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We present a methodology for building timed models of real-time
systems by adding time constraints to their application software.
The applied constraints take into account execution times of atomic
statements, the behavior of the system’s external environment, and
scheduling policies. The timed models of the application obtained
in this manner can be analyzed by using time analysis techniques
to check relevant real-time properties.

We show an instance of the methodology developed in the TAXYS
project for the modeling and analysis of real-time systems pro-
grammed in the Esterel language. This language has been extended
to describe, by using pragmas, time constraints characterizing the
execution platform and the external environment. An analyzable
timed model of the real-time system is produced by composing in-
strumented C-code generated by the compiler. The latter has been
re-engineered in order to take into account the pragmas. Finally,
we report on applications of TAXYS to several nontrivial examples.

Keywords—Automatic code instrumentation, correct implemen-
tation, modeling, real-time systems, synchronous and asynchronous
execution, timing analysis.

I. INTRODUCTION

Modeling plays a central role in systems engineering. The
use of models can profitably replace experimentation on ac-
tual systems with incomparable advantages, such as:

1) enhanced modifiability of the model and its parameters;
2) ease of construction by integration of models of het-

erogeneous components;
3) generality by using abstraction and behavioral nonde-

terminism;
4) enhanced observability, controllability, and avoidance

of probe effect or of disturbances due to experimenta-
tion;

5) possibility of analysis and predictability by application
of formal methods.
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Currently, validation of real-time systems is done by
experimentation and measurement on specific platforms in
order to adjust design parameters and, it is hoped, achieve
conformity with requirements. The existence of modeling
techniques is a basis for rigorous design and should dras-
tically ease validation. Modeling systems in the large is an
important trend in software and systems engineering today,
as demonstrated by the so-called model-based approaches
[9], [10], [19], [25]. Nevertheless, building models that faith-
fully represent real-time systems is not a trivial problem.
For this reason, models are often used at early phases of
system development, at high abstraction level, and they do
not easily carry through the entire design life cycle.

This paper unifies results developed at Verimag (Gières,
France) over the past four years into a methodology for mod-
eling real-time systems. The methodology is based on the
thesis that a timed model of a real-time system can be ob-
tained by adequately restricting the behavior of its applica-
tion software with time constraints characterizing the execu-
tion platform and the external environment (e.g., execution
times, task arrival times, or scheduling policies) [31].

The paper presents the methodology, discusses problems
related to its feasibility, and describes its application to syn-
chronous real-time systems. It is organized as follows. Sec-
tion II presents current practice and challenges in real-time
system development. The methodology considers modeling
as an activity integrated in the system development process.
Getting faithful models requires a clear understanding of the
implementation process and the possibility of relating the ap-
plication software with its run-time behavior. We discuss the
general problem of establishing a connection between the ap-
plication software with its implementation and explain why
current practice does not address the problem in a satisfac-
tory way.

Section III presents the general modeling framework. It
discusses general methodological aspects about how the ap-
plication software can be related to its implementation and
proposes a general notion of correct implementation.
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Section IV presents results of the TAXYS project, an
application of the general methodology to synchronous
real-time systems developed in Esterel. It provides a simple
example and benchmarks from nontrivial case studies.

Section V discusses perspectives of application to multi-
threaded asynchronous real-time systems and reports on on-
going work in that direction.

II. CURRENT PRACTICE AND CHALLENGES

A. The Divide Between Application Software and Real-Time
System

Application software is usually written in some high-level
programming language, such as C, Java, ADA-95 [36], SDL
[20], Esterel [5], or Lustre [17]. To cope with the complexity
of applications, software is decomposed into components.
Conceptually, the programmer reasons in terms of a model of
computation while developing the software. This model is ei-
ther explicit in languages with formal semantics or implicitly
assumed by the programmer. Thishigh-levelmodel is based
on abstractions about the behavior and interaction of com-
ponents. Such abstractions include concurrent execution, in-
stantaneous computation, zero delay, and perfect communi-
cation between components and/or between components and
the external environment, atomicity of actions, and so on. In-
deed, these are very useful abstractions that drastically sim-
plify description. Moreover, they are necessary for platform
independence, which is crucial to software portability and
reuse. Finally, they often reduce the complexity of analysis,
which is especially important during the design phase.

