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Abstract—Efficient and fully automatic building outline ex-
traction and simplification methods are highly demanded for
3D model reconstruction tasks. In spite of the efforts put into
developing such methods, the results of the recently proposed
methods are still not satisfactory, especially for satellite images,
due to object complexities and the presence of noise. Dealing with
this problem, in this article, we propose a new approach which
detects rough building boundaries (building mask) from Digital
Surface Model (DSM) data, and then refines the resulting mask by
classifying the geometrical features of the high spatial resolution
panchromatic satellite image. The refined mask represents finer
details of the building outlines which are close to the original
building edges. These outlines are then simplified through a
parameterization phase, where a tracing algorithm detects the
building boundary points from the refined masks and a set of
line segments is fitted to them. After that, for each building,
the existing main orientations are determined based on the
length and arc lengths of the building’s line segments. Our
method is able to determine the multiple main orientations
of complex buildings. Through a regularization process, the
line segments are then aligned and adjusted according to the
building’s main orientations. Finally, the adjusted line segments
are intersected and connected to each other in order to form a
polygon representing the building’s outlines. Experimental results
demonstrate that the computed building outlines are highly
accurate and simple, even for large and complex buildings with
inner yards.

Index Terms—Building detection, DSM, High resolution satel-
lite image, Outline extraction, Outline simplification

I. INTRODUCTION

EXTRACTING buildings and reconstructing their full 3D

models from remotely sensed images have been the focus

of research by many scientists for over two decades [1], [2]. In

many applications such as urban planning, network planning

for mobile communication, tourism information systems, and

disaster monitoring, 3D building models of urban areas play an

essential role. For the latter they facilitate monitoring natural

or man-made disaster, by providing a comprehensive view of

structures and activities, which leads to better planning and

providing quicker response [3].

Despite the existence of various methods for 3D building

model reconstruction, developing efficient and fully auto-

T. Partovi+, R. Bahmanyar+,∗, T. Krauß, and P. Reinartz are with
the Remote Sensing Technology Institute (IMF), German Aerospace
Center (DLR), Wessling, Germany (e-mail: tahmineh.partovi@dlr.de;
reza.bahmanyar@dlr.de; thomas.krauss@dlr.de; peter.reinartz@dlr.de ).

+The corresponding authors.
∗The author is also affiliated with the Munich Aerospace Faculty, Munich,

Germany.
This work was supported in part by GAF AG company, Munich, Germany.

matic systems is a topic which is still approached by many

researchers [2], [4]. Before reconstructing a building’s 3D

model, the building components such as outlines, should

be extracted from the given images if the footprint is not

available [5]. To this end, the building should be discriminated

from other existing objects in the images such as vegetation,

soil, and water surface. Following this, the parameters of the

building components are computed.

A conventional approach for reconstructing a building’s

3D model is to extract its geometrical components (e.g.,

lines, corners, planes) from Digital Surface Model (DSM)

data. The extracted components are then grouped to form

the 3D model of the building, considering their geometrical

relationships [6]. Since buildings are elevated objects, the

height information provided by DSM data helps distinguishing

them from the other objects with a similar color or gray value

(e.g. building with flat roofs from asphalt roads). DSM data

is usually generated by applying stereo matching techniques

to the acquired images from optical stereo satellite or aerial

imaging equipments, or by using point clouds derived from

LiDAR data. However, due to scene complexities (e.g., clutter,

occlusion) and deficiencies in the techniques for generating

DSM data such as the stereo matching methods, the resulting

DSM data usually suffer from imperfections (e.g., gaps),

especially at the building edges [6], [7]. For recovering gaps

in DSM data, interpolation methods have been used by a

number of previous works [8], [9]. Nevertheless, the obtained

DSM data are still unsatisfactory due to the deficiencies of

interpolation such as the decreasing sharpness of DSM data

in building boundary areas [7]. To remedy this shortcoming,

a number of previous works propose to integrate DSM data

with additional sources of information, such as 2D cadaster

maps and optical images [10], [11], [12].

