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                             Building megaphylogenies for macroecology: taking up the 
challenge        

    Cristina     Roquet  ,       Wilfried     Thuiller    and        S é bastien     Lavergne    

         C. Roquet (cristina.roquet@gmail.com), W. Th uiller and S. Lavergne, Laboratoire d’Ecologie Alpine, UMR-CNRS 5553, Univ. Joseph Fourier, 
Grenoble 1, BP 53, FR-38041 Grenoble Cedex 9, France.                             

  Th e last decades have seen an upsurge in ecological studies incorporating phylogenetic information with increasing 
species samples, motivated by the common conjecture that species with common ancestors should share some ecological 
characteristics due to niche conservatism. Th is has been carried out using various methods of increasing complexity 
and reliability: using only taxonomical classifi cation; constructing supertrees that incorporate only topological informa-
tion from previously published phylogenies; or building supermatrices of molecular data that are used to estimate 
phylogenies with evolutionary meaningful branch lengths. Although the latter option is more informative than the oth-
ers, it remains under-used in ecology because ecologists are generally unaware of or unfamiliar with modern molecular 
phylogenetic methods. However, a solid phylogenetic hypothesis is necessary to conduct reliable ecological analysis 
integrating evolutive aspects. Our aim here is to clarify the concepts and methodological issues associated with the 
reconstruction of dated megaphylogenies, and to show that it is nowadays possible to obtain accurate and well sampled 
megaphylogenies with informative branch-lengths on large species samples. Th is is possible thanks to improved phylo-
genetic methods, vast amounts of molecular data available from databases such as Genbank, and consensus knowledge 
on deep phylogenetic relationships for an increasing number of groups of organisms. Finally, we include a detailed 
step-by-step workfl ow pipeline (Supplementary material), from data acquisition to phylogenetic inference, mainly based 
on the R environment (widely used by ecologists) and the use of free web-servers, that has been applied to the recon-
struction of a species-level phylogeny of all breeding birds of Europe.   

 Over the last decade, a new synthesis between the disciplines 
of ecology and evolution has been emerging, emphasizing 
the need to account for potential feedbacks between ecolo-
gical and evolutionary dynamics of natural systems (Webb 
et   al .  2002, Johnson and Stinchcombe 2007, Lavergne et   al. 
2010, Mouquet et   al. 2012). Th is is illustrated by the 
increasing interest shown in integrating phylogenetic data 
into diff erent areas of ecological research (Table 1), such 
as studies of community assembly rules (reviewed by 
Cavender-Bares et   al. 2009), large-scale patterns of diver-
sity (Davies et   al. 2008), biological invasions (reviewed by 
Th uiller et   al. 2010), or forecasting global change impacts 
on diff erent facets of diversity (Th uiller et   al. 2011). Several 
methods of varying complexity and reliability have been 
implemented to integrate evolutionary information into 
ecological studies, but the development of this new era 
of  ‘ ecophylogenetics ’  (Mouquet et   al. 2012) has seen a 
number of methodological impediments (Sanderson and 
Driskell 2003). Th is review aims to demonstrate that these 
limitations can now be overcome and emphasise the need to 
construct reliable phylogenies based on molecular data, in 
order to have an accurate phylogenetic hypothesis to work 
with. Th e reconstruction of phylogenies from molecular 

sequences is a vast fi eld that cannot be extensively reviewed 
here; for this reason we provide a non-exhaustive list of 
reviews, key works and other useful resources dealing with its 
main aspects (Supplementary material Appendix 1). Finally, 
we outline a pipeline (Supplementary material Appendix 2) 
that can be used as a basic reference to derive large-scale 
phylogenetic hypotheses, i.e. including several hundreds or 
thousands of taxa (termed  ‘ megaphylogenies ’  by Smith et   al. 
2009). Th is review is aimed at the increasing number of 
ecologists with some background on phylogenetic inference, 
but also at other ecologists who are only users of large 
phylogenies in order to provide them the basic elements 
to understand the diff erent step and tools to build large 
phylogenies.  

