urban regions like uni-

versity campuses which have slow moving traffic and (gen-

erally) follow the Americans with Disabilities Act (ADA)

standards and guidelines [17], such that most places be ac-

cessible via sidewalks and wheelchair ramps. The platform

for our work is Vulcan, a wheelchair robot shown in Figure

1 that has been (mostly) developed in our lab. It is equipped

with two laser range-finders, a stereo camera [18], and op-

tical encoders (for odometry). One of the primary require-

ments for such an application is safety. The agent should be

capable of distinguishing between safe and hazardous re-

Figure 1. The wheelchair robot has a stereo

camera and two laser range-finders.

gions in its surroundings and representing this information

in a local map. Maintaining local maps also helps the robot

navigate and explore the environment autonomously 1.

Great progress has been made in recent years on the

problem of simultaneous localization and mapping (SLAM)

in unknown environments particularly when using laser

range-finders [15]. Existing SLAM algorithms can localize

the robot to within a few centimeters and construct accurate

metrical maps of local environments. However the maps

constructed by the lasers only show obstacles that intersect

the plane of their beams. Obstacles above or below that

plane are invisible, as are hazards such as drop-offs. Vision,

on the other hand, can provide accurate (though noisy) 3D

range information and hence be used to identify the remain-

ing obstacles and hazards in the robot’s surrounding space.

Our approach to building safe local metrical maps uti-

lizes these respective strengths of lasers and vision. We use

laser range-finders for incremental localization and map-

ping of obstacles in the 2D laser plane, and vision for de-

tection of hazards and other obstacles in 3D space. Dense

stereo vision and visual feature based methods are used to

build a 3D point cloud model of the surrounding space.

1A local map of the robot’s surroundings can also serve as an interface

between the robot and its human driver, e.g, to pass directions from human

to robot, or for the robot to ask the driver for advice in cases of uncertainty.



Table 1. Features of urban environments rel-
evant for mobile robot safety.

Features Examples

Fixed Obstacles Walls, tables, stairs

Dynamic Obstacles People, doors

Invisible Obstacles Glass doors, glass walls

Overhangs Table tops, tree branches

Drop offs At sidewalk curbs, staircases

Rough surfaces Gravel paths, lawns

Inclines Wheelchair ramps, sidewalks

up/down a hill

Narrow regions Doorways, narrow sidewalks

The 3D point cloud is used to identify safe and hazardous

regions that are then projected into the robot’s 2D travel

plane. The combination of the 2D laser metrical and pro-

jected visual data is used to create a local 2D safety map

of the robot’s surrounding with safe and hazardous regions

defined. A key contribution of this work is a robust method

for removing noise from dense stereo data using motion.

Note that once a local map of a region is constructed the

robot does not keep the 3D model of the world around and

instead works with the 2D safety map significantly reducing

computation. In section 2, we show that for safe navigation

of a mobile robot such as the wheelchair, this 2D safety map

is an adequate representation.

For proper exploration and path planning the robot needs

a global map of the world. We use the HSSH (Hybrid Spa-

tial Semantic Hierarchy) [8], to build a global map from

the local safety maps that the robot constructs as it moves

through the world. The HSSH factors the problem of global

mapping into four problems: (a) local metrical mapping of

small regions, i.e, building the local safety maps in our case;

(b) local topology extraction from the local metrical map;

(c) global topological mapping, accomplished by applying

topological axioms to local topologies and, (d) global met-

rical mapping, which is accomplished by utilizing the skele-

ton provided by the global topological map to combine the

local metrical maps into a single frame of reference. A key

advantage to using the HSSH framework, is that only local

metrical maps that are bounded in size are required. This

leads to significant computational savings as it limits the

amount of visual processing and does not require accurate

metrical localization over long distances.

The paper is organized as follows. The next section dis-

cusses environmental characteristics and the safety map.

Sections 3 and 4 explain the laser and vision based meth-

ods for building safety maps. Section 5 presents results fol-

lowed by related work in section 6. Section 7 concludes.