In order to use the advantages of the DSM data while

remedying its imperfections, in this article, we propose a

new method which integrates DSM data with high spatial

resolution panchromatic images to improve the building masks

especially at the building boundaries. Using the resulting

masks, we further develop a novel automatic method for

optimized extraction and simplification of building outlines.

Through a series of experiments, we show that our method

can be generalized to various types of buildings, and that it is

robust even for complex building structures.
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A. Related Works

Generally, the existing methods for building boundary ex-

traction and 3D model reconstruction are categorized into

model-driven and data-driven strategies [13].
1) Model-driven strategies: For reconstructing building

roofs, model-driven strategies find optimum models of the

roofs by fitting predefined parameterized roof models to given

point clouds of buildings and minimizing a cost function [14],

[15], [16].

Gerke et al. [5] introduced a hierarchical method for fitting

rectilinear polygons to building boundaries. In this method,

the building boundaries are detected and discriminated from

surrounding objects such as trees, using DSM data of aerial

imagery and Normalized Difference Vegetation Index (NDVI).

As a next step, the main orientation of each building is

computed by using geometric moments. Then a rectangle

is fitted to the building outline considering the building’s

main orientation. After that, the fitted rectangle is subtracted

from the building mask, and a new rectangle is fitted to

the remaining building area. The method iterates until all

building parts become surrounded by rectangles. Although

this method shows very good performance in the case of

rectangular buildings, it fails for non-rectangular ones.

Dutter [17] proposed a similar model-driven method based

on a Minimum Bounding Rectangle (MBR) approach. As

opposed to the previous method [5], this method is able

to fit polygons to the outlines of the buildings with T, L,

and Z shape structures. Arefi et al. [18] proposed a method

based on Combined Minimum Bounding Rectangle (CMBR)

approach (which has been introduced mainly for regularization

of non-rectilinear polygons) and Random Sampling Consensus

(RANSAC) to extend the previously developed methods, in

order to adapt them to more complex buildings such as the

buildings with non-perpendicular edges.

Brédif et al. [19] developed a method for extracting building

boundaries directly from DSM data without any building

detection step. Rectangular building outlines are extracted

from DSM data using a marked point process of rectangles.

The optimum configuration of the rectangles is then found

based on Reversible Jump Markov Chain Monte Carlo (RJM-

CMC) coupled with a simulated annealing algorithm. This

optimization process, minimizes an energy function which

fits rectangle edges to height discontinuities of the DSM

data and penalizes overlaps of different objects. As a next

step, the rectangle edges are elongated to intersect each other

and form line segments. Then a graph of the line segments

is generated. Finally, using a graph cut technique, the line

segments supporting the rectangle edges are arranged to create

the final building outlines.

Using a novel active shape detection approach, Sirma-

cek et al. [7] proposed a method to extract building bound-

aries from DSM data of high and low resolution satellite

images. Their proposed method detects building junctions

and endpoints from building skeletons. The building is then

divided into various pieces and a box-fitting algorithm is

run on each piece, starting from the building piece’s center

point. The active rectangular shape grows until an energy

function, considering the distance between the rectangle and

a set of previously extracted canny edges, is minimized. This

algorithm is able to approximate building shapes even if the

building edges are not completed or closed; however, it is very

slow and not very satisfactory for large and complex buildings.

2) Data-driven strategies: The data-driven strategies such

as region growing [20], Hough transform [10], and

RANSAC [21] extract roof planes and other geometrical

information of buildings from their point clouds or dense

meshes. The building roofs are reconstructed by assembling

the extracted roof planes and determining the vertices, the

ridge lines, and the eaves [4].

In order to delineate building boundaries, the data driven

methods extract parameterized lines by fitting lines to build-

ing’s boundary points using the Douglas-Peucker line sim-

plification algorithm [22], graphical models, least squares,

Hough transform, or RANSAC. All these methods require a

regularization step followed by a least squares adjustment [23].

