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Abstract—Peer-to-Peer (P2P) computing has emerged as a sig-
nificant paradigm for providing distributed services, in particular
search and data sharing. Current P2P networks (e.g., Gnutella)
are constructed by participants following their own uncoordinated
(and often whimsical) protocols; they consequently suffer from fre-
quent network overload and partitioning into disconnected pieces
separated by choke points with inadequate bandwidth.

In this paper, we propose a protocol for participants to build
P2P networks in a distributed fashion, and prove that it results in
connected networks of constant degree and logarithmic diameter.
These properties are crucial for efficient search and data exchange.
An important feature of our protocol is that it operates without
global knowledge of all the nodes in the network.

Index Terms—Distributed protocol, peer-to-peer (P2P) net-
works, stochastic analysis, topology construction.

I. INTRODUCTION

PEER-TO-PEER (P2P) networks are emerging as a sig-
nificant vehicle for providing distributed services (e.g.,

search, content integration, and administration) both on the
Internet [5]–[7], [9] and in enterprises. The idea is simple:
Rather than have a centralized service (say, for search), each
node in a distributed network maintains its own index and
search service. Queries no longer go to a central server; instead
they fan out over the network, and results are collected and
propagated back to the originating node. This allows for search
results that are fresh (in the extreme, admitting dynamic content
assembled from a transaction database, reflecting—say in a
marketplace—real-time pricing and inventory information).
Such freshness is not possible with traditional static indices,
where the indexed content is as old as the last crawl (in many
enterprises, this can be several weeks). The downside, of
course, is dramatically increased network traffic. In some
implementations [6], this problem can be mitigated by adaptive
distributed caching for replicating content; it seems inevitable
that such caching will become more widespread.

How should the topology of P2P networks be constructed?
Unlike static networks, P2P systems are very dynamic with a
high peer turnover rate. For example, the study in [17] shows
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that in both Gnutella [8] and Napster [12], about half of the peers
participating in the system are replaced within one hour. Thus
maintaining even a basic property such as network connectivity
becomes a nontrivial task.

Each node participating in a P2P network runs so-calledser-
ventsoftware (forserver client, since every node is both a
server and a client). This software embeds local heuristics by
which the node decides, on joining the network, which neigh-
bors to connect to. Note, that an incoming node (or for that
matter, any node in the network) does not have global knowl-
edge of the current topology, or even the identities [Internet
protocol (IP) addresses] of other nodes in the current network.
Thus, one cannot require an incoming node to connect (say) to
“four random network nodes” (in the hope of creating an ex-
pander-like network [11]). What local heuristics will lead to the
formation of networks that perform well? Indeed, what prop-
erties should the network have in order for performance to be
good? In the Gnutella world [9], there is little consensus on
this topic, as the variety of servent implementations (each with
its own peculiar connection heuristics) grows—along with little
understanding of the evolution of the network. Indeed, some ser-
vices on the Internet [4] attempt to bring order to this chaotic
evolution of P2P networks, but without necessarily using rig-
orous approaches (or tangible success).

A number of attempts are under way to create P2P networks
within enterprises (e.g., Verity is creating a P2P enterprise in-
frastructure for search). The principal advantage here is that
servents can be implemented to a standard so that their local
behavior results in good global properties for the P2P network
they create. In this paper, we begin with some desiderata for
such good global properties, principally the diameter of the re-
sulting network (the motivation for this becomes clear below).
Our main contribution is a stochastic analysis of a simple local
heuristic which, if followed by every servent, results in provably
strong guarantees on network diameter and other properties. Our
heuristic is intuitive and practical enough that it could be used
in enterprise P2P products.

A. Case Study: Gnutella

To better understand the setting, modeling and objectives for
the stochastic analysis to follow, we now give an overview of
the Gnutella network. This is a public P2P network on the In-
ternet, by which anyone can share, search for, and retrieve files
and content. A participant first downloads one of the available
(free) implementations of the search servent. The participant
may choose to make some documents (say, all his IEEE pa-
pers) available for public sharing, indexes the contents of these
documents, and runs a search server on the index. His servent
joins the network by connecting to a small number (typically
3–5) of neighbors currently connected to the network. When
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any servent wishes to search the network with some query, it
sends to its neighbors. These neighbors return any of their own
documents that match the query; they also propagateto their
neighbors, and so on. To control network traffic this fanning
out typically continues to some fixed radius (in Gnutella, typ-
ically seven); matching results are fanned back intoalong the
paths on which flowed outwards. Thus, every node can initiate,
propagate and serve query results; clearly, it is important that the
content being searched for be within the search radius of. A
servent typically stays connected for some time, then drops out
of the network—many participating machines are personal com-
puters on dialup connections. The importance of maintaining
connectivity and small network diameter has been demonstrated
in a recent performance study of the public Gnutella network
[4].