 How phylogenetic data has previously been 
incorporated 

 As a fi rst step to incorporate an evolutionary perspective 
into ecological analyses, some studies have used taxonomical 
classifi cation as a proxy for phylogenies, as implemented 
recently to unravel the phylogenetic patterns of introduced 
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species naturalisations (Daehler 2001, Diez et   al. 2008). 
Although appealing because it is relatively easy to imple-
ment, such an approach is rather unrealistic since it assumes 
that intrageneric relatedness is equal for all genera. In other 
studies, phylogenies have been constructed by assembling, 
grafting or subsetting published phylogenies (i.e. supertree 
approach; Bininda-Emonds et   al. 2002, Buerki et   al. 2011). 
Supertrees usually provide topological information (i.e. 
evolutionary relationships), but no information about 
branch lengths (i.e. quantitative estimates of evolutionary 
relatedness). Th is lack of branch-length data is usually dealt 
with by setting all branch lengths equal to one, which for 
instance will only allow the estimation of phylogenetic diver-
sity metrics based on the number of nodes separating pairs 
of taxa (Faith 1992). An alternative approach is to estimate 
branch  ‘ height ’ , which is described as one less than the 
number of taxa below a given node. Branch lengths are 
then calculated as the diff erence between the heights of suc-
cessive nodes (Grafen 1989, 1992). An improved third 
approach is the obtention of a pseudo-chronogram using 
the BLADJ algorithm (Webb et   al. 2008), which fi xes some 
nodes for which there are age estimates available in the 
literature, and then sets all other branch lengths by placing 
the rest of the nodes evenly between the dated ones. Th ese 
approaches (especially the fi rst two) imply that evolutionary 
rates are homogeneous across the tree, whereas it is now 
well accepted that rates can vary substantially between diff er-
ent lineages (Hughes and Eastwood 2006).   

 Recent improvements for the obtention of 
robust and conservative megaphylogenies 

 Until now, the construction of large phylogenetic trees 
based on the simultaneous analysis of character data sets 
concatenating several regions (i.e. supermatrix approach) has 
mainly been used for systematic studies (McMahon and 
Sanderson 2006). Th e main strength of the supermatrix 
approach is the direct connection between the character 
data and the fi nal result, in contrast to the supertree 
approach, where part of the character information is lost 
when character datasets are summarised as trees (De Queiroz 
and Gatesy 2006). However, until recently, analyses of large 
supermatrices were very limited because of the prohibitive 
time required for tree heuristic searches and the issue of 
whether large amounts of missing data in supermatrices 
would bias phylogenetic inference (Wiens 2003). 

 Th e recent development of optimised algorithms for 
maximum likelihood estimation (RAxML, Stamatakis 
2006, Stamatakis et   al. 2008; GARLI, Zwickl 2006) has 
now made possible the analyses of extraordinarily large 
supermatrices of sequence data. In addition, the constant 
increase of available molecular data in GenBank (in 2010, 
nucleotide sequences were available for  �    380   000 organ-
isms, Benson et   al. 2011), combined with the increasing 
number of ameliorated algorithms for alignment optimisa-
tion and depuration (Castresana 2000, Nuin et   al. 2006, 
Capella-Gutierrez et   al. 2009) make possible the improve-
ment of pipelines of analyses able to handle extremely large 
data sets. Finally, the last decade has seen major advances 

in consensus knowledge of deep phylogenetic relationships 
for an increasing number of groups of organisms (e.g. plant 
families, Davies et   al. 2004, Schuettpelz and Pryer 2007, 
Smith et   al. 2011). Th is means that it is now possible, 
and indeed recommended, that this information is incorpo-
rated as a backbone constraint tree to defi ne monophyletic 
groups, with the aim of speeding up the analyses and reduc-
ing the number of possible artefacts due to data patchiness 
and/or long-branch attraction (Felsenstein 1978). 

 Taken altogether, these recent advances make it possible 
to easily infer robust and up-to-date phylogenetic hypo-
theses for large species samples, by fi nding a compromise 
between speed, simplicity and accuracy (see diagram in 
Fig. 1). Here, we provide an appraisal of the methodologi-
cal issues involved in the inference of large phylogenies 
for ecological studies. A detailed step-by-step workfl ow 
primarily intended for ecologists can be found in the 
Supplementary material Appendix 2.   

Data retrieval:
obtention of DNA sequences in Genbank

(seqinR or Geneious Basic)

Automatic alignment of sequences
(ClustalW2, MAFFT, Muscle, Kalign)

Assessment quality alignments:
calculate AOS and MOS score (MUMSA)

Obtention of a supermatrix:
concatenate the alignments in one
single supermatrix (FASconCAT)

Phylogenetic Inference
Analysis (RAxML)

Construction of a
constraint supertree

(literature)

Compartmentalize:
split the sequences going

a step down in the
taxonomic hierarchy

If AOS > 0.5

Select alignment with
the highest MOS 

If AOS < 0.5

Depuration of alignment:
remove poorly aligned or

ambiguous positions (trimAl)

  Figure 1.     Diagram showing the iterative steps of the proposed 
guideline for the inference of phylogenetic trees from molecular 
data.  
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 Tools for automatic retrieval are highly valuable for large-
scale studies, but there are still some diffi  culties due to poor 
standardisation of databases (e.g. synonymous wording 
for gene regions; taxonomic synonyms for controversial 
taxa) (Bottu 2009). However, in seqinR, the R syntax allows 
the integration of this uncertainty into sequence retrieval. 
Th e Phyutility software (Smith and Dunn 2008) is another 
alternative to retrieve sequences based on several keywords. 
A GUI-based solution for sequence retrieval is the free 
program Geneious Basic (Drummond et   al. 2009), in which 
the search procedure is less automatable but easier to use 
thanks to its graphical user interface. 