2. The Environment and the Safety Map

To build safe maps, we first identify the characteristics of

the urban environment relevant to the robot and then present

Figure 2. Features (obstacles, hazards) in the
world are projected to create a 2D safety map.

a suitable representation for the local safety map.

2.1. Characterization of the Environment

Table 1 classifies the major features of the urban envi-

ronment (relevant for safety) in which we want the robot to

function. Based on this set of features the robot can clas-

sify parts of the world as being: 1. Obstacles. 2. Hazards,

consisting of overhangs, drop offs, steep inclines, and very

rough surfaces. 3. Caution areas, consisting of inclines,

narrow regions, and rough surfaces. 4. Unknown areas,

consisting regions with insufficient data. 5. Safe areas.

Although, in general the surfaces over which a robot

travels can be inclined, in this paper we only consider en-

vironments where the travel surfaces are level, i.e, not in-

clined. This is mostly true of indoor office environments

and many outdoor places as well. Therefore in this paper

we treat inclines as hazards. Furthermore, we only consider

fixed obstacles and ignore rough surfaces.

2.2. The Local 2D Safety Map

Based on the characterization of the environment we pro-

pose to represent the local safety map as a 2D plane with

various features of the world appropriately projected onto

this plane and annotated as being an obstacle, a hazard, an

area of caution, unknown, or safe. The projection is not

straightforward and requires the robot to take into consid-

eration the angle of the travel surface locally, as Figure 2

shows 2. Given that the robot is localized at all times, such

a map captures all the structure and information required for

safe navigation by the robot in its local surroundings.

Given the relationship between the safety map and the

world, it is easy to see how a 3D model of the environment

can be projected to obtain the safety map - in fact for level

travel surfaces the projection is trivial. In the following sec-

tions, we describe in detail how we use lasers and vision to

obtain a 3D model (in our case a 3D point cloud) to con-

struct a safety map of the local environment of a robot.

2Since in this paper we work with level travel surfaces, inclines are

treated as hazards (as opposed to caution areas as shown in figure 2).



3. 2D Localization and Mapping using Lasers

For localization in small regions, we exclusively use the

laser range-finders. The algorithm used is a variant of the

one presented in [15] and is generally accurate to within

a few centimeters. Mapping is performed simultaneously

with localization and results in accurate 2D metrical maps

of the local environment. In particular, at any instant this

process gives us a set of localized robot poses, a collection

of 2D points corresponding to obstacles in the plane of the

laser beams, which we call the 2D laser metrical map, and

also a 2D occupancy grid map of the world with uncertain

(unknown) regions marked.

4. 3D Landmarks from Stereo

We use the stereo camera to build a 3D cloud of point

landmarks in the world. The point landmarks can corre-

spond either to individual pixels or to visual features in a

stereo image pair. To get the 3D locations of points corre-

sponding to pixels a dense stereo vision algorithm is used

(these algorithms also work at subpixel resolution). To get

locations of points corresponding to features we implement

our own method based on SIFT features [9]. The reason

we use both feature and pixel based methods is to increase

the amount of information available on the environment (for

safety). It is possible that features might be detected in ar-

eas where dense stereo algorithms fail (e.g., in low texture

areas) and vice versa.

The 3D point location estimates obtained using either

the feature based method or the dense stereo algorithm are

noisy and also contain many false positives, e.g., points in

free space. Therefore we develop a probabilistic framework

to track point landmark locations to reduce noise and to

match point landmarks across frames to remove false posi-

tives (note that the probabilistic framework is independent

of how the point landmarks are generated - whether from

pixels or features). Only point landmarks that are observed

consistently over many frames are made permanent and the

rest are discarded removing false positives. To the best

of the authors knowledge, the probabilistic framework de-

scribed here has not been used earlier to reduce noise and re-

move false positives from landmarks produced using dense

stereo methods and is one of the contributions of this work.