Application software must be implemented on a particular
platform. Usually, the implementation process involves more
than compiling. For instance, different parts of the applica-
tion software, developed by different teams, are sometimes
compiled separately. Then, the various executables need to be
integrated, on either a single-processor platform or a multi-
processor platform with some communication medium (e.g.,
a bus) linking the processors. In any case, implementation
compromises the abstractions of the high-level programming
model: components must be executed on one or a few pro-
cessors (thus, sequentially rather than concurrently), compu-
tation and communication takes time, and so on. Therefore,
implementation involves resolving a number of issues not al-
ways resolved at application software level, such as resource
allocation (e.g., distribution of tasks to different processors,
scheduling policy) or task communication and synchroniza-
tion (e.g., shared memory, semaphores, queues).

From the preceding discussion, it becomes apparent that
the divide between application software and implementation
(real-time system) resides in the fact that the high-level
model of computation (the model of the application soft-
ware) is, in general, different from thelow-levelmodel of
computation (the one of the real-time system). Software is
immaterial and, ideally, platform independent; therefore, the
high-level model often uses alogical-timeaxis, for example,
a partial or total ordering of events. The implementation
runs on a platform and interacts with its environment in
real time; thus, the low-level model uses a real-time axis,

Fig. 1 The implementation process and main challenges.

for example, positive reals to express the delay between
two events. It is worth noting that, even if the application
software contains statements depending on real time, e.g.,
timeouts, they are essentially not different from awaiting an
external event, such as hitting an obstacle.

Since abstractions break down during implementation,
it is not at all obvious that a real-time system preserves
the properties of its application software. For example, we
may have verified absence of deadlocks using a high-level
model of the application software which assumes actions
take zero time. Nevertheless, the real-time system may
have deadlocks, owing to the fact that computations take a
nonzero amount of time and result in desynchronizations.
The first challenge, therefore, is to check that a real-time
system is correct with respect to its application software.
We call this thecorrectnessproblem (see Fig. 1). To check
correctness formally, we must first build models of both the
application software and the real-time system. Also, since
these models use different time axes (logical versus real
time), a framework must be developed that relates the two
and encompasses a notion of correctness.

Preserving the properties of the application software not
only means preserving a set offunctional(untimed) proper-
ties. It is also necessary to verifynonfunctionalproperties.
For example, it is critical in most control applications that
the system quickly reacts to changes of the environment. This
can be expressed as a property of the form “whenever event

occurs, event will follow at most after time units.” This
is a nonfunctional property, because the time units are mea-
sured in real time. We call the problem of checking such non-
functional properties thetiming analysisproblem. Like cor-
rectness, timing analysis also requires building a model of
the real-time system.

As presented above, both the correctness and timing anal-
ysis problems areanalysisproblems. They can also be turned
intosynthesisproblems, where we look for methods that help
resolving the choices that need to be made during implemen-
tation. Some of these choices are imposed by external con-
straints; for example, the execution platform and network
may be fixed because of power consumption or economic
reasons. Many other choices, however, are often left to the
programmer or the compiler. For example, the programmer
must decide which concurrent components to group into a
single sequential thread. The compiler must decide, in case
there are two independent computations, in what order to per-
form them. Such decisions are often taken in an arbitrary or
ad hocmanner. Instead, they should beguidedby correctness
and timing requirements.
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In Section III, we propose a modeling framework that ad-
dresses the correctness and timing analysis problems. We do
not address the synthesis problem, although we recognize it
as an important challenge [1].

B. Synchronous and Asynchronous Real Time

Current practice in real-time systems design follows two
well-established paradigms, namely, synchronous and asyn-
chronous.

The synchronous paradigm [4] has been developed in
order to better control reaction times and interaction with
the external environment. It assumes that a system interacts
with its environment by performing global computation
steps. In a step, the system reacts to environment stimuli
by propagating their effects through its components in a
well-defined order (causality order). The synchrony as-
sumptionstates that the system’s reaction is fast enough
with respect to the environment. In practice, this means that
environment changes occurring during a step are treated
at the next step and implies that responsiveness and pre-
cision are limited by step duration. Hardware description
languages (such as VHDL) and the so-called synchronous
languages (such as Esterel [5], Lustre [17], and Signal [16]),
adopt the synchronous paradigm. These languages are used,
among others, in signal processing and automatic control
applications.

Synchronous programs are typically implemented as a
single task that executes a read/compute/write loop. Simple
scheduling policies are employed to resolve concurrency
of components, e.g., by serialization of the causal order
mentioned above. This is typically done only once, at
compile-time, avoiding scheduling overhead at run-time.
Moreover, an operating system is often unnecessary. For
correct implementation, care should be taken to verify the
synchrony assumption, for instance, by ensuring that the
execution time of a reaction is not too long.