 When a substantial amount of species included in a 
study does not occur in GenBank, a genus-level phylogeny 
may be inferred as a surrogate. In this particular case, an 
approach that can be considered is to include one species 
per genus as a representative (Schuettpelz and Pryer 2007), 
and once the phylogenetic tree has been obtained, to substi-
tute each genus representative by a polytomy of species, 
which indeed represents unresolved nodes. More sophisti-
cated Monte-Carlo based approaches can also be used to ran-
domly resolve polytomies based on diversifi cation models 
(Kuhn et   al. 2011; see Supplementary material Appendix 2 
for an example). 

 A potential problem that supermatrix analyses (usually 
with sparse data sets) have to face is rogue taxa, i.e. phylo-
genetically unstable taxa that can have very divergent 
placements in a tree set (Wilkinson 1994, Sanderson and 
Shaff er 2002), leading to lower resolution and support 
throughout the tree (Smith et   al. 2009). One potential 
source of rogue taxa are taxonomic instability and misspell-
ing errors in Genbank, because it may lead to isolated taxa 
in the dataset represented by few sequences; thus, once 
sequences have been obtained, it is important to extract the 
names of species and check that there are no taxonomic syn-
onyms with an updated reference checklist (Th omson and 
Shaff er 2010).   

 Outgroup selection 

 Phylogenetic inference is sensitive to the outgroup choice 
(Swoff ord et   al. 1996). Th e outgroup indicates which nodes 
in the tree are the oldest, and infers the evolutionary direc-
tion of character change in the resultant tree (Maddison 
et   al. 1984). Th e root of a tree thus represents the common 
ancestor of all the taxa included in the study. For previously 
studied groups, the choice of the outgroup can be made 
on the basis of larger studies in the scientifi c literature 
(Sanderson and Shaff er 2002). Th e outgroup should belong 
to a clearly distinct lineage with respect to the ingroup 
sequences, but at the same time it should not be too diver-
gent, if it is to be aligned unambiguously.   

 Sequence alignments inference 

 A phylogenetic sequence alignment is a hypothesis about the 
homology of multiple residues in nucleotide (or protein) 
sequences. Sequences are usually of diff erent lengths, and 
gaps (represented as hyphens) are introduced to represent 

 Selection and obtention of molecular data 

 It has been shown that conserved regions (coding loci) are 
useful in resolving phylogenetic relationships at high taxo-
nomic levels, but usually provide little information at 
lower ones (Gielly and Taberlet 1994); whereas non-coding 
regions can resolve, for example, intra-generic relationships 
(Shaw et   al. 2005) but may accumulate too much noise to 
be aligned consistently in a broad taxonomical group. Th e 
combination of several regions with diff erent rates of 
evolution and a taxonomically clustered alignment for fast-
evolving regions (see below) should make it possible to 
infer species relationships along the terminal branches of the 
tree. It is usually deemed advisable to survey the literature 
pertaining to the group of interest as a fi rst step to choos-
ing the regions that may be phylogenetically informative. 
Th e  ‘ Phylota browser ’  ( �    http://phylota.net/    � , Sanderson 
et   al. 2008) off ers a snapshot of the current taxonomic 
distribution of nucleotide sequences in Genbank, and allows 
the user to easily download sequences or maximum likeli-
hood trees inferred from these sequences for some particular 
clades. We have to be aware that, in some cases, unlinked 
loci (such as regions from diff erent genomes) may result in 
confl icting phylogenetic signal (Pamilo and Nei 1988); 
however, this mainly aff ects groups of closely related species. 
Th is phenomenon is usually due to incomplete lineage 
sorting, i.e. the lack of fi xation of gene lineages along a 
species lineage. Th is can occur when the ancestor has under-
gone several speciation events in a short period of time 
and ancestral polymorphism is not fully resolved when a 
second speciation event occurs. However, it has been reported 
that if multiple regions are incorporated, suffi  cient signal 
may remain to reconstruct species trees (Maddison and 
Knowles 2006). 