However, similar methods have been applied before to land-

marks produced using feature based methods.

4.1. Stereo Range and Error Analysis

The idealized geometry of the stereo camera obtained af-

ter calibration (we use calibration software that comes with

the camera [18]) is shown in Figure 3. A point p’s 3D coor-

dinates in the camera reference frame x
c
p = (xc

p, y
c
p, z

c
p)

T ,

can be obtained given its location in the image and its dis-

parity (dp = cL
p − cR

p ), i.e., x
c
p = λ(zp) where zp =

Figure 3. Geometry of the (L)eft and (R)ight

stereo imagers observing a point in the world.

(rR
p , cR

p , dp)
T [3]. To determine the disparity of a point

that corresponds to a pixel/feature in one image we find the

pixel/feature in the other image that corresponds to the same

point. This is accomplished by matching each pixel/feature

in one image (say left image) to all pixels/features in the

other image and picking the best matches. For dense stereo,

i.e., pixel-to-pixel matches, we use a multi-resolution stereo

matching algorithm that comes with the camera [7]. For

SIFT features we use each feature’s image coordinates and

visual properties (scale, orientation, and local neighborhood

descriptors) as a basis for finding matches.

Localization gives the position of the robot and hence

the camera (for simplicity we assume the camera and robot

frames coincide) in the global frame of reference x
g
R =

(xg
R, y

g
R, θ

g
R)T , allowing us to calculate the point’s position

in the global frame of reference, x
g
p = κ(xc

p,x
g
R). To esti-

mate error in the point’s location, we model the error in the

point’s image coordinates with a Gaussian distribution with

covariance Σp = diag(σ2
r , σ2

c , σ2
d), [10]. Then the error in

the point’s position in the global reference frame, i.e., the

covariance Σg
p in its global position, can be approximated

by first order error propagation (and assuming negligible

localization error) as follows, [10]:

Σg
p =

[
∂κ

∂xc
p

] [
∂λ

∂zp

]
Σp

[
∂λ

∂zp

]T [
∂κ

∂xc
p

]T

(1)

4.2. Tracking Landmarks

In this section we develop the probabilistic framework by

which we reduce noise in the point landmark location esti-

mates and remove false positives. To build a map of land-

marks the robot has to solve two problems at every frame:

(i) determine associations/matches between the points ob-

served in the current frame and existing (temporary or per-

manent) landmarks, and (ii) update existing landmark loca-

tion estimates based on the observed locations of the match-

ing points. Points that do not match any existing landmarks

are used to initialize new temporary landmarks. Hence,

when the robot first wakes up in the world, it does not know



of any existing landmarks, and so all points are used to ini-

tialize temporary landmarks. Over time, if enough points do

not match the temporary landmarks they are considered to

be false positives and removed from the landmark database,

otherwise they are made into permanent landmarks. A nice

thing about the probabilistic method is that it combines the

use of point locations and visual properties for matching

into a single framework. However, the method assumes lo-

calization error is negligible. While it does not seem to af-

fect the results much, it is an avenue for further work. We

consider both problems beginning with (ii).

Updating Landmark Location Estimates. Let the

true location of a landmark, li, in the global frame of ref-

erence be xli , and of a point pj , observed in the current

time step (or frame) t, be x
t
pj

3. Each landmark location

estimate is modeled by a Gaussian probability distribution.

Let x̂
t
li

= {µt
li
,Σt

li
} be the parameters of the distribution

over landmark li’s location estimate at time t. We use a

Kalman filter [4], to update the landmark’s location esti-

mate based on the observed locations of matching points -

in other words, to reduce the amount of error in the land-

mark location estimates. Given that point pj is associated

with li at time t, the landmark location estimate from t − 1
can be updated as follows:

(Σt
li
)−1 = (Σt−1

li
)−1 + (Σt

pj
)−1

µt
li

= Σt
li

(
(Σt−1

li
)−1µt−1

li
+ (Σt

pj
)−1

x
t
pj

)
(2)

Associating Points with Landmarks. We develop a

Bayesian framework for associating points with landmarks.