Note, that the above discussion lacks any mention of which
three to five neighbors a servent joining the network should con-
nect to, and indeed, this is the current free-for-all situation in
which each servent implementation uses its own heuristic. Most
begin by connecting to a generic set of neighbors that come with
the download, then switch (in subsequent sessions) to a subset
of the nodes whose names the servent encountered on a previous
session (in the course of remaining connected and propagating
queries, a servent gets to “watch” the names of other hosts that
may be connected and initiating or servicing queries). Note also
that there is no standard on what a node should do if its neigh-
bors drop out of the network (many nodes join through dialup
connections, and typically dial out after a few minutes—so the
set of participants keeps changing). This free-for-all situation
leads to partitioning of the network into disconnected pieces as
documented in [4].

B. Main Contributions and Organization of the Paper

Our main contribution is a new protocol by which newly ar-
riving servents decide which network nodes to connect to, and
existing servents decide when and how to replace lost connec-
tions. We show that our protocol results in a constant degree
network that is likely to stay connected and have small diam-
eter. A nice feature of our protocol is that it operates without any
global knowledge (such as the topology of the network or even
the identities of all other nodes) and can be implemented by a
simple distributed local message passing scheme. Also, our pro-
tocol is easily scalable both in terms of degree (which remains
bounded irrespective of size) and diameter (grows slowly as a
function of network size).

Our protocol for building a P2P network is described in
Section II. Section III presents a stochastic analysis of our
protocol. Our protocol involves one somewhat nonintuitive
notion, by which nodes maintain “preferred connections”
to other nodes; in Section IV, we show that this feature is
essential. Our analysis assumes a stochastic setting in which
nodes arrive and leave the network according to a probabilistic
model. Our goal is to show that even as the network changes
with these arrivals/departures, it remains connected with small
diameter. Our main result is that atanytime (after a short initial
period), with large probability, the network isconnectedand
its diameter islogarithmic in the size of the network at that
time. Furthermore, our analysis proves that the protocol has

strong fault tolerance properties: if the network gets partitioned
into disconnected pieces it rapidly recovers its connectivity.
The technical core of our analysis is an analysis of an evolving
graph as nodes arrive and leave, with edges being dictated by
the protocol; the analysis of evolving graphs is relatively new,
with virtually no prior analysis in which both nodes and edges
(connections) arrive and leave the network.

We mention related work in Section V and discuss open issues
in Section VI.

II. P2P PROTOCOL

The central element of our protocol is ahost server1 which, at
all times, maintains acache2 of nodes, where is a constant.
The host server is reachable by all nodes at all times; however,
it need not know of the topology of the network at any time,
or even the identities of all nodes currently on the network. We
only require that 1) when the host server is contacted on its IP
address it responds and 2) any node on the P2P network can send
messages to its neighbors. In this sense, our protocol demands
far less from the network than do (for instance) current P2P
proposals (e.g., thereflectorsof dss.clip2.com, which maintain
knowledge of the global topology).

When a node is in the cache, we refer to it as acache node.
A node isnewwhen it joins the network, otherwise, it isold.
Our protocol will ensure that the degree (number of neighbors)
of all nodes will be in the interval for two constants

and .
A new node first contacts the host server, which gives it

random nodes from the current cache to connect to. The new
node connects to these and becomes ad-node; it remains a
d-node until it, subsequently, either enters the cache or leaves
the network. The degree of a d-node is always. At some point
the protocol may put a d-node into the cache. It stays in the
cache until it acquires a total of connections, at which point,
it leaves the cache as ac-node. (Thus, the set of cache nodes
keeps changing with time.) A c-node might lose connections
after it leaves the cache, but its degree is always at least.
A c-node has always onepreferredconnection, made precise
below. Our protocol is summarized below as a set of rules
applicable to various situations that a node may find itself in.