The asynchronous paradigm arose from themultitasking
execution model. It does not impose any notion of global ex-
ecution step. The concurrent components (threads, tasks, or
processes) proceed each at its own pace and communicate,
for instance, by message passing. Therefore, this paradigm is
particularly suitable for distributed systems. Languages such
as ADA-95 [36], C, and Java adopt the asynchronous para-
digm. When concurrency operators are not explicit, they are
provided through the use of thread libraries. Note that these
languages are more general purpose than the synchronous
languages mentioned above.

Implementation of asynchronous languages typically
relies on an operating system. The latter is responsible
for scheduling, which is usually based on static priorities.
Real-time scheduling theory (e.g., [11], [12], [18], and [32])
provides techniques, such asrate-monotonicanalysis [26],
that guarantee satisfaction of simple time constraints, such as
deadlines. Unfortunately, these results are often applicable
only to simple models, and are difficult to generalize.

Neither of the two paradigms faces the implementation
challenges in a satisfactory manner. One of the difficulties in
the synchronous paradigm is that the synchrony assumption

is not always easy to meet, in particular when high respon-
siveness to the environment is required. Another drawback is
that modularity cannot be easily handled; for instance, it is
hard to compile synchronous programs separately and then
link them together or with nonsynchronous implementations.
The latter is a problem in practice, since in large projects,
software is usually provided by different teams. On the other
hand, the asynchronous paradigm results in less predictable
implementations, which are hard to analyze.

For advanced real-time applications, it is desirable to com-
bine the synchronous and asynchronous paradigm for both
application software and implementation. We need program-
ming and specification languages combining the two descrip-
tion styles, as some applications have loosely coupled sub-
systems composed of strongly synchronized components.

Even in the case where purely synchronous or asyn-
chronous programming languages are used, it is interesting
to mix synchronous and asynchronous implementations
to cope with inherent limitations of each paradigm. For
instance, for synchronous languages, making the scheduling
of components within a step more sophisticated can result in
a system that is more sensitive to environment changes. It is
also possible to relax synchrony at implementation level by
mapping components solicited at different rates to different
nonpreemptable tasks.

Proposals of real-time versions of object-based languages
such as Java [21], [28] and UML [15], provide concepts
and constructs allowing to mix the two paradigms and
even to go beyond the distinction between synchronous and
asynchronous. In principle, it is possible to associate with
objects general scheduling constraints to be met at run-time.
The concept of dynamic scheduling policy should allow
combining the synchronous and asynchronous paradigms
or, most importantly, finding intermediate policies corre-
sponding to tradeoffs between these two extreme policies.
The development of technology enabling such a practice is
certainly an important work direction.

III. M ODELING FRAMEWORK

In this section, we propose a modeling framework that al-
lows relating the properties of the application software and
those of the implementation. In our discussion, we will limit
ourselves to single-processor implementations.

A. The Elements of the Framework

The elements of our modeling framework are depicted in
Fig. 2.

The model of the application software is shown at the
top of the figure. The application software is made up of a
number ofcomponents, which are conceptually executing
concurrently. In the figure, a distinction is made between
components responsible for the interaction with the envi-
ronment (shaded area on the left of the figure) and com-
ponents performing the computation (shown on the right).
Sometimes, owing to the abstractions made at the high level
(e.g., assumptions such that the software is alwaysreceptive
to the environment), the environment interface components
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Fig. 2 The elements of the modeling framework.

are not explicit, but implied by the semantics of the language.
The same is true concerning the interaction between concur-
rent components.

During implementation, the concurrent components are
mapped into one or moretasks. A task is a sequential process.
Since tasks are sequential, when several high-level concur-
rent components are mapped into the same task, their con-
currency must be resolved. This is a scheduling problem.
The order of execution of the concurrent components within
a task is determined either at compile-time (as is typically
done in synchronous languages) or at run-time (e.g., ROOM
[29]). A second level of scheduling is required when there are
more than one tasks. This appears as “Scheduler” in Fig. 2.
The scheduling policy is usually provided by the operating
system (e.g.,fixed-priority scheduling) and the choice is to
apply the policy to the current set of tasks (e.g., assign a
priority). It may also be the case, however, that the sched-
uler is “custom-designed” for a particular application (e.g., a
time-triggered cyclic scheduler).