 Ecological studies usually focus on an assemblage of 
organisms (e.g. a community, a species pool for a biogeo-
graphic region) and not necessarily on all species of a given 
clade. Until recently, tools for automatic sequence retrieval 
were designed mainly for: 1) comparative genomics, e.g. 
BLAST, which retrieves sequences from Genbank based 
on similarity (Altschul et   al. 1997); 2) systematics, e.g. 
PowerBLAST, which has the capacity to restrict the search 
to any level of the NCBI taxonomy index (Zhang and 
Madden 1997); and 3) comparative biology, for instance the 
semi-automated pipeline implemented in the PHLAWD 
package (Smith et   al. 2009), which integrates taxonomic 
hierarchies with iterative alignment procedures to assemble 
denser data matrices for inferring megaphylogenies. Few 
recently developed tools suit the particular needs of eco-
logists. Th e R environment (R Development Core Team), 
which is widely used in ecology, comprises the package 
seqinR that enables the automatic search and retrieval of 
sequences for a given list of species and a certain region 
(Charif and Lobry 2007; see the script in Supplementary 
material Appendix 2). With the use of this package, available 
sequences can be extracted and deposited in a unique 
FASTA fi le (see Supplementary material Appendix 2 for 
common fi le formats), together with the accession numbers 
and a list of missing taxa. It is also possible to limit the 
number of sequences downloaded for each taxa after some 
criteria such as sequence length. 
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compares several alignments and computes an average 
overlap score (AOS) based on the consistency between 
those alignments. Th en, the AOS gives an indication on the 
degree of divergence between sequences (AOS    �    0.5 indi-
cates that sequences are very diffi  cult to align and thus it is 
probable that many positions are saturated by multiple sub-
stitutions, Lassmann and Sonnhammer 2006). Where too 
much divergence is detected, sequences might be split by 
moving a step down in the taxonomic hierarchy; for instance, 
if a data partition contains sequences for one given taxo-
nomic order leading to AOS    �    0.5, then the possibility of 
splitting the partition into smaller partitions at the family 
level should be considered. Th e PHLAWD package also 
implements an index to detect saturation across a set of 
sequences, named  ‘ median absolute deviation ’ , which com-
pares uncorrected genetic distances to corrected distances 
according to a Jukes – Cantor model of molecular substitu-
tion (Smith et   al. 2009). If alignments appear to be satu-
rated, the alignments are broken up using taxonomic 
classifi cations as guides, and separate alignments are carried 
out for the individual groups delimited in this way. 

 A promising approach to deal with divergent sequences 
is the simultaneous inference of sequence alignment and 
phylogenetic trees implemented in the software SAT é  (Liu 
et   al. 2009, 2012). Th is iterative method is based on a divide-
and-conquer realignment approach; starting with a existing 
alignment, it divides the set of sequences into subsets, each 
subset is re-aligned (with MAFFT, Katoh et   al. 2005), 
and then the alignments are merged together into an align-
ment on the full set of sequences. However, this algorithm 
has not been intended for multi-locus data, but still it may 
be useful to obtain separately more accurate alignments for 
each region. 

 Clustering variable regions allows us to maximise the 
representation of taxa in the fi nal supermatrix, but will also 
lead to a patchy matrix with a considerable amount of miss-
ing data. Th e impact of missing data on accuracy has been 
widely studied but no clear consensus has yet emerged. Some 
empirical and simulation studies are optimistic and argue 
that the inclusion of taxa even with incomplete sequence 
data often has positive eff ects (Driskell et   al. 2004; for a 
revision, see De Queiroz and Gatesy 2006). On the other 
hand, Sanderson et   al. (2010) show that usual coverage 
for real datasets do not allow to accurately resolve all the 
nodes of a particular tree, but still it is often possible to dis-
tinguish a large fraction of edges in the tree. Another study 
(Sanderson et   al. 2011) shows that, depending on its distri-
bution, missing data can produce a phylogenetic landscape 
of large sets of diff erent trees with identical optimality scores 
(called  ‘ terraces ’ ). Th ese terraces can result in heuristic search 
algorithms requiring an unnecessarily long time to compare 
trees of one same terrace; further improvement of phylo-
genetic software should be sought in the future to increase 
the effi  ciency of heuristic searches.   

 Shorter is better: improved alignment with 
automatic trimming 

 DNA regions usually do not evolve homogeneously 
(Whelan 2008). It is common that some parts of an 

deletions or insertions in the sequences. Since phylogenetic 
inference relies on the assumption that the characters (data 
matrix) are homologous, i.e. have the same evolutionary ori-
gin, it is crucial to fi nd an alignment that is as accurate as 
possible, as it will have a signifi cant eff ect on the quality 
of the inferred phylogeny (Kress et   al. 2009). Sequence 
alignment can be achieved automatically, but fi nal checking 
by visual examination is recommended (Morrison 2009). 
Nowadays there are a large number of automated align-
ment programs in existence; a comparative analysis of the 
nine most frequently used (Nuin et   al. 2006) indicated that 
the iterative approach available in MAFFT (Katoh et   al. 
2005) was the fastest and most accurate, although other 
algorithms also showed very good results for particular 
evolutionary scenarios. A recent and promising alignment 
approach, but more time-consuming, is the phylogeny-
aware algorithm implemented in PRANK (L ö ytynoja and 
Goldman 2008). Th is method is able to recognize insertions 
and deletions as distinct evolutionary events based on previ-
ously computed evolutionary guide tree, thus avoiding 
over-estimation of deletion events. 