Peer-to-Peer Protocol for Node
1. On joining the network: Connect to
cache nodes, chosen uniformly at random
from the current cache.
2. Reconnect rule: If a neighbor of
leaves the network, and that connection
was not a preferred connection, connect

1The host server is similar to (or models) websites that maintain list of host
IP addresses which clients visit to get entry points into the P2P network; for
example,http://www.gnufrog.com/is a website which maintains a list of active
Gnutella servents. New clients can join the network by connecting to one or
more of these servents. Another point to note is that we have assumed a single
host server for clarity of presentation. The protocol can be easily extended to
work with multiple host servers.

2This is just a terminology used to denote the set of nodes which can accept
connections—analogous to the list of active Gnutella clients mentioned in the
previous footnote.
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to a random node in cache with probability
, where is the degree of be-

fore losing the neighbor.
3. Cache Replacement rule: When a cache
node reaches degree while in the
cache (or if drops out of the network),
it is replaced in the cache by a d-node
from the network. Let , and let

be the node replaced by in the
cache. The replacement d-node is found by
the following rule:

;
while (a d-node is not found) do
search neighbors of for a d-node;

;
endwhile
4. Preferred Node rule: When leaves the
cache as a c-node it maintains a preferred
connection to the d-node that replaced it
in the cache. (If is not already con-
nected to that node this adds another
connection to ).
5. Preferred Reconnect rule: If is a
c-node and its preferred connection is
lost, then reconnects to a random node
in the cache and this becomes its new pre-
ferred connection.

We end this section with brief remarks on the protocol and its
implementation.

1) It is clear from our protocol that it is essential for a node
to know whether it is in the cache or not; thus, each node
maintains a flag for this purpose.

2) The cache replacement rule can be implemented in a dis-
tributed fashion by a local message passing scheme with
constant storage per node. Each c-nodestores the ad-
dress of the node that it replaced in the cache, i.e.,.
Node sends a message to when itself does not
have any d-node neighbors.

3) Note that the overhead in implementing each rule of the
protocol is constant (or expected constant). This is very
important in practice, because even if a protocol is local, it
is desirable that neither too much (local) computation nor
too many local messages be sent per node. Rules 1, 2, 4,
and 5 can be easily implemented with constant overhead.
It follows from our analysis that the overhead incurred
in replacing a full cache node (rule 3) is constant on the
average, and w.h.p. (with high probability) is at most log-
arithmic in the size of the network (see Section III-B).

4) We note that the host server is contacted whenever a node
needs to reconnect (rules 2 and 5), and when a new node
joins the network. We show that the expected number of
contacts the host server receives per unit time interval is
constant in our model and w.h.p. onlylogarithmic in the
size of the network; this implies that the network also
scales well in terms of the number of “hits” the host server
receives.

5) We assume that a node knows when any of its neighbors
leave the network. One way of realizing this in practice
is (as in the Gnutella protocol [8]) that each node can
periodically ping its neighbors to check whether any of
them have gone offline.

6) In the stochastic analysis that follows, the protocol does
have a minuscule probability of catastrophic failure: for
instance, in the cache replacement step, there is a very
small probability that no replacement d-node is found. A
practical implementation of this step would either cause
some nodes to exceed the maximum capacity of
connections, or to reject new connections. In either case,
the system would rapidly “self-correct” itself out of this
situation.

III. A NALYSIS

In evaluating the performance of our protocol, we focus on
the long term behavior of the system in a fully decentralized
environment in which nodes arrive and depart in an uncoordi-
nated and unpredictable fashion. This setting is best modeled by
a stochastic, memoryless, continuous-time setting. The arrival
of new nodes is modeled by Poisson distribution with rate,
and the duration of time a node stays connected to the network
is independently and exponentially distributed with parameter

. We are inspired by models in queueing theory which have
been used to model similar scenarios, e.g., the classical tele-
phone trunking model [10]. Also, a recent measurement study
of real P2P systems [17] (Gnutella and Napster) provides evi-
dence that the above model approximates real-life data reason-
ably well.

Let be the network at time ( has no vertices). We
analyze the evolution in time of the stochastic process

.
Since the evolution of depends only on the ratio we

can assume w.l.o.g. that . To demonstrate the relation be-
tween these parameters and the network size, we use
throughout the analysis. We justify this notation in Section III-A
by showing that the number of nodes in the network rapidly
converges to . Furthermore, if the ratio between arrival and
departure rates is changed later to , the network size
will then rapidly converge to the new value . Next, we show
that the protocol can with high probability3 maintain a bounded
number of neighbors for all nodes in the network, i.e., w.h.p.
there is a d-node in the network to replace a cache node that
reaches full capacity. In Section III-C, we analyze the connec-
tivity of the network, and in Section III-D, we bound the network
diameter.