Schedulers are timed systems that manage shared re-
sources so as to respect the timing requirements of the tasks
and of the environment. Typical timing requirements are
deadlines about the action completion and task arrival times.
Usually, schedulers apply scheduling policies to choose
among pending requests for access to resources. Methods
for modeling schedulers have been proposed in [2].

The interactions between components of the application
software must also be explicitly implemented. For compo-
nents grouped into the same task, interactions are often im-
plemented by the compiler, using shared variables read and
written by the components. In general, the intertask com-
munication mechanisms provided by the operating system
or any other middleware (e.g., Java Virtual Machine) can
be used. The implementation of component interactions ap-
pears as “Resource management and Task synchronization”
in Fig. 2.

The interface with the environment needs to be imple-
mented as well. Concerning inputs, this is typically done
using two techniques. The first is the use ofinterrupts, and
can be seen asenvironment-driven: whenever some external
device detects a change in the environment, it raises an inter-
rupt, and an interrupt handler is called. The second technique
is the use ofsampling, and can be seen asprogram driven:

whenever the program is ready to accept new inputs, it calls
some device-driver routines that gather data from the sensor
devices, and use them in their computation. Concerning out-
puts, no standard method exists. Sometimes, the outputs are
written throughout the computation by calling special de-
vice-driver routines. Sometimes, the outputs are gathered and
written at the same time, at the end of the computation or at
the end of a period.

In Fig. 2, a distinction is made between the environment
and the execution platform. Although this distinction reflects
reality, it is sometimes not important at modeling level. In-
deed, for reasons of complexity, the platform cannot be mod-
eled precisely, and is therefore abstracted as a nondetermin-
istic “player” that interacts with the running program in a
similar way as the external environment. In our methodology,
the execution platform will be abstracted merely as a set of
nondeterministic delays. Accurate bounds on these delays
are crucial for faithful modeling.

B. Correctness

We now propose a formal modeling framework that al-
lows us to reason precisely about correctness of a real-time
system (implementation) with respect to its application soft-
ware (specification). In summary, both the application soft-
ware and the real-time system are seen asreactive machines,
which consume inputs from the environment and produce
outputs. Nevertheless, these machines operate in different
time domains. Therefore, additional functions are needed in
order to relate the two time domains. We introduceuntiming
functions, which map real-time inputs and outputs into log-
ical-time ones. In what follows, will denote the logical time
domain and the real-time domain.

Inputs and Outputs:Let be the set of allinput values
and the set of alloutput values. We assume that and

areunion closed; that is, they are power sets of a given
set. For example, if the application is event triggered, then if

and are events, then {, } is also an event. Union clo-
sure is assumed for technical reasons and is not a restrictive
assumption.

Inputs and outputs are partial functions on time domains.
We denote by (resp., ) the set of all
inputs (resp., outputs) on the time domain.

The Model of the Application Software:We view the ap-
plication software as a function

(1)

The output of is, in general, a set, meaning that the applica-
tion-software is allowed to be nondeterministic. This helps,
for instance, to model multithreaded programs.

The Model of the Real-Time System:Similarly, we view
the real-time system as a function

(2)

The nondeterminism of reflects the uncertainty in the be-
havior of the execution platform.
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The Untiming Functions:Since the program and the im-
plementation are not generally defined on the same time do-
main, we need some way to relate the behaviors on the two
different time domains. This is done with the untiming func-
tions.

The function

(3)

maps every input on the real-time axis to some input on
the logical-time axis . We have a similar function for out-
puts, namely

(4)

Examples of untiming functions are given in Section III-C.
We consider that all the functions, , , and

are transducers, i.e., they are monotonic with respect to the
prefix order: if is any one of these functions, for anyand

, is the prefix of some function in the set
, where is the restriction of in the interval

[0, ].
Correctness:Correctness is defined with respect to an en-

vironment and untiming functions and
. Given a model of the application softwareand a

model of the real-time system , we say that implements
, with respect to , , and , if

(5)

where the definition of is extended from inputs/outputs
to sets of inputs/outputs in the natural way.