Shan and Sampath [24] proposed a method which detects

buildings and extracts their boundaries from LiDAR point

clouds. This method separates planar from nonplanar points

by analyzing the eigenvalues of each roof point of a building

within its Voronoi neighborhood. Then it clusters all the planar

points using a fuzzy k-means method. After that, a convex hull

algorithm is applied to the clustered points in order to trace the

points lying on the building boundaries. Due to the irregular

shapes of building boundaries and the presence of artifacts, the

traced building boundaries need to be regularized before being

used for determining the parameters of the building outlines.

To this end, the authors consider the orientation of the longest

boundary line as the main orientation of a building. Using a

threshold, all the other boundary lines are then classified as be-

ing parallel or perpendicular to the building’s main orientation.

After that, the boundary lines are aligned according to their

class using a least squares adjustment algorithm. The proposed

method by Shan and Sampath [24] fails in the case of non-

rectangular buildings (i.e., buildings with non-perpendicular

edges) due to considering only rectilinear objects.

Sester and Neidhart [23] proposed a new method for

building boundary extraction which can be generalized to

non-rectangular buildings since it is operating independent of

the buildings’ main orientations. This method classifies the

elevated points of a given point cloud and group them into

a number of blobs corresponding to the existing buildings.

The building outlines are then extracted from the obtained

jagged blobs as a set of straight lines using RANSAC (which

can robustly extract lines from noisy data [25]). As a next

step, a least squares method is used to adjust and combine the

straight lines to form meaningful building outlines, where the

parallelism and rectangularity constraints of the consecutive

lines are imposed to the least squares adjustment. Inspired

by this work, Guercke and Sester [26] later proposed a new

method which employs Hough analysis instead of RANSAC

algorithm for extracting line segments. The generated line

segments are then refined and adjusted to the building’s

original shape, using a least squares adjustment process.

Sohn et al. [4] developed a method based on BSP-tree

optimization. The developed method detects building regions

by computing NDVI from IKONOS images and segmenting
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Fig. 1. Overview of our proposed building outline extraction method.

the corresponding LiDAR point clouds. For building bound-

ary extraction, the authors introduced a method based on a

combination of data-driven and model-driven strategies. This

method extracts straight lines by the Burns algorithm [27] from

IKONOS images. The lines shorter than a threshold are dis-

carded and two rectangular boxes with predefined dimensions

are considered around each line. The main orientations of the

buildings are determined according to the obtained outlines.

Finally, a BSP-tree algorithm is applied in order to receive the

boundaries of the 3D models.

B. Methodology Overview

In this article, we introduce an improved framework, in

comparison to the existing approaches, focusing on refinement

of DSM-based building masks and simplification of the ex-

tracted building outlines. It concentrates on DSM derived from

satellite data, where the DSM quality is low. Fig. 1 shows the

main steps of our proposed method. In the mask refinement

step (the blue blocks in Fig. 1), we enhance building bound-

aries by applying a classification method (e.g., Support Vector

Machine (SVM) [28]) to the primitive geometrical features of

their corresponding high resolution panchromatic images. In

our experiments, we use Scale Invariant Feature Transform

(SIFT) algorithm [29] to extract image primitive features. Ex-

perimental results demonstrate that this enhancement leverages

the precision of the extracted building outlines.

Furthermore, we propose a new data-driven procedure for

parameterized building outline extraction and simplification.

Our method is able to delineate building outlines in complex

scenarios, where the buildings have multiple non-rectilinear

main orientations. As illustrated by the green blocks in Fig. 1,

in order to extract a building’s outline, we trace the building

boundary points on its corresponding refined mask and a set

TABLE I
SPECIFICATIONS OF THE IMAGES USED IN OUR EXPERIMENTS.