A. Network Size

Let be the network at time.
Theorem III.1:

1) For any , w.h.p.
2) If then w.h.p. .

Proof: Consider a node that arrived at time . The
probability that the node is still in the network at timeis

3Throughout this paper w.h.p. (with high probability) denotes probability1�

N .
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. Let be the probability that a random node that
arrives during the interval is still in the network at time,
then (since in a Poisson process the arrival time of a random
element is uniform in )

Our process is similar to an infinite server Poisson queue.
Thus, the number of nodes in the graph at timehas a Poisson
distribution with expectation (see [15, pp. 18 and 19]).

For , . When ,
.

We can now use a tail bound for the Poisson distribution
[1, p. 239] to show that for

for some constants and .
The above theorem assumed that the ratio was

fixed during the interval . We can derive similar result for
the case in which the ratio changes to at time .

Theorem III.2: Suppose that the ratio between arrival and
departure rates in the network changed at timefrom to

. Suppose that there were nodes in the network at time
, then if w.h.p. has nodes.

Proof: The expected number of nodes in the network at
time is

Applying the tail bound for the Poisson distribution, we prove
that w.h.p. the number of nodes in is .

B. Available Node Capacity

To show that the network can maintain a bounded number
of connections at each node, we will show that w.h.p., there
is always a d-node in the network to replace a cache node that
reaches capacity and that the replacement node can be found
efficiently. We first show that at any given time the network has
w.h.p. a large number of d-nodes.

Lemma III.1: Let ; then at any time
(for some fixed constant ), w.h.p. there are

d-nodes in the network.
Proof: Assume that (the proof for is sim-

ilar). Consider the interval ; we bound the number
of new d-nodes arriving during this interval and the number of
nodes that become c-nodes.

The arrival of new nodes to the network is Poisson-distributed
with rate 1; using the tail bound for the Poisson distribution, we
show that w.h.p. the number of new d-nodes arriving during this
interval is and that the number of connections to
cache nodes from the new arrivals is .

By Theorem III.1, the expected size of the network at any
time in the interval is bounded by . The expected

number of connections to the cache nodes in unit time in this
interval is bounded by

(The two terms within the sum bounds the number of re-
connections due to non-preferred and preferred neighbors
leaving a node.) Thus, the expected number of connections
to the cache from old nodes in this interval is bounded by

. Let be the set of nodes
that left the network, in that interval, and let if
makes connection to the cache whenleft the network, else

. Then

and each variable in the sum is independent of all butother
variables. By partitioning the sum into sums such that
in each sum all variables are independent and applying the
Chernoff bound ([11, pp. 67-71]) to each sum individually,
we show that w.h.p. the total number of connections to the
cache from old nodes during this interval is bounded w.h.p. by

.
Thus, w.h.p. the total number of connections to cache is

bounded by . Since a node receives
connections while in the cache, w.h.p. no more than

d-nodes convert to new c-nodes in the
interval; thus, w.h.p., we are left with
d-nodes that joined the network in this interval.

Lemma III.2: Suppose that the cache is occupied at time
by node . Let be the set of nodes that occupied the cache
in ’s slot during the interval . For any
and sufficiently large constant, w.h.p. is in the range

.
Proof: As in the proof of Lemma III.1, the expected

number of connections to a given cache node in an interval
is . Applying the Cher-

noff bound, we show that w.h.p. the number of connections is
in the range . Since a cache node receives

connections while in the cache the result follows.
The following lemma shows that most often the algorithm

finds a replacement node for the cache by searching only a few,
i.e., nodes.

Lemma III.3: Assume that . At any time
, with probability the algorithm finds

a replacement d-node by examining only nodes.
Proof: Let be the nodes in the cache at time

. By Lemma III.2, w.h.p. , for some constant
. With probability at least

no node in , leaves the network in the in-
terval .
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Suppose that node leaves the cache at time, then the
protocol tries to replace by a d-node neighbor of a node in

. As in the proof of Lemma III.1, w.h.p., received at
least connections from new d-nodes in the interval

. Among these new d-nodes no more than
nodes enter the cache and became c-nodes during this interval.
Using the bound on from Lemma III.2, w.h.p., there is a
d-node attached to a node of at time .