The notion of correctness is illustrated by Fig. 3.
As in any implementation relation, we should avoid having

trivial implementations. Therefore, we require that

(6)

Timing Analysis: Timing analysis is performed with re-
spect to a given environment and a given set oftiming re-
quirements, . Formally, is a relation between inputs and
outputs in the real-time domain, that is,

. The meaning is that, given an input
, an output is legal iff .
Then, given a model of the real-time system, satis-

fies , if

(7)

C. Modeling Methodology

We now propose a methodology for obtaining the elements
of the formal modeling framework, , , , and .
The methodology is based on the principle that pieces of soft-
ware that represent system behavior (timed or untimed) are
models. Complex models can be obtained by composition of
software components. In principle, there are no specific re-
quirements about the languages used to write the software
(e.g., formal semantics, model of execution). Nevertheless,

Fig. 3 Illustration of the correctness notion.

the specific features of the language used may have an im-
portant impact on the possibility to construct more or less
efficiently the models and to apply verification techniques.

The application software is a reactive program. Thus, the
function can be defined by the correspondence between
(logical-time) inputs and outputs when the program is exe-
cuted.

The function can be obtained by building a model ac-
cording to the decomposition shown in Fig. 2. Models of
tasks and their interaction and of the execution platform can
be composed by adding time constraints about durations of
atomic actions in tasks and of platform primitives. This re-
quires, in particular, decomposing tasks into atomic (nonpre-
emptable) sequences of statements, and estimating their ex-
ecution times on the target platform. Adding timing infor-
mation about execution times (e.g., lower and upper bounds)
allows abstracting from all the details about the underlying
platform.

The functions and relate inputs and outputs on
the real-time axis to inputs and outputs on the logical axis.

abstracts away from real time by mapping into the
same logical instant independent events or events close
enough in the real-time scale. The logical ordering takes
into account causal relations between events. Thus,can
be considered as an abstract specification of an input event
handler (see Section IV-B)

If is an input of the real-time system, then defines
a time base, that is, an increasing sequence of instants
in the following manner. As is a transducer, under some
technical continuity conditions we have that, for any natural
number , there exists a minimal real number, such that

, where is the restriction of
in the interval (0, ]. In other words, the logical input at

instant depends only on the input values in the interval (0,
].
In practice, the time base can be defined by imposing

separability constraints which guarantee that significant
changes of the environment are not mapped into the same
logical instant. These constraints can be any combination of:
1) constraints restricting environment state changes within
two consecutive instants of the time base, e.g., values of a
variable or the integral of some variable remain within some
bounds; and 2) time constraints maintaining the distance be-
tween two successive instants of the time base close enough
to separate significant input changes, e.g., sampling.The
notion of a separatorevent is useful to define untiming
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functions. An event is a separator if distinct occurrences of
this event are mapped into distinct logical instants.

For and , some examples of untiming input
functions are the following.

1) A very simple case comprises sampling functions
where a periodic event is a separator; that is, for
any and , , where
is the sampling period. This is a typical situation in
time-triggered systems [23].

2) Another simple case corresponds to the situation
where all the input events are separators. This means
that the application receives the input events one by
one in the order they arrive; that is, for anyand

, , where are the
arrival times of all the events.

Synchronous languages often assume that the logical input
at instant depends only on the inputs in the interval ( ,

], i.e.,

(8)

If the input takes finitely many values in any interval
of the time base, then is taken to be equal to

, i.e., the logical input is the union all the
events that occurred in theth interval.

The untiming function can be defined in a similar
manner.

The model of the environment is obtained by using
more or less strong abstractions, which reduce the complex
(and often not precisely known) dynamics of the environment
to a set of input/output behaviors subject to real-time con-
straints. For example, we could model the environment as a
set of inputs arriving periodically or with a minimum inter-
arrival time. Although is not, strictly speaking, part of the
real-time system’s model, it is necessary to close a system’s
description in order to study the dynamics of the interaction.

D. Tool Support

The application of the previously described methodology
even to simple real-time systems is not tractable without tool
support. It is possible, under some conditions, to relieve the
user from tedious modeling work by automating model gen-
eration.

Depending on the language in which the application soft-
ware is written, it is sometimes possible to establish a corre-
spondence between atomic sequences of actions at task level
(target code) and sequences of statements at application soft-
ware level (source code). In such a case, the source code can
be annotated with time constraints on the execution time of
the target code on the given platform. Such constraints can be
derived using, for instance, execution time estimation tech-
niques [27].

There are tools, such as METAH [8] and GIOTTO [19],
that provide support for building and analyzing models of
real-time software. Our methodology, implemented in the
tool TAXYS [6], [13], is based on the idea that compila-
tion or synthesis techniques can be used for this purpose. In
TAXYS, the compiler is engineered to generate instrumented

code, where the added statements encode the execution of the
real-time model, according to the annotated time constraints.