The problem is to pick from all points observed at time t,

the point that has the highest probability of being associated

with landmark li, based on point and landmark locations

and visual properties.

We describe the relevant visual properties of point pj ob-

served at time t by a vector: d
t
pj

. These properties are the

visual properties of the feature/pixel, e.g., scale and orien-

tation for SIFT features (neighborhood descriptors are not

used) that the point corresponds to in one of the stereo im-

ages. The visual properties d
t
li

of a landmark li at t, are

taken to be the visual properties of a feature/pixel associ-

ated with the landmark in the past. The feature/pixel chosen

is one whose viewing direction (in the global frame of ref-

erence) when it was seen, is closest to the current viewing

direction to the landmark.

To make the process tractable, let Pi = {p1, p2, ..., pni
}

be the set of points that can possibly be associated with

landmark li. This initial set can be obtained in various ways,

for example by collecting all points less than a certain Eu-

clidean distance from the landmark. Since we assume that

3We drop the superscript g in this section as all locations are in the

global frame of reference unless otherwise stated.

each point can be associated with exactly one landmark, let

ai ∈ Pi denote the point with which landmark li is asso-

ciated. The point p∗ most likely to be associated with li is

then given by,

p∗ = arg max
[pj∈Pi]

p(ai = pj | IX , ID) (3)

where IX and ID represent location and visual prop-

erty terms, IX = {x̂t−1
li

, {xt
pk
}k=1..ni

}, ID =
{dt

li
, {dt

pk
}k=1..ni

}.

Equation 3 can be simplified using Bayes rule and mak-

ing an independence assumption between location and vi-

sual properties,

p(ai = pj | IX , ID) ∝ p(IX , ID | ai = pj) p(ai = pj)

∝ p(IX | ai = pj) p(ID | ai = pj) (4)

Also, given no prior information we assume p(ai = pj) to

be uniform for all pj ∈ Pi. The left term in equation 4 can

be simplified as follows,

p(IX |ai = pj) = p(xt
pj

| x̂t−1
li

, {xt
pk
}∀k 6=j , ai = pj)

. p(x̂t−1
li

| {xt
pk
}∀k 6=j , ai = pj)

. p({xt
pk
}∀k 6=j | ai = pj) (5)

∝ p(xt
pj

| x̂t−1
li

, ai = pj) (6)

where the values of the last two terms in (5) can be shown

to be common across all probability terms in (3) and hence

not relevant when finding the arg max. Also, the first term in

(5) can be assumed to be independent of {xt
pk
}∀k 6=j given

ai = pj , to give (6).

The RHS of (6) can be further evaluated by marginaliz-

ing over the true landmark location xli ,

p(xt
pj
|x̂t−1

li
, ai = pj)

=

∫
p(xt

pj
| xli , x̂

t−1
li

, ai = pj)

. p(xli | x̂
t−1
li

, ai = pj) dxli (7)

=

∫
Nxt

pj
(xli ,Σ

t
pj

) · Nxli
(µt−1

li
,Σt−1

li
) dxli (8)

∝ e
− 1

2
(xt

pj
−µ

t−1

li
)T (Σt

pj
+Σt−1

li
)−1(xt

pj
−µ

t−1

li
)

(9)

The left term in the integral in (7) is a generative model.

It is the probability distribution over the observed global

point locations given the true location of the landmark. For

a Gaussian generative model it reduces as shown. The right

term under the integral in (7) is the probability distribution

over the true location given the parameters of the estimated

Gaussian distribution and reduces to the estimated Gaussian

distribution itself. Combining equations (6) to (9) we get,

p(IX | ai = pj) ∝

e
− 1

2
(xt

pj
−µ

t−1

li
)T (Σt

pj
+Σt−1

li
)−1(xt

pj
−µ

t−1

li
)

(10)



We proceed in a similar fashion for the right term in (4)

to get,

p(ID | ai = pj) ∝ e
− 1

2
(dt

pj
−dt

li
)T Σ−1

d
(dt

pj
−dt

li
)

(11)

where Σd is a known set of constant parameters.