 To obtain an accurate alignment for each region, we 
suggest that a suitable strategy is to perform alignments 
using the best performing programs (high accuracy in a rea-
sonable time) according to Nuin et   al. (2006), for instance: 
MAFFT (Katoh et   al. 2005), MUSCLE (Edgar 2004), 
Clustal (Th ompson et   al. 1994, Larkin et   al. 2007) and 
Kalign (Lassmann and Sonnhammer 2005); all available 
on free servers (Table 2). As an alternative, the recent soft-
ware called PRANK (L ö ytynoja and Goldman 2010) is a 
very valuable option in the case of relatively small dataset. 
Once the alignments are obtained, the best alignment for 
each data partition can be determined using the multiple 
overlap score provided by MUMSA, which compares and 
measures the reliability of each alignment based on the 
principle that pairs of aligned positions that are found in 
many alignments are more reliable, thus, the alignment with 
the highest number of these pairs is considered as the most 
correct one (Lassmann and Sonnhammer 2005).   

 Inclusion of fast-evolving regions with 
taxonomic clustering 

 Th e reconstruction of a phylogenetic tree for a large taxa 
sample requires the combining of conserved loci as well as 
fast-evolving regions to resolve deep and shallow nodes. 
However, non-conserved regions will probably not be align-
able over all taxa where the species sample spans a wide 
taxonomical spectrum. In this particular case, and to take 
advantage of information from this type of region, one 
possible approach is to cluster the alignments taxonomically, 
and then combine global and taxonomically local align-
ments for conserved and fast-evolving regions, respectively. 
Note that each cluster of aligned sequences should overlap 
with one or more clusters by at least 3 taxa (Th omson and 
Shaff er 2010). 

 Algorithms such as those implemented in MUMSA 
(Lassmann and Sonnhammer 2006) allow checking whether 
the cumulated sequences for a region are saturated or not 
(i.e. too divergent to be aligned consistently). MUMSA 
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alignment are well conserved and informative, whereas 
others are so divergent that the homologous position of gaps 
cannot be determined. Because the quality of the alignment 
greatly infl uences the resulting phylogeny (Morrison and 
Ellis 1997), it has been recommended that these poorly 
aligned blocks should be removed (Swoff ord et   al. 1996) .  

 Recent years have seen the development of computerised 
methods to improve the alignments by trimming them, 
selecting blocks of conserved regions and removing poorly 
aligned or ambiguous positions (Gblocks, Castresana 2000; 
trimAl, Capella-Gutierrez et   al. 2009). Simulation studies 
have shown that trimmed alignments always produce 
phylogenetic trees that are more accurate (i.e. with better 
topologies) than, or at least equal to, trees derived from 
complete alignment (Talavera and Castresana 2007, Capella-
Gutierrez et   al. 2009). To date, trimAl is probably the 
best program for analyzing large character data, as it has the 
possibility to automatically adjust the parameters to improve 
the phylogenetic signal-to-noise ratio (Capella-Gutierrez 
et   al. 2009). Once the trimmed alignments for all the regions 
have been obtained, they can be concatenated into a single 
supermatrix (e.g. using FASconCAT, K ü ck and Meusemann 
2010; or with the R package phylotools, Zhang et   al. 2010). 
Th e Phyutility software (Smith and Dunn 2008) also allows 
diff erent sequence manipulation (e.g. concatenating, trim-
ming, fetching).   

 Phylogenetic inference 

 Th e variety of methods available for phylogenetic inference 
can be intimidating for non-phylogeneticists. Th ere are 
three groups of methods based on diff erent optimisation cri-
teria: a) distance-matrix methods which convert the diff er-
ences between sequences into a distance matrix (Saitou and 
Nei 1987), and are therefore fast but too simplistic (Holder 
and Lewis 2003); b) maximum parsimony, which is based 
on the assumption that the most likely tree is the one that 
minimises the number of mutations to explain the data, 
thus considering only a minimum evolution scenario 
(Felsenstein 1978, Edwards 1996); and c) probabilistic 
methods (Huelsenbeck and Crandall 1997, Huelsenbeck 
et   al. 2001). 

 Th e fi nal types of methods, i.e. maximum likelihood 
(ML) and Bayesian inference (BI), are currently the most 
used as they have the potential to rigorously explore the 
landscape of diff erent possible trees; they are also quite accu-
rate for highly divergent sequences and they can account 
for diff erent models of sequence evolution (Hall 2011). 
Th e available models of evolution describe the diff erent prob-
abilities of change from one nucleotide to another along 
a phylogenetic tree: e.g. the simplest model (JC; Jukes and 
Cantor 1969) assumes both equal transition rates between 
all types of nucleotides and equal equilibrium frequencies; 
whereas the more complex one, the generalised time revers-
ible model (GTR; Tavar é  1986) considers six diff erent 
transition rates, one for each possible change between diff er-
ent nucleotides, and four nucleotide frequencies. Two addi-
tional parameters can be added to these models: a gamma 
distributed rate heterogeneity and an estimated proportion 
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on well-established relationships among major groups is an 
interesting means to reduce possible artefacts due to patchy 
data and speed up the analyses. It is also a way to integrate 
more evidence in the fi nal tree than the phylogenetic infor-
mation retained only by genic partitions. Th ere are many 
cases where a supertree or a phylogenetic tree has been pub-
lished, establishing the relationships between the main 
groups, for instance angiosperm and fern families (Davies 
et   al. 2004, Schuettpelz and Pryer 2007, Smith et   al. 2011), 
amphibian genera (Roelants et   al. 2007), and bird orders 
(Hackett et   al. 2008). From this type of sources, one 
can obtain a tree with the taxa of interest (Supplementary 
material Appendix 2), where only some nodes (i.e. consen-
sus relationships) are resolved, to use it as a backbone to 
retain resolved well-established, generally deeper nodes. Th e 
resulting tree will be part of the input provided to conduct 
the phylogenetic inference, thus implementing a mixed 
approach both using supertree and supermatrix approaches.   