Image Image size (pixels) GSD Roof Types

I1 745× 470 50 cm Flat

I2 400× 530 50 cm Flat

I3 350× 390 50 cm Flat

I4 400× 950 50 cm Pitched

I5 800× 450 50 cm Pitched and Flat

I6 500× 650 50 cm Pitched

I7 400× 590 50 cm Pitched

I8 950× 1300 50 cm Pitched

I9 1350× 750 50 cm Pitched and Flat

I10 820× 1070 50 cm Pitched and Flat

of line segments is fitted to them. The obtained line segments

are then regularized by finding the building’s main orienta-

tions, and assigning all the line segments to their appropriate

main orientations, where they should be either parallel or

perpendicular to their assigned main orientations. Since this

classification is performed globally for the building, despite

the close orientation distance of the line segments within a

class, they might be spatially far from each other. Therefore,

we impose a locality constraint to the class members and

regroup the non-local members with the line segments in their

neighborhood. As a next step, we propose a novel approach

based on least squares adjustment to align the line segments.

This approach considers the multiple orientations of each

building which yields a more accurate delineation of building

outlines. As final step, the aligned line segments are intersected

and connected to each other resulting in the building’s final

outline. Experimental results demonstrate that the extracted

building outlines are very close to the buildings’ original edges

even for complex buildings (e.g., buildings with inner yards

and multiple non-rectilinear main orientations).

The article is organized as follows: Section II explains the

process conducted for refining building masks. Section III

proceeds by detailing the procedure followed for extracting

building outlines including, line segment extraction, line seg-

ment regularization, and line segment intersection and connec-

tion. Section IV presents and discusses the resulting building

outlines using our proposed method. Section V presents the

conclusions.

II. BUILDING MASK REFINEMENT

In this section, we explain our proposed method for building

mask refinement on orthorectified panchromatic images. To

this end, we apply an SVM [28] classification method to the

SIFT [29] description of the image features. In our exper-

iments, we use the panchromatic images of DigitalGlobe’s

WorldView-2 for 10 sample regions of Munich. Fig. 2 shows

these images, their specifications are mentioned in Table I.

For evaluating different parts of our proposed method, they

are compared to manually generated reference data which is

exemplified in Fig. 3. (a).

In order to create DSM-based masks, the method introduced

by Krauss et al. [30] is used. This method discriminates
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Fig. 3. (a) Manually generated reference data. (b) DSM-based building mask. (c) Building mask after refinement.
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Fig. 2. Orthorectified panchromatic images used in our experiments.

the ground level objects from the higher level ones using

normalized Digital Surface Model (nDSM) [31]. The buildings

are then extracted from the surrounding patterns and clutter by

using Advanced Rule-based Fuzzy Spectral Classification fol-

lowed by height thresholding [30]. Fig. 3. (b) shows unrefined

DSM-based building mask. As illustrated in the figure, a pure

DSM-based mask usually represent rough building boundaries;

however, some patterns and objects such as shadows and trees

are incorrectly considered as building elements due to their

similar characteristics or heights.

A. Mask Preprocessing

As the first step, considering the minimum possible building

size in the given images, we remove the groups of points,

indicated as buildings by the given DSM-based masks, which

are smaller than a threshold. In our experiments, the threshold

is set to 300 pixels because at the 0.5 m resolution of our

panchromatic images, we assume only buildings that cover

areas larger than 75 m2. Then we apply a morphological

opening followed by a closing to the mask with the structuring

element for the opening larger than that of the closing’s. We

use a disc with a diameter of 3 pixels for opening and a disc

with a diameter of 2 pixels for closing. This makes the mask

large enough to cover the probable missing building edges as

well as some surrounding areas, which will be used later as

negative samples for the classification phase.

B. Primitive Feature Extraction

In order to classify image regions into building and non-

building, we describe each pixel within the masked area of

panchromatic images by a vector of its important features

using the SIFT method [29]. SIFT extracts local geometry-

based features of an image such as edges and corners. In

our experiments, each SIFT feature vector represents 128

dimensions, computed for a window of 16× 16 pixels around

each particular pixel.

C. Feature Classification

In each image, to discriminate the area covered by buildings

from the rest of the image, we randomly sample 30% of the

building and non-building candidate pixels, determined by the

preprocessed mask and manually generated reference data, as

positive and negative samples, respectively. Then we train the

SVM on the sample points. In our experiments, the SVM

parameters are selected empirically by varying the parameters

and validating the resulting model on a small set of the sample

points. Then the parameters leading to the best model are

considered for further experiments.