If we combine equations 3, 4, 10, and 11 and take the

negative log we get that the point p∗ most likely to be asso-

ciated with li is given by,

p∗ = arg min
[pj∈Pi]

(dt
pj

− d
t
li
)T Σ−1

d (dt
pj

− d
t
li
) +

(xt
pj

− µt−1
li

)T (Σt
pj

+ Σt−1
li

)−1(xt
pj

− µt−1
li

) (12)

The first term on the RHS is the square of the Mahalanobis

distance between the observed point location at t and esti-

mated landmark location at t − 1. This implies that points

with a lower Mahalanobis distance to the landmark will be

favored. The second term, which is also the square of a

Mahalanobis distance, ensures that points with visual prop-

erties similar to that of the landmark are favored.

No Matches and New Landmarks. To consider the

possibility of no point being associated with landmark li,

we set a threshold on the maximum Mahalanobis distance

allowed between the locations of a point and a landmark.

To set the threshold, we think of the Mahalanobis distance

as the Euclidean distance measured in units of standard de-

viation [2], and set the maximum distance, in standard de-

viation units, that a point can be from a landmark in order

for a match to be considered (the threshold can be found

by looking up a χ2 distribution table). An added benefit is

that points, that do not lie within the Mahalanobis distance

threshold of any landmark, are used to initialize new land-

marks.

Removing False Positives. As mentioned, newly ini-

tialized landmarks are temporary to begin with. Only after

a minimum number of points match the landmark within

a given time period, is the landmark made permanent. If

enough matches are not found, the landmark is removed.

This removes false positives from the set of observed points.

The “Mahalanobis Effect”. False positives are effec-

tively removed by the two constraints of minimum number

of required point matches and maximum Mahalanobis dis-

tance between locations. Not using either of these, particu-

larly the Mahalanobis metric, leads to unusable maps. Fig-

ure 4 shows rather dramatically what happens when, instead

of the Mahalanobis distance, standard Euclidean distance is

used as a metric. Both figures show a laser generated map of

the lab overlaid with a map built using only SIFT features.

In the SIFT feature map on the left, false positives are elim-

inated which results in the visual landmarks lining up well

Figure 4. Left: Laser map (lines) overlaid with
SIFT map (dots) made using Mahalanobis dis-
tance. Right: Laser map overlaid with SIFT
map made without Mahalanobis distance.

with the laser map. In the map on the right, Euclidean dis-

tance fails to eliminate false positives leading to an unusable

visual feature map. It is possible to use a tighter threshold

when working with Euclidean distance but then this leads

to a map with very few landmarks that is not adequate for

safety.

Another implication of using the Mahalanobis distance

is that it is possible to track landmarks using only loca-

tion information. The use of visual properties such as scale

and orientation for SIFT features may improve matching

slightly but the final map is virtually indistinguishable. This

is also apparent for the case of landmarks corresponding to

pixels, where we don’t have any visual properties and still

get good results, even despite the fact that landmarks cor-

responding to pixels are denser than those corresponding to

features. Although, the Mahalanobis metric is well known

in robotics [1], and tracking literature [12], to the best of our

knowledge this is the first application of the metric to track-

ing point landmarks corresponding to pixels, i.e., generated

using dense stereo processing methods.

5. Results

We describe the results of testing our system in two envi-

ronments: indoors in our lab, and outdoors on a wheelchair

ramp. We describe (1) the creation of local safety maps us-

ing our system and their evaluation, (2) the quality of 3D

reconstruction, and (3) a failure mode of the system.