 Clade support assessment 

 Except for Bayesian inference, phylogenetic inference 
methods produce only point estimates of the phylogeny. 
Th e technique most often used to evaluate the reliability 
of specifi c clades in the tree is the bootstrap (BS) analysis 
(Felsenstein 1985a), which involves resampling characters 
from the original dataset. More specifi cally, characters are 
randomly sampled with replacement to produce a matrix 
with the same number of taxa and characters as the original 
one, and a phylogenetic analysis is performed again for a 
specifi ed number of replications. Th e BS values show 
the percentage of times that a clade appears on these repli-
cates. Th e number of BS replicates needed for accurate 
estimation of clade support is highly-dataset dependent 
(typically between 500 and 2000 are conducted), but the 
highly performant RAxML software has recently incorpo-
rated a  ‘ bootstopping ’  criterion that allows the computation 
of only the necessary number of replicates to obtain suffi  -
cient accuracy (Pattengale et   al. 2010). Th e statistical 
interpretation of BS is not clear, but it is considered a con-
servative measure, and thus clades with values above 70% 
are generally considered as substantially reliable, and above 
95% as highly supported (Felsenstein 1985a, Hillis and 
Bull 1993). Again, conducting BS analyses with a backbone 
constraint tree will probably help to speed them up and 
obtain higher supports. 

 In Bayesian analyses, the frequency of a given clade in a 
set of trees is the posterior probability of that clade and it 
estimates the support of this given clade; no bootstrapping is 
therefore needed to assess the confi dence of the estimated 
topology (Alfaro et   al. 2002). Th e output is a support value 
for each clade on the fi nal consensus tree, which is termed 
the posterior probability. Bayesian inference has received some 
criticisms of putative overcredibility of node supports (Suzuki 
et   al. 2002), mainly associated with inappropriate model 
choice (Erixon et   al. 2003) and failure to allow convergence 
(Nylander et   al. 2008). It is generally considered that only 
clades with posterior probabilities equal to or higher than 
0.95 should be considered as reliable (Huelsenbeck and 
Rannala 2004). 

of invariable sites ( � Γ,  � I). Th e GTR model usually is the 
best fi tting-model for real-world data (Stamatakis 2006). 
Software such as MrModeltest (Nylander 2004) imple-
ments hierarchical likelihood ratio tests to select the best-
fi tting model. 

 Th e ML method looks for the tree that, under a specifi ed 
model of evolution, maximises the likelihood of observing 
the data (Felsenstein 1981). Until recently, ML could be 
prohibitive in terms of computational time for large size 
data; however, programs such as RAxML and GARLI 
implement optimised search algorithms that allow data with 
thousands of taxa to be analysed within a reasonable time 
(Dunn et   al. 2008, Hackett et   al. 2008, Yarza et   al. 2008). 
Moreover, with both programs it is possible to apply a mixed 
supermatrix-supertree approach as they allow the use of a 
non-comprehensive constraint tree. 

 Bayesian inference was introduced in phylogenetics in
the late 1990s (Rannala and Yang 1996). Th e user provides 
an alignment and a model of evolution and the program 
samples the trees with the highest likelihood given these 
data (Huelsenbeck et   al. 2001). It diff ers from ML in that 
instead of seeking the tree that maximises the likelihood of 
observing the data, BI seeks the posterior distribution of 
trees using Markov chain Monte Carlo (MCMC) methods 
(Tierney 1994). Th e MCMC sampling involves ‘  travelling 
across parameter space ’  to produce a set of trees repeatedly 
visited, with the frequency at which trees are sampled 
estimating their likelihood (Huelsenbeck et   al. 2001). One 
important issue, if we are to ensure an adequate search of 
tree space by BI, is to check that the runs have reached con-
vergence, i.e. that the tree topologies obtained are a set of 
statistically similar trees, sampled in proportion to their true 
posterior probability distribution (Nylander et   al. 2008). 
Usually a few millions of generations are required to achieve 
this convergence. Bayesian inference became rapidly popu-
lar because it was less demanding computationally than 
ML, and until the apparition of more effi  cient ML programs 
(e.g. RAxML; GARLI), BI programs such as MrBayes 
(Ronquist and Huelsenbeck 2003) were the only real alter-
native to parsimony analyses for large datasets ( �    100 
sequences). However, running BI over thousands of species 
is at the moment not likely to provide reliable results. For 
instance, Hackett et   al. (2008) reported that reaching 
convergence was impossible with BI for their dataset of 
32 kb for 169 taxa. By now, ML methods are preferable for 
inferring large phylogenies thanks to recent improvements of 
the RAxML algorithm for supercomputing environments 
scaling from hundreds to thousands of cores (Stamatakis 
et   al. 2012).   