Since we selected the images (i.e., I1–I10) to contain diverse

building structures and environments (please refer to Table I),

sampling the training data from different images allows us to

study the effects of various roof types (e.g., flat, pitched) and

their surroundings on the resulting SVM models. For example,

in order to study model biases caused by the degree of feature

variations in the training phase, one can train an SVM model
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(a) (b)

Fig. 4. (a) Original panchromatic image and (b) its refined mask, bright and
dark green areas, together with the removed areas from the given mask, red
areas.

on I1 and I2 (which contain features only from flat roof

buildings) and test the resulting model on I4, I6 and I7 (which

contain the features only from pitched roof buildings).

SIFT descriptors are highly sensitive to building edges

compared to the other building features (e.g., patterns on

rooftops). Since SIFT is computed for a window of size

16x16 pixels, the pixels within 8-pixel distance (i.e., half

the SIFT window size) of building edges still contain edge

information. Thus, usually these pixels are classified into

the positive class forming building silhouettes with precisely

determined contours. However, the pixels within building areas

which are too far from building edges to contain building

edge information, are usually classified into the negative class.

This results in gaps within building boundaries which will

be filled in the post-processing step. Fig. 4, shows a sample

classification result in which the positive class is depicted in

bright green and the negative class in dark green and red,

where dark green refer to the gaps within building boundaries.

D. Mask Post-processing

After discriminating the regions covered by buildings, we

perform a morphological closing (with a disc of 3 pixels

diameter) followed by a gap filling method1 (with a threshold

of 400 pixels) in order to fill in the small imperfections

and gaps within the building boundaries (dark green areas in

Fig. 4). The resulting refined masks will be further used in

the building outline extraction process. Fig. 3. (c) and Fig. 4

demonstrate building masks after refinement. Although there

are still small gaps in the building areas, since usually they

do not lie on building edges, they wont influence the results

of the building outline extraction.

III. BUILDING OUTLINE EXTRACTION AND

SIMPLIFICATION

In order to extract parameterized building outlines, in this

section, we model the refined building masks as polygons.

Experimental results show that the refined masks approximate

the true position of the building boundaries (please refer to

1We employed the gap-filling function of MATLAB.
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Fig. 5. Line segment extraction process.

Section IV-A). Therefore, tracing the boundary points of a

building according to the refined mask, allows us to detect the

building’s outline. To this end, we use the modified Moore-

Neighbor tracing algorithm [32] which detects boundary points

in a consecutive manner. After that, a consecutive line fitting

procedure based on the combination of RANSAC and least

squares adjustment is applied to each group of the boundary

points in order to extract line segments.

A. Line Segment Extraction

A complete overview of the process chain followed for this

step is depicted in Fig. 5, which starts with an initial group

of three consecutive boundary points. Then Root Mean Square

Error (RMSE) distance of a next consecutive point is measured

from the last point of the initial group. If the RMSE is less

than a predefined threshold, the point will be grouped with the

previous point. Otherwise, it will be used for initiating a new

group, and to all the points within the previous group, a line is

fitted locally. The line is centered at the mean of the points, and

extends in the directions of the points’ principal eigenvector,

with the scale determined by the corresponding eigenvalue to

the principal eigenvector. This process iterates until all the

boundary points are represented by line segments. The line

segments shorter than 5 pixels are then removed because at

the 0.5 m resolution of our panchromatic images a building

length cannot be smaller than 5 pixels. Due to the irregular

shape of the structures formed by the remaining line segments

caused by the existing noise and artifacts, the line segments

need to be regularized. Fig. 6. (a) illustrates the extracted line

segments for an example building.