First, we consider local safety maps of our lab. From

left to right, Figure 5 shows four maps of the lab: (a) a

local metrical map built using lasers, (b) a local metrical

map built using dense stereo, (c) a local safety map built by

merging and automatically annotating the laser and dense

stereo maps, and (d) a human annotated safety map. For

this particular data trace we do not show the SIFT feature

map as the information in the dense stereo map subsumes

that in the SIFT map (as opposed to that expected in section



4). However this may not be true in general and different

features may provide extra data.

Figure 5(c) shows a local safety map of the lab annotated

according to the specifications in section 2.2 and created as

follows: (i) Obstacles: Parts of the lab detected by both

lasers and vision. These are black in the figure and include

walls and some furniture. (ii) Hazards: Parts of the lab in-

visible to lasers but detected by vision are treated as over-

hangs (i.e., hazards). They are dark grey in the figure. For

example, the lower right hand corner of the figure has a ta-

ble, whose top is treated as an overhang and legs are treated

as obstacles (since the lasers can see them). Figure 6 shows

in detail how the table is perceived differently by different

sensors. (iii) Safe areas: Parts of the lab that are clear to the

lasers and where vision sees the ground plane and detects

neither obstacles nor hazards are considered safe. They are

in white. (iv) Unknown areas: Parts of the world that are

unknown to the lasers, and for which vision has no infor-

mation are marked unknown. They are a light shade of grey

and constitute most of the area outside the lab walls. At

present we do not detect areas of caution.

To do a quantitative evaluation of the safety map, we

have the robot collect a new data trace of the same envi-

ronment and create another merged safety map. This new

safety map is converted into a grid map, and a person man-

ually annotates the grid map for safety. This human anno-

tated map is taken to be ground truth (Figure 5(d)). We com-

pare the laser metrical map, dense stereo map, and merged

safety map, with the human annotated map. To compare the

laser map and the dense stereo map we annotate them in a

manner similar to that described for the merged safety map

above. For the dense stereo map the process is almost the

same except we don’t distinguish between hazards and ob-

stacles. For the laser map, since the lasers cannot see the

ground, clear areas are considered safe.

We then determine the number of the following types of

cells - A: True positives, i.e., cells marked safe by both hu-

mans and robots; B: False positives, i.e., cells marked safe

by robots but unsafe by humans; C: False negatives, i.e.,

cells marked unsafe by robots but safe by humans. We mea-

sure three standard statistics: Precision = A/(A+B); Recall

= A/(A+C); f1 = 2A/(2A+B+C). Precision gives the portion

of the total number of cells that the robot says are safe, that

are actually safe. Recall gives the portion of the total num-

ber of cells that are actually safe, that are marked safe by the

robot. The f1 statistic considers both precision and recall

and so is an overall measure of the systems performance.

All three statistics lie between 0 and 1.

The results are in Table 2. Lasers have low precision

most likely because they consider areas below overhanging

objects to be safe. Lasers have higher recall than stereo vi-

sion because despite everything they still are more accurate

sensors, with lower noise, than stereo vision. Because of

Table 2. Safety related statistics for the laser
map, dense stereo map, and merged map.

Map Precision Recall f1

Laser 0.78 0.99 0.87

Stereo 0.94 0.86 0.90

Merged 0.94 0.89 0.92

higher noise vision considers some safe areas to be unsafe

whereas lasers rarely do so. Vision has high precision be-

cause most obstacles and overhanging objects are visible to

stereo. The merged map has high precision because stereo

helps it see most objects and higher recall than vision be-

cause lasers help. Finally, the f1 statistic shows that the

merged map performs best overall.

Figure 7 shows a picture of an outdoor wheelchair ramp

and a 3D reconstruction of the ramp’s railing using dense

stereo. Qualitatively, the 3D reconstruction obtained is

quite good and shows, amongst other things, the effective-

ness of the Mahalanobis metric. Although not shown here

due to lack of space, this environment also demonstrates a

failure mode of our system. Due to low texture the dense

stereo algorithm is not able to get reliable depth informa-

tion (a common failing of many dense stereo methods) for

the ground plane of the ramp. This illustrates that we cannot

rely only on stereo vision for safety and need to use other

visual cues, such as color.