 Constraining heuristic searches by a 
conservative backbone tree 

 Some programs of phylogenetic inference allow a non-
fully resolved constraint tree to be provided as additional 
input (e.g. RAxML) or monophyletic groups to be defi ned 
(e.g. BEAST, Drummond and Rambaut 2007). Concretely, 
a constraint tree is a user-defi ned tree that limits the search 
space to those trees that are compatible with the constraint 
tree (Stamatakis 2008). Th e use of a constraint tree based 



21

two species is proportional to the time elapsed since their 
evolutionary separation. However, it became rapidly evident 
that a strict clock model does not fi t the studied data in 
most cases, with pervasive variation in rates of nucleotide 
substitution (Britten 1986, Li 1997), even in closely related 
species (Th omas et   al. 2006). Several factors can infl uence 
the rate of molecular evolution, such as generation time 
(Bromham et   al. 1996, Ohta 2002); metabolic rate (Martin 
and Palumbi 1993, Gillooly et   al. 2005); reproductive mode 
(Paland and Lynch 2006, Johnson and Howard 2007); or 
effi  ciency of DNA repair machinery (Ota and Penny 2003). 

 In recent decades, molecular dating has become a rapidly 
developing fi eld, and several methods that incorporate rate 
heterogeneity have been developed, including nonpara-
metric (Sanderson 1997, Britton et   al. 2007) and semipara-
metric approaches (Sanderson 2002), local clocks (Yoder 
and Yang 2000), and Bayesian parametric models (Th orne 
and Kishino 2002, Drummond et   al. 2006). Most of 
them implement models that assume rate autocorrelation 
among lineages, which means that rates of substitution are 
likely to be more similar among closely related lineages than 
in distant ones (Gillespie 1991). Th e main exceptions are 
the models described by Drummond et   al. (2006) and 
implemented in the  ‘ BEAST ’  software (Drummond and 
Rambaut 2007), which samples rates from a distribution. 
Non-autocorrelated models suit very fast evolving sequences, 
such as viruses (Drummond et   al. 2006), whereas a com-
parative analysis of three real-world data sets showed that 
autocorrelation models fi t better (Lepage et   al. 2007). We 
briefl y present below the most commonly used methods 
in the literature (for a wider review see Rutschmann 2006). 

 Penalized likelihood (PL, Sanderson 2002), implemented 
in r8s (Sanderson 2003), combines a parametric model with 
diff erent substitution rates with a nonparametric roughness 
penalty which costs the model if rates change too quickly 
from branch to branch. Th e relative contribution of the two 
components is determined by a smoothing parameter ,  
which is estimated by a cross-validation (CV) procedure .  
Th e CV is computationally intensive for very large trees, 
because it consists in sequentially removing each terminal 
branch to estimate the parameters of the model without 
that branch for a given smoothing parameter, and compare 
it to the original estimates (Sanderson 2002). A high 
smoothing value leads to a clock-like model, whereas a low 
value permits much more rate variation. Once the optimal 
smoothing value has been determined, the estimation of 
divergence times is relatively fast. Th e user provides only a 
fi xed tree topology with branch lengths, which needs to 
be dichotomous, together with one or several age constraints. 
Th us, in order to take in account phylogenetic uncertainty, 
it is better to run the analyses using several trees with a high 
likelihood or posterior probability (see below). 

 Th e bayesian implementation of rate autocorrelation in 
Multidivtime (Th orne et   al. 1998, Kishino et   al. 2001, 
Th orne and Kishino 2002) uses a parametric model to 
describe the change rate over time with a MCMC procedure 
to derive the posterior distribution of rates and times. A 
detailed step-by-step manual (Rutschmann 2005) describes 
the complete procedure. In contrast to PL, this method is 
able to account for polytomies (it can therefore be run on 
a consensus tree), model parameters can be inferred for 

 Finally, rogue taxa is certainly a common issue for the 
reconstruction of megaphylogenies. Rogue taxa may lead to 
low statistical support for certain clades, and are usually 
attributed to ambiguous or insuffi  cient phylogenetic signal 
in the character data (Sanderson and Shaff er 2002). While 
there is no optimal solution for dealing with rogue taxa, 
the most used approach to identify and prune them consists 
in computing node distances, such as the taxonomic insta-
bility index, implemented in Mesquite (Maddison and 
Maddison 2007). Th is index measures the variation of pair-
wise distances between taxon pairs across all bootstrap trees. 
However, this approach has to rely on an arbitrary threshold 
to tease apart rogue taxa. A new and promising approach 
(still not implemented in phylogenetic software) is the one 
based on algorithms that test for the improvement in con-
sensus trees by pruning one taxon at each time (Pattengale 
et   al. 2010, Aberer et   al. 2011).   