B. Line Segment Regularization

To refine the extracted line segments, we determine the main

orientation of each building. A conventional assumption is that

buildings have mutually perpendicular orientations. However,

in reality, complex buildings usually have more than one main

orientation which might be non-perpendicular. In this article,

we propose a method that considers multiple main orientations

for each building, regardless of the perpendicularity of the

orientations.
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Fig. 6. (a) Extracted line segments for an example building. (b) Three main
orientations of the building depicted by magenta, green, and blue colors. (c)
Assignment of the line segments to the building’s main orientations. (d) Split-
ting the building into several convex hulls. (e) Extracted line segments after
regularization and adjustment. (f) Outline of the building after intersecting
and connecting the line segments.
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Fig. 7. Process chain of the line segment regularization, where CH denotes
a convex hull and MO indicates the number of main orientation classes ci in
each convex hull.

We determine the buildings’ main orientations based on

the length of the line segments and their arc lengths. For

each building, we select the orientation of its longest line

segment as the building’s main orientation. The other line

segments which are either parallel or perpendicular to this

main orientation will be grouped together. To check the

parallelism and perpendicularity, we measure the arc lengths of

the longest line segment and the other line segments, based on

a predefined threshold (5 pixels in our experiments). With this

threshold the angle distance would be smaller than 20◦ which

is a good assumption for parallelism. In the next iteration, the

longest of the remaining line segments is selected to determine

another main orientation of the building. This process iterates

until all the line segments are grouped with a main orientation

of the building. Fig. 6. (b) shows three main orientations of

the building depicted by magenta, green, and blue colors. The

assignment of the other line segments to these three main

orientations is demonstrated in Fig. 6. (c).

In addition to the orientations of the line segments within

each orientation class, their locality is also important. In other

words, the line segments within each class should also lay in

the same neighborhood. However, as illustrated in Fig. 6. (c),

there are a number of line segments misclassified due to the

presence of noise and artifacts. For example, in Fig. 6. (c),

the line segments l1, l2, l3, and l4 should be assigned to the

magenta orientation class, whereas l5 should be assigned to the

blue orientation class. Dealing with this problem, we verify

the assigned main orientation to the line segments in each

neighborhood and assign the miss-classified line segments to

a correct orientation class. Fig. 7 represents the main steps of

this procedure.

We start by splitting each building into several segments

(convex hulls) by extracting the points on the skeletons of the

building masks. The points are then placed in 5 pixels distance

from each other and for each point, 10 nearest neighboring line

segments are selected and a convex hull is fitted (please refer

to Fig. 6. (d)), where the number of nearest neighbors are
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determined empirically. In each convex hull, the orientations

of the line segments are compared and the probability of every

existing main orientation class ci is computed as:

p(ci) =

∑

j lij
∑

i

∑

j lij
, (1)

where lij indicates the length of the line segment j which

belongs to the orientation class ci. If the probabilities of the

existing main orientation classes in a convex hull are close

enough, no change will be imposed. Otherwise, all the line

segments will be grouped into the main orientation class

with the largest probability. As a next step, a least squares

adjustment algorithm is performed to adjust the line segments

according to their orientation classes.

C. Line Segment Adjustment

In this step, we adjust the line segments within each

orientation class in order to align them as either parallel or

perpendicular to the main orientation of the class, based on

their arc lengths to the main orientation. Therefore, the line

segment adjustment problem can be seen as fitting a rectangle

to the points of the line segments. In our method, we solve

the least squares adjustment based on the Gauss-Helmert (GH)

model [33], [34]. In the GH model, the functional model for

the estimated values is:

F (L̂, X̂) = 0, (2)

where L̂ and X̂ are the estimated observed and unknown

parameters, respectively. The functional model for the line

fitting can be expressed as the following target functions,

F1 = ax+ by + c, (3)

F2 = a2 + b2 − 1, (4)

where F1 is a line equation with the coefficients a, b, and c.

Since a and b are the normal vector components of each line

segment, F2 is a constraint equation to normalize the normal

vectors of the line segments. F2 is a non-linear function;

therefore, in order to be used in the least squares adjustment

procedure, we linearize it using Tailor’s series expansion. The

GH’s functional model can therefore be written as:

F (L̂, X̂) = w +Bv +Ax̂, (5)

where A and B are matrices containing the derivatives of

the target functions (F1 and F2) with respect to the unknown

parameters (a, b, and c) and the observed parameters (x and

y), respectively. Furthermore, w is the vector of misclosure.