C. Connectivity

The proof that at any given time the network is connected
w.h.p. is based on two properties of the protocol: 1) steps 3–4
of the protocol guarantee (deterministically) that at any given
time a node is connected through “preferred connections” to
a cache node and 2) the random choices of new connections
guarantee that w.h.p. the neighborhoods of any two
cache nodes are connected to each other. In Section IV, we show
that the first property is essential for connectivity. Without it,
there is a constant probability that the graph has a number of
small disconnected components.

Lemma III.4: At all times, each node in the network is con-
nected to some cache node directly or through a path in the
network.

Proof: It suffices to prove the claim for c-nodes since a
d-node is always connected to some c-node. A c-nodeis either
in the cache, or it is connected through its preferred connection
to a node that was in the cache afterleft the cache. By induc-
tion, the path of preferred connections must lead to a node that
is currently in the cache.

Lemma III.5: Consider two cache nodesand at time
, for some fixed constant . With probability

, there is a path in the network at timeconnecting
and .

Proof: Let be the set of nodes that occupied the
cache ’s slot during the interval . By Lemma
III.2, w.h.p. , for some constant.

The probability that no node in leaves the network
during the interval is

Note that if no node in leaves the network during this in-
terval then all nodes in are connected to by their chain
of preferred connections.

The probability that no new node that arrives during the in-
terval connects to both and is bounded
by .

Since there are cache locations, we have the fol-
lowing theorem.

Theorem III.3: There is a constant such that at any given
time

is connected

The above theorem does not depend on the state of the net-
work at time . It, therefore, shows that the network
rapidly recovers from network disconnection.

Corollary III.1: There is a constantsuch that if the network
is disconnected at time

is connected

Theorem III.4: At any given time such that , if
the graph is not connected then it has a connected component of
size .

Proof: By Lemma 3.4 all nodes in the network are con-
nected to some cache node. The failure proba-
bility in Theorem III.3 is the probability that some cache node
is left with fewer than nodes connected to it. Excluding
such cache nodes all other cache nodes are connected to each ei-
ther with probability ,
for some .

D. Diameter

We state our main theorem which gives a bound on the diam-
eter of the network.

Theorem III.5: For any , such that , w.h.p., the
largest connected component of has diameter . In
particular, if the network is connected (which has probability

), then w.h.p., its diameter is .
Note that the above diameter bound is the best possible for a

constant degree network.
Proof: Since a d-node is always connected to a c-node it

is sufficient to discuss the distance between c-nodes. Thus, in
the following discussion all nodes are c-nodes. For the purpose
of the proof, we define a constantand call a cache node good
if during its time in cache, it receives a set of connections
such that:

• the connections are “reconnect ” connections;
• the connections are not preferred connections;
• the connections resulted fromdifferent nodes leaving the

network.
We color the edges of the graph using three colors:, and
. All edges are colored except a random edges of the set

of “reconnect” edges that satisfied the three requirements of a
good node. A random half of theseedges are colored , the
rest are colored .

Since the proof of Theorem III.3 uses only preferred con-
nection edges, and edges of new d-nodes, it is easy to verify
that at any time , the network is connected with probability

using only edges, and that if the network
is not connected, then w.h.p., theedges define a connected
component of size .

We rely on the “random” structure of the edges to reduce
the diameter of the network. However, we need to overcome two
technical difficulties. First, although the edges are “random,”
the occurrences of edges between pairs of nodes are not in-
dependent as in the standard random graph model ([3]).
Second, the total number of edges is relatively small; thus,
the proof needs to use both theand the edges.

Lemma III.6: Assume that node enters the cache at time,
where . Then, for a sufficiently large choice of the
constant , the probability that leaves the cache as a good
node is at least . Further, the recolored edges of a
good cache node are distributed uniformly at random among the
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nodes currently in the network. Furthermore, the probability that
a c-node is good is independent of other c-nodes.

Proof: Consider the interval of time in which was a
cache node.

1) New nodes join the network according to a Poisson
process with rate 1. Also, the expected number of con-
nections to from a new node is .

2) Nodes also leave the network according to a Poisson
process with rate 1. Also, the expected number of
connections to as a result of an old node leaving the
network is

3) The expected number of connections from an old node
to in unit time is .