 Accounting and integrating methodological 
uncertainties 

 Depending on the data availability in molecular databases, 
one may infer an incompletely resolved phylogeny, e.g. 
a genus-level phylogeny where the tips are replaced by a 
species polytomy (Supplementary material Appendix 2). 
However, for many analyses it is necessary to have a dichoto-
mic tree, for instance, to identify changes in diversifi cation 
rates with LASER (Rabosky 2006). 

 Polytomies can be resolved following diff erent 
approaches, and the uncertainty associated with polytomies 
can be taken into account when conducting subsequent 
analyses with a set of resulting dichotomic trees. Th e sim-
plest way to work around polytomies is to resolve them ran-
domly with zero-length branches (Felsenstein 1985b), e.g. 
with the multi2di function in R. However, diff erent meth-
ods of resolving polytomies have been described, assigning 
branch lengths in diff erent ways of increasing complexity: a) 
to distribute branch lengths evenly (Webb et   al. 2008); b) to 
assign random branch lengths (Th uiller et   al. 2011); and c) 
to apply a specifi c diversifi cation model (Kuhn et   al. 
2011; see also the R script stickTips in the Supplementary 
material Appendix 2). Th e last option can be applied by
permuting the unresolved portions of the tree with a Bayesian 
MCMC search algorithm based on a diversifi cation model, 
thus obtaining a pseudo-posterior distribution of completely 
resolved trees, to which analyses can then be applied (Kuhn 
et   al. 2011).   

 Dating phylogenies with relaxed molecular 
clocks 

 For some eco-evolutionary analyses such as estimating 
phylogenetic signal in trait data or, more generally, compara-
tive analyses, ultrametric trees are necessary, i.e. a tree 
with root-to-tip path lengths for all lineages equal to those 
built under the assumption of a molecular clock. Th e mole-
cular clock hypothesis was fi rst proposed by Zuckerkandl 
and Pauling (1965), which postulated that the amount of 
diff erence between DNA or protein sequences between 
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as unique values, but most of these phenomena take place 
over several millions of years (Garzione et   al. 2008). 
Furthermore, the use of geological or palaeoclimatic data 
implies that organisms are not available to cross the new 
barriers through dispersal, whereas in many studies long 
distance dispersal has been reported (De Queiroz 2005). 
Oceanic islands have also been used to apply a maximum 
age constraint on the divergence between endemic species 
and continental relatives; however, this assumes that the 
endemic species is a neoendemism and not a relict; more-
over, present-day oceanic islands are in some cases only the 
most recent element of a series of oceanic islands (Christie 
et   al. 1992). Because of these pitfalls, this type of data 
should be avoided as a source of calibration (Forest 2009, 
Kodandaramaiah 2011). 

 Secondary estimations are used usually when the fossil 
record is nonexistant, but one has to be aware that sources of 
error generated in the fi rst study remain, and are likely to 
be multiplied in subsequent analyses. Th is type of data 
should be use with care, e.g. using confi dence intervals as 
minimum and maximum values on a given node, otherwise 
estimates will be of little scientifi c value (Forest 2009).   

 Conclusions 

 Recent years have seen an increasing interest in the testing of 
ecological hypotheses within a phylogenetic context; e.g. 
in the study of ecosystem processes (Edwards et   al. 2007, 
Cadotte et   al. 2008); in the fi eld of invasion biology (Strauss 
et   al. 2006, Th uiller et   al. 2010); conservation biology 
(Forest et   al. 2007, Isaac et   al. 2007); and ecophysiology 
(Moles et   al. 2005, Wright et   al. 2007). However, although 
phylogenetic knowledge has been shown to be useful in 
ecological studies, phylogenies used are often inadequate or 
too simplistic (e.g. lack of branch-length data). It has 
thus become a challenge to infer reliable and robust mega-
phylogenies, for which necessary data and tools are becom-
ing increasingly available. One issue emerging in parallel will 
soon be how to visualize such large scale phylogenies (for 
method development in this direction, see Page 2012). 
Growing molecular databases such as Genbank, increased 
consensus of deep phylogenetic relationships and recent 
improvements in software (e.g. RAxML; GARLI) able 
to handle huge analyses make it possible to obtain a more 
solid evolutionary hypothesis with which to work, within a 
moderate amount of time and using a personal computer. 
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