Fig. 8 illustrates an example of fitting a model to a set of

points using least squares adjustment. In this figure, n1 and n2

indicate the normal vectors of the parallel and perpendicular

lines, respectively, while cj are the line segment intercepts.

x 

y 

Fig. 8. Fitting a model to a set of points using least squares adjustment.
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

























,

(6)

B =
∂F (L,X0)

∂L
=











a0 b0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 a0 b0

0 0 0 · · · 0 0 0











, (7)

w = F (L,X0) =











a0 ∗ xK1(l1) + b0 ∗ yK1(l1) + c0l1
...

−b0 ∗ xKT (l6) + a0 ∗ yKT (l6) + c0l6
(a0)2 + (b0)2 − 1











,

(8)

where X0 indicates the initial unknown parameters which

are considered as a0, b0 and c0, and computed based on

Singular Value Decomposition (SVD). Furthermore, L is the

observation vector which represents the point coordinates of

the line segments, in our experiments. Moreover, xKz(lj) and

yKz(lj) are the x and y coordinates of the z-th point of the

line segment lj (i.e., Kz(lj), z ∈ [1, Nj ]).
In Equation (5), v indicates the residuals of the observations

and x̂ is the difference between the estimated values of the

unknown vector and its initial values. These two vectors are

computed as:

v = L̂− L, (9)

x̂ = X̂ −X0. (10)
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(a) (b)

(c) (d)

Fig. 9. (a) Refined mask of an example building. (b) Extracted line segments
from the refined mask. (c) Extracted line segments after regularization and
adjustment. (d) Outline of the building after intersecting and connecting the
line segments.

In order to solve the least squares adjustment problem, we

express the unknown parameters by:
(

k

x̂

)

= −

(

BQ−1BT A

AT 0

)

−1

.

(

w

0

)

(11)

and the residuals are calculated by:

v = Q−1BT k, (12)

where Q is a matrix determining the line segment’s weight.

Since we empirically found out that using various weightings

do not influence the resulting building outlines, in our experi-

ments, all the line segments are equally treated, and therefore,

Q is an identity matrix.

In Equation 6, the last two columns correspond to one main

orientation. In case of having more than one main orientation,

two extra columns are added to the matrix A for each

additional main orientation, which contains the coordinates

of the additional main orientation. Moreover, one additional

row is added to the matrix A as a normalization constraint.

Furthermore, for each additional main orientation, one zero

row is inserted to the end of the matrix B and a normalization

constraint is inserted to the end of vector w.

Fig. 9. (a), (b), and (c) demonstrate the refined mask of a

building, the extracted line segments from the refined mask,

and the line segments after regularization and adjustment. As

illustrated in the figure, the adjusted line segments are aligned

to the building edges; however, they are not properly connected

to each other. Fig. 6. (e) shows another example of regularized

and adjusted line segments for a building.

D. Line Segment Intersection and Connection

In the last step, we intersect and connect each line segment

to its closest neighbor according to the following rules:

1) Any two parallel line segments with perpendicular dis-

tance larger than 5 pixels are joined by inserting a con-

nection line perpendicular to both line segments (please

> 5 pix > 5 pix 

l1 

l2 l3 

l1 

l2 l3 

(a)

≤ 5 pix 

l1 

l2 

l3 

l1 

l2 

l3 

≤ 5 pix 

(b)

l1 

l2 
l3 

l1 

l2 
l3 

(c)

Fig. 10. Each sub-figure shows a condition and its corresponding constraint
for connecting the line segments; as well as the result of line segment
connection. (a) Join parallel lines with perpendicular distance larger than 5
pixels. (b) Join parallel lines with perpendicular distance smaller than or equal
to 5 pixels with the assumption, l2 > l1, l3. (c) Join intersecting lines.

refer to Fig. 10. (a)). If the line segments’ endpoints

are not aligned (e.g., l1 and l3 in Fig. 10. (a)), one of

the line segments is selected randomly and its length is

adjusted (e.g., either elongated or shortened) to make

its endpoint aligned to the endpoint of the other line

segment. The threshold of 5 pixels is selected according

to the the resolution of the given panchromatic image

and the DSM data (about 0.5 m). In this resolution,

5 pixels represent 2.5 m which for urban buildings is

negligible within the generalization tolerance.