6. Related Work

The idea of using Kalman filters to track visual features

is well known. Harris [6], and, Se, et. al, [13], use in-

dependent Kalman filters to track visual features through

the environment. Localization is done through a combina-

tion least squares and a separate Kalman filter to track robot

pose. However, neither methods use dense stereo vision.

A problem that frequently accompanies Kalman filters

is that of data association. Applying probabilistic methods

(amongst them the Mahalanobis metric) for solving data

association is well established, particularly in the tracking

literature. For example, Reid [12], solves the data asso-

ciation problem associated with tracking multiple moving

objects (e.g. airplanes) using radar (and other sensors) by

maintaining multiple hypotheses and computing their like-

lihoods. In the robot mapping literature, Kalman filters and

the Mahalanobis distance have been used for extensively for

landmark based SLAM [1]. However, landmarks in such

applications are usually sparse and the incidence of false

positives is much lower. Recently, Sim, et. al, [14], have

used Kalman filters for tracking SIFT features in a Rao-

Blackwellized particle filter based SLAM framework.

Using dense stereo for building maps and safety has also

been investigated. Murray and Little [11], present methods

for building 2D occupancy grid maps of the world using



(a) (b) (c) (d)

Figure 5. Four maps of the lab: (a) Laser metrical map with obstacles in black. (b) Dense stereo

metrical map with obstacles in black, ground plane in grey. (c) Safety map created by merging laser
and dense stereo maps with obstacles in black, hazards in dark grey, unknown areas in light grey,
safe areas in white. (d) Human annotated “ground truth” safety map.

(a) (b) (c) (d)

Figure 6. Different sensors perceive a table differently: (a) A picture of the table. (b) Lasers’ perception
of the table - only the table legs are seen. (c) 3D point cloud model of the table showing that a stereo
camera sees almost the entire table. (d) Projection of the point cloud onto the 2D travel plane.

(a) (b)

Figure 7. (a) A picture of a wheelchair ramp. (b) 3D point cloud of ramp railing constructed using

dense stereo.



dense stereo but in doing so, do not use a lot of the 3D in-

formation available. Gutmann, et. al, [5], create grid maps

using dense stereo vision for a humanoid robot. Each cell

in the grid is marked as floor or obstacle and annotated with

the floor and obstacle heights. Ye and Borenstein [19], build

a similar kind of elevation map using a 2D laser range-finder

tilted towards the ground. The methods however do not rec-

ognize hazards (drop offs, overhangs) explicitly.

Since using stereo depth information is not sufficient,

people have looked at other visual cues. Ulrich and Nour-

bakhsh [16], assume that their robot starts on safe ground

and then use the color of terrain already traversed to clas-

sify pixels in new images as belonging either to the ground

or to an obstacle. The method is simple yet effective.

7. Conclusions and Future Work

We make three main contributions in this work. First, we

provide a definition of a local 2D safety map. Second, we

present a hybrid method for building the 2D safety map and

evaluate its performance in different environments. Third,

we provide a new method for removing noise from dense

stereo data using motion and demonstrate its effectiveness

at 3D reconstruction. The planned application of this work

is to build an autonomous robotic wheelchair which can

navigate and explore urban environments in interaction with

its human driver.

There are many ways in which this work can be ex-

tended. In the short term, future work will consist of speed-

ing up the system and auto calibrating the sensors. Our cur-

rent implementation works offline and further work will ex-

plore the use of efficient data structures to make the system

work online. For calibration we intend to use techniques

that take advantage of multiple sensors (such as encoders,

lasers and vision) on a single robot to auto-calibrate the sen-

sors against each other [20]. A longer term extension to this

work will include using additional visual cues for safety -

such as color [16]. We can also do deeper inference on the

data provided by lasers and vision to obtain safety informa-

tion for unknown areas. Finally, we plan to extend the work

to environments where travel surfaces are non-level.
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