From 1) and 2) above, it follows that each connection to, while
it is in the cache, has a constant probability each of being from a
new or an old node. Also from 2), we have the expected number
of connections to as a result of one old node leaving the net-
work is ; thus, each connection has a constant probability of
being triggered by a unique node leaving the network. Thus, for
a sufficiently large , the connections to include, with
probability , reconnect edges from different
nodes leaving the network.

Further, from 3) and using the fact that each node leaves
the network independently and identically under the same
exponential distribution it follows that each node in the net-
work—irrespective of its degree—has an equal probability of
being connected to. Finally, it is easy to see the independence
of the events for different c-nodes, since a cache node stays
in the cache till it accepts connections irrespective of other
cache nodes.

For the proof of the theorem, we need the following defini-
tions. Given a node in , let be an arbitrary cluster of

c-nodes, such that , and this cluster has diam-
eter using only edges. For , odd (with respect
to even), let be all the c-nodes in that are connected
to and are not in using (with respect to

) edges.
We first show the following “expansion” lemma which states

that each neighborhood ofstarting from is at least twice
the size of the previous neighborhood.

Lemma III.7: If

Proof: Let , , and let
. W.l.o.g., assume that is

even. Partition into , consisting of nodes in that are
older than , and , consisting of nodes in that arrived
after . The probability that is connected to using
edges is using Lemma III.6.
Similarly, each node in has probability
of being connected to by edges. Thus, the probability that

is connected to by edges is at least .

Let be the number of c-nodes outside that
are connected to by edges. .
Let be an enumeration of the nodes in, and
let be the set of neighbors of outside using
edges. Define an exposure martingale , such that

, , . Since
the degree of all nodes is bounded by, a node can connect
to no more than nodes outside . Thus, .

Using Azuma’s inequality [2], it follows that that for suffi-
ciently large constant

Now, we complete the proof of Theorem III.5. Our goal is
to show that w.h.p. the distance between any two c-nodes is

. Consider any two c-nodes and . By applying
Lemma III.7 repeatedly times, we have with prob-
ability , for some , ,

and . The prob-
ability that and are disjoint and not connected
by an edge is bounded by ; thus, with
probability , an arbitrary pair of nodesand

are connected by a path of length in . Summing

the failure probability over all pairs, it follows that

w.h.p. any pair of nodes in is connected by a path of length
.

IV. WHY PREFERREDCONNECTIONS?

In this section, we show that the preferred connection compo-
nent in our protocol is essential: running the protocol without it
leads to the formation of many small disconnected components.
A similar argument would work for other fully decentralized
protocols that maintain a minimum and maximum node degree
and treat all edges equally, i.e., do not have preferred connec-
tions. Observe that a protocol cannot replace all the lost con-
nections of nodes with degree higher than the minimum degree.
Indeed, if all lost connections are replaced and new nodes add
new connections, then the total number of connections in the
network is monotonically increasing while the number of nodes
is stable; thus, the network cannot maintain a maximum degree
bound.

To analyze our protocol without preferred nodes, define a type
subgraph as a complete bipartite network betweend-nodes

and c-nodes, as shown in Fig. 1.
Lemma IV.1: At any time , where is a sufficiently large

fixed constant, there is a constant probability (i.e., independent
of ) that there exists a subgraph of typein .

Proof: A subgraph of type arises when incoming
d-nodes choose the same set ofnodes in cache. A type
subgraph is present in the network at timewhen all the fol-
lowing four events happen.

1) There is a set of nodes in the cache each having
degree (i.e., these are the new nodes in the cache and
are yet to accept connections) at time .

2) There are no deletions in the network during the interval
.
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Fig. 1. SubgraphH used in proof of Lemma IV.2 . Note thatD = 4 in this
example. All the four d-nodes are connected to the same set of four c-nodes
(shown in black).

3) A set of new nodes arrive in the network during the
interval .

4) All the incoming nodes of set choose to connect to the
cache nodes in set.

Since each of the above events can happen with constant prob-
ability, the lemma follows.

Lemma IV.2: Consider the network , for . There is a
constant probability that there exists a small (i.e., constant size)
isolated component.