2) For the parallel line segments with perpendicular dis-

tance smaller than or equal to 5 pixels, we insert a line

with the minimum distance from the other line segments

and extend it to cover the extent of all the line segments

(please refer to Fig. 10. (b)).

3) In the case of intersecting line segments, we adjust their

length until their neighboring end points meet (please

refer to Fig. 10. (c)).

IV. RESULTS AND DISCUSSION

In this section, we evaluate the precision of the extracted

building outlines using our proposed method, both qualita-

tively and quantitatively. To this end, we analyze 10 regions of

a panchromatic image of Munich, acquired by the WorldView-

2 satellite (please refer to Fig. 2 and Table I). The regions are

selected so that they contain a variety of building structures

with different degrees of complexity (e.g., multiple main

orientations, buildings with inner yards, different roof types).

To extract a building’s outline, we perform all the steps

developed in Section II and III.

Our proposed method relies on some parameters in its vari-

ous steps. Table II shows parameters present in each step and

the values assigned to them in our experiments. As described

in the corresponding sections, most of these parameters are

dependent on the resolution of the panchromatic image being

used. Therefore, for new images with the same resolution they

can be used as they are and for new images with different

resolution, they could be adapted accordingly.

A. Mask Refinement

In order to conduct a qualitative evaluation of the mask

refinement process, Fig. 11 exemplifies the refinement applied
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TABLE II
PARAMETERS USED IN OUR APPROACH

Steps Parameters Values

Mask preprocessing (Section II-A)
Threshold for removing small masked areas 300 pixels

Morphological opening disc size 3 pixels

Morphological closing disc size 2 pixels

Feature Classification (Section II-C) SVM parameters Empirically selected

Mask Post-processing (Section II-D)
Morphological closing disc size 3 pixels

Threshold for gap filling 400 pixels

Line Segment Extraction (Section III-A)
Short line extraction threshold (RMSE) 1 pixels

Length threshold for deleting small line segments 5 pixels

Line Segment Regularization (Section III-B)
Arc length distance for main orientation computation 5 pixels

Point distance of skeleton for building partitioning 5 points

Number of nearest neighboring line segments to a selected point on skeleton 10 lines

Line Seg. Intersec. and Connec. (Section III-D) Distance between line segments 5 pixels

(a) (b)

(c) (d)

Fig. 11. Refined masks (bright and dark green areas) together with the
removed areas from the given masks (red areas). (a) I1, (b) I5, (c) I2, (d)
I4.

to the given masks for I1, I3, I4, and I5. In this figure, the

resulting refined building area is depicted in green (both light

and dark greens), where the dark green depicts the gaps in

the given masks which have been filled during the refinement

process. The regions depicted by red have been removed by

the refinement process from the given masks. According to

the results, building edges in the refined masks are finer and

more precise than in the given masks.

In order to evaluate the refined building masks quantita-

tively, we compare them pixel by pixel to the reference data

and compute the Quality measure,

Quality =
TP

TP + FP + FN
. (13)

This measure provides an overall quality degree of the

masks by considering building detection and boundary de-

lineation. In Equation (13), TP (True Positive) and

FP (False Positive) are the number of pixels which are

correctly and incorrectly considered as building by the mask,

respectively. In addition, FN (False Negative) indicates the

number of building pixels which are missed by the mask.

Fig. 12 shows the Quality of the given and the refined

masks. In this figure, each column shows an experiment in

which the training data is sampled from particular images

of our dataset. In order to cross-validate the classification