IV. TAXYS

The structure of TAXYS is depicted in Fig. 4. A typical
embedded real-time program is decomposed into a control
part, written in Esterel, and a data manipulation and compu-
tation part, written in C. The program is compiled with the
Esterel compiler SAXO-RT [35] that generates sequential C
code. The execution platform is a monoprocessor hardware
architecture [e.g., a digital signal processor (DSP) without a
real-time operating system] where the Esterel program runs
as a single task.

A. Overview of the Tool

The application software is composed of the Esterel pro-
gram and a high-level description of the event handler. The
latter determines the way inputs are taken into account by the
program to generate an image of the state of the environment
that is consistent with the synchronous semantics. The event
handler is specified as a buffer characterized by its size and
the list of separator input events. This information is used to
determine which input events are consumed by the program
at each reaction.

The real-time system consists of the compiled program
and the event handler, which are composed with the environ-
ment that produces the inputs. Conceptually, the behavior of
each component is modeled as a timed automaton [3], and
the model of the overall system is obtained by an appropriate
composition operator. To extract a timed model from the ap-
plication software, we assume that time elapses only when
the program is executing the data manipulation functions
written in C. These functions are annotated with intervals de-
fined by the best and the worst execution times, which can
be estimated with existing techniques (e.g., profiling, static
analysis, etc.) for analyzing software performance. The as-
sumption that the C code that implements the control struc-
ture takes no time is not restrictive. It is straightforward to
build a finer model that takes into account the execution time
of the control part of the code.

The behavior of the environment is also given as an anno-
tated Esterel program. Since synchronous programs are de-
terministic, Esterel has been extended with a nondetermin-
istic choice statement (callednpause) to model nondetermin-
istic behavior of the environment [35]. This statement is not
to be used for programming the application software. Clearly,
having the same language for the program and the environ-
ment is not a fundamental issue. Nevertheless, it greatly sim-
plified the development of the tool suite and enhanced its us-
ability.

The program and the environment are compiled with
SAXO-RT. The compiler has been re-engineered to use the
annotations (pragmas) and the specification of the event
handler to appropriately instrument the implementation (C
code). The role of the instrumentation is to substitute the
actual execution times of the C functions by the intervals
provided by the annotations. This is done in such a way
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Fig. 4 TAXYS.

that the execution of the instrumented C code generates the
timed automaton model of the system. In other words, the
instrumented implementation is an implicit representation
of the timed model (as the implementation is an implicit
representation of the synchronous model).

The instrumented implementation is linked with the
KRONOS [14] timing verification library to obtain the
on-the-fly model checker of the real-time system. This
allows checking correctness and verifying timing require-
ments.

B. Checking Correctness

TAXYS checks correctness [see Condition (5)] by ver-
ifying a reachability property on the timed model of the
real-time system. What follows is an explanation of how this
is actually done.

Let be the model of the Esterel program. We denote
by the function modeling the execution of the program
according to the time constraints derived from the annota-
tions associated with the C functions. characterizes the
timed automaton constructed by the compiler. Hence, for any

, and , we have that

(9)

where is the time that the output is produced
when the input value is provided at time (i.e., is
the execution time for ).

The model of the real-time system is the result of the
composition of the event handlerand of the function as
depicted in Fig. 5. We assume that is the time base
defined by the response times of . That is, if an input
value is provided at time , then will terminate the cor-
responding computation at time , which is also the start
time of the next computation step. We assume that the event
handler computes in zero time an output .
Thus, the model of the real-time system is such that, for
any input

(10)
In our case, the function simply forgets real-time infor-
mation, i.e.,

(11)

Fig. 5 TAXYS model of the real-time system.

Fig. 6 Simple example.

Thus, the correctness condition, of (5) is reduced to

(12)

Thus, it is sufficient to show that the event handler satisfies

(13)

Let be the time base induced by and defined
by the arrival times of the separator events. To respect the
semantics of Esterel, the function is such that

(14)

The event handler model records all the events occurred in
the interval ( , ]. Notice that by definition, there is only
one separator in any interval. The contents of the event han-
dler are consumed at times . To respect the correctness
condition (13), the event handler at time should contain
all the events in the interval ( , ]. Thus, . Fur-
thermore, as the event handler should not contain
two separators in the same interval.

The model of the event handler is a buffer with a partic-
ular error state. This state is reached when the environment
generates a separator and there is already a separator in the
buffer.

Hence, checking correctness amounts to verifying that the
error state is not reachable.