Proof: By Lemma IV.1 with constant probability there is
a subgraph (call it ) of type in the network at time .
We calculate the probability that the above subgraphbecomes
an isolated component in . This will happen if all nodes
in survive till and all the neighbors of the nodes in(at
most of them connected to the c-nodes) leave the
network and there are no reconnections. The probability that the

subgraph nodes survived the interval is . The
probability that all neighbors of the subgraph leave the network
with no new connections is at least

. Thus, the probability that becomes isolated is at
least

Theorem IV.1:The expected number of small isolated com-
ponents in the network at any time is , when there
are no preferred connections.

Proof: Let be the set of nodes which arrived during the
interval . Let be a node which arrived
at at . From the proof of Lemma IV.2, it is easy to show that
has a constant probability of belonging to a subgraph of type
at . Also, by the same lemma, has a constant probability of
being isolated at. Let the indicator variable , denote
the probability that belongs to a isolated subgraph at time.
Then, , by linearity of expectation. Since
the isolated subgraph is of constant size, the theorem follows.

V. RELATED WORK

We briefly discuss related work in P2P systems most rele-
vant to our work. Two important systems proposed recently are
Chord [18] and CAN [13]. These are content-addressable pro-
tocols, i.e., they solve the problem of efficiently locating a node
storing a given data item. There are two components for the
above protocols: the first specifies how and where a particular
data item should be stored in the network, and the second spec-
ifies a routing protocol to retrieve a given data item efficiently.

The focus of our work is building P2P networks with good
topological properties and not the problem of searching or
routing—which is an orthogonal issue for us; for example a
Gnutella—like [8] or a Freenet-like [7] search/routing mecha-
nism can be easily incorporated in our protocol. Thus, although
we cannot directly compare our protocol with content-address-
able networks such as Chord or CAN, we can compare them
with respect to their topological properties and guarantees.
CAN uses a -dimensional Cartesian coordinate space (for
some fixed ) to implement a distributed hash table that maps
keys onto values. Chord, on the other hand, uses a scheme
calledconsistent hashingto map keys to nodes. Although the
degree (the number of entries in the routing table of a node) of
CAN is a fixed constant (the number of entries in its routing
table), the diameter (the maximum distance between any two
nodes in the virtual network) can be as large as . In
the case of Chord, the diameter is , while the degree
of every node is . If , CAN matches the
bounds of Chord). This is in comparison to the constant degree
and logarithmic diameter of our protocol. However, the most
important contrast is that their protocols provide no provable
guarantees in a realistic dynamic setting, unlike ours. Chord
gives guarantees only under a simplistic assumption that every
node can fail (or drop out) with probability 1/2.

Another interesting P2P system is the dynamically fault-
tolerant network of [16]. This is again a content-addressable
network based on a butterfly topology. The diameter of the net-
work is and the degree is . Peer insertion
takes time. The system is robust to fault tolerance in
the sense that at any time, an arbitrarily large fraction of the
peers can reach an arbitrarily large fraction of the data items.
They show the above property under a somewhat artificial
assumption that in any time interval during which an adversary
deletes some number of peers, some larger number of peers
join the network. Also, they assume that each of the new peers
joining the network knows onerandompeer currently in the
network. To compare with our work, we show that our protocol
is naturally fault-tolerant (in the sense it recovers fairly rapidly
from fragmentation and high diameter w.h.p.) under a natural
dynamic model, where each node operates with no global
knowledge.

VI. CONCLUSION AND FURTHER WORK

We give a distributed protocol to construct networks with
good topological properties—namely, constant degree, connec-
tivity, and low diameter. An attractive feature of the protocol is
that it is simple to implement. We analyze our protocol under a
realistic dynamic setting and prove rigorously that it results in



1002 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 6, AUGUST 2003

the above properties with large probability. We also proved that
our protocol is naturally robust to failures and that it has nice
self-correcting properties such as rapid recovery from network
fragmentation. We now discuss possible extensions and future
work.

It is important to point out our protocol is concerned with
building a goodvirtual network topology which may not match
the underlying Internet topology (this may not be a big issue
for enterprise P2P). In fact, evidence [14] suggests that these
two topologies do not match well. It will be of practical interest
[14] to construct topologies that respects the underlying phys-
ical topology (e.g., locality)—this is an area for further research.

In our protocol, we implicitly assume that all nodes have
equal capabilities (i.e., storage and number of connections sup-
ported), and all links have equal bandwidth. In enterprises with
homogeneous systems, this is closer to reality, however, this is
not the case in the Internet. It will be nice to extend our protocol
to incorporate heterogeneous nodes and links.
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