C. A Simple Example

We illustrate the approach with a simple example depicted
in Fig. 6. The program is composed of two parallel modules
that control some physical device. The filteris triggered
by the input cyclically emitted by a sensor with
a minimum delay of 65 ms and a maximum of 70 ms be-
tween each occurrence.performs some computation using
the data and stores the result in a shared variable (which is
not modeled). This computation takes between 20 and 25 ms.
The computed value is then used by the controllerto ap-
proximate the state of the device at that moment and apply
the desired control. The controlleris periodically triggered
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Fig. 7 (Left) Program. (Right) Environment.

by the input . Computing the control takes be-
tween 10 and 15 ms. Controls should be applied every 100
ms with an admissible delay of at most 40 ms. The value used
to compute the control must be less than 85 ms old.

The Esterel code of the program is depicted in Fig. 7. The
comments between%{ and}% are the annotations carrying
the timing information. The execution times are given as
intervals. VariablesSD and PP are clocks as in the timed
automata theory, that is, they are continuous variables that
progress at equal rate. The assignmentSD:=age(Sen-
sorData) setsSD to the time elapsed since the arrival in
the buffer of the eventSensorData consumed in the cur-
rent reaction. The constraintPP 40 SD 85 expresses
the requirements: the deadline for emitting the control is 40
ms and the data used to compute it is at most 85 ms old. The
code of the environment is depicted in Fig. 7. VariablesX
andY are clocks that are reset to 0 each time the environment
emitsSensorData andPulsePeriod , respectively.

The corresponding (extended) timed automata models are
depicted in Fig. 8 and 9. Recall that the automata are not con-
structed explicitly. Their behavior is generated on the fly by
the verification engine (see Fig. 4) by executing the instru-
mented C code produced by the compiler SAXO-RT. Dotted

arrows in Fig. 8 and 9 represent eager transitions that must
happen as soon as they become enabled. The “react” transi-
tion is the beginning of a reaction that starts as soon as there
is an event in the buffer. Notice that, between the two possible
orderings which are consistent with the semantics of Esterel,
the sequential code generated by the compiler SAXO-RT
schedules the filter first when both events are simultane-
ously present. The event handler is shown in Fig. 10. The
capacity of the buffer is one, and both events are specified to
be separators. The clockis used to record the time elapsed
since the arrival of the last event or, equivalently, to measure
the age of the event.

To verify the correctness of this example, TAXYS runs in
less than a second, generates about 300 symbolic states and
concludes that the real-time system is correct (i.e., the “error”
state of the event handler is not reached) and that the timing
requirements are satisfied. A symbolic state is composed of
the state of the program (i.e., a valuation of the signalsSen-
sorData andPulsePeriod as present or not, and a con-
trol point), the state of the event handler (i.e., a configuration
of the queue), the state of the environment (similar to the
program), and a constraint on the clocks (i.e., a difference
bounds matrix structure used by KRONOS.)
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Fig. 8 Program’s model.

Fig. 9 Environment’s model.

Fig. 10 Handler’s model.

D. Experimental Results

TAXYS has been applied in several industrial case studies:
Radio Link of a GSM Terminal:This case study is re-

ported in [7]. It consists in the programming and verification
of the radio link of a global system for mobile communi-
cations (GSM) terminal developed by Alcatel. We describe
here a small part of the application, which is composed of two
modules. When the event arrives, the first module
takes 50 ms to prepare the radio front end of the mobile ter-
minal in order to receive data. Then, when the event
arrives, it goes through a demodulation phase, that takes be-
tween 80 and 100 ms, followed by a decoding phase that fin-
ishes in 20 ms. The second module is triggered by the event

and calculates the frequencies on which the data are
going to be received, and completes in 40 ms. The compu-
tations are subject to the time constraints annotated in the

Fig. 11 ISDN prototype phone.

code. The code of the full application developed by Alcatel
consists of 815 lines of Esterel and 48 000 lines of C. The
application was validated for 62 test environments provided
by Alcatel. Four scenarios were found to lead to deadline vi-
olations caused by a wrong scheduling of calls. These errors
were corrected by slightly changing the Esterel code.

ISDN Prototype Phone:This case study is reported in
[13]. It deals with a prototype phone carrying simultaneously
voice and data produced by a graphic tablet, implemented on
a 32 million instructions per second DSP. The prototype has
an audio input channel sampled at 8 kHz that is connected
to the microphone, an RS232 input channel carrying data
from the graphic tablet, and an input channel sampled at 8
kHz to retrieve audio and graphic data sent by the network
(TNR) (see Fig. 11). Processing audio data consumes 3900
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Fig. 12 Automated vehicle control software architecture.

Table 1
Experimental Results for the Prototype Phone.

central processing unit (CPU) cycles over the 4000 CPU cy-
cles available every 125s. Graphic data are compressed
by a vectorization algorithm that consumes sporadically be-
tween 15 000 and 20 000 CPU cycles. The program consists
of 258 lines of Esterel and 3000 lines of C code. We have
used TAXYS to analyze the relationship between the size of
the input buffers and the arrival rate of graphic data. We have
analyzed the behavior of the system with three different en-
vironment models. For each one, we have experimented with
buffers of sizes 5 and 6. In and , the envi-
ronment model is composed of two strictly periodic and in-
dependent tasks (the first carrying audio data at 8 kHz and
the second the graphic tablet data at 100 Hz). In
and , the second task is aperiodic and emits bursts at
rates varying nondeterministically between 25 and 100 Hz.
In and , there is an additional periodic task
that models switching between several audio modes. In all
cases, the 8-kHz periodic event is specified to be separator.
The results presented in Table 1 show that the buffer needs
to be of at least size 6 for the implementation to be correct.
The current prototype was unable to handle the complexity
of .

Automated Vehicle Control Software:This case study is
reported in [33]. It involves the software developed by the
PATH Advanced Vehicle Control and Safety Systems project

at the University of California at Berkeley [34]. This soft-
ware is responsible for controlling a set of cars moving au-
tonomously in aplatoonformation (one car behind the other,
with a small distance, e.g., 4–6 m, between them), on the
highway and at high speed (e.g., 65 mi/h). The software con-
sists of a set of processes running concurrently on a PC,
reading data from various sensors (e.g., radar, speedometer,
accelerometer, magnetometer), writing to actuators (throttle,
brake, and steering), and using radio to communicate data
to other vehicles. Fig. 12 shows the tasks and their interac-
tions. Each arrow labeled with a variable name means that the
originator of the arrow updates the variable, and the target of
the arrow reads the variable. Periodic tasks are those labeled
with a period in milliseconds. Event-driven tasks are those
with dashed arrow pointing into them, labeled with the name
of the variable the task sets a trigger for. The control part of
the system has been reprogrammed in Esterel. Fig. 13 shows
the Esterel code of two of the tasks. The size of the buffer
is one, andatmioeI is the separator event. We have veri-
fied with TAXYS that the implementation is correct and that
all periodic tasks complete their execution before the next
period. TAXYS explored the entire reachable set (2022 sym-
bolic states) in a less than a second.

V. CONCLUSION

We propose a modeling methodology for real-time sys-
tems. The methodology is based on the composition of timed
models obtained by instrumenting software components
used in the implementation. TAXYS is an application of the
methodology to the simple case of synchronous real-time
applications implemented as a single task. TAXYS combines
three major advantages.

1) It is easy to use because the model of the real-time
system is generated automatically by compilation of
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Fig. 13 Esterel program augmented with timing information.

annotated programs. The user has to learn only a min-
imal annotation language to express timing specifica-
tions.

2) The generated model faithfully represents the behavior
of the real-time system. This is because the model of
the latter is the code generated by the Esterel compiler,
instrumented with statements that model the passage
of time.

3) Possibility of analysis as the generated model is simple
enough and is based on well-founded semantics.

The application of the general modeling methodology to
other languages is more difficult and raises some nontrivial
problems.

First, the modeling methodology is implicitly related to
an implementation methodology for building the real-time
system as a succession of steps involving the development
of software components and their integration. The lack of a
clearly defined implementation methodology is an obstacle
to the application of the modeling methodology.

Second, when the application software is written in gen-
eral purpose languages, such as C or Java, without built-in re-
active execution semantics, model generation requires anal-
ysis to identify observable states and associated computation
steps. The analysis task can be further hardened by features
such as multiple threads and dynamic process creation.

Finally, a key issue for the application of the methodology
is the use of adequate composition operators for modeling
software consisting of heterogeneous components, such as
synchronous and asynchronous, or event triggered and time
triggered [24], [22]. Related to this is the problem of cor-
rectly adding time constraints to untimed models. “Correct”
means, for instance, to avoid artifacts of the mathematical
model (e.g.,zenobehaviors) that do not correspond to real
phenomena. Also, in order to have a modular modeling ap-
proach, it is desirable that time constraints are added in a
compositional manner [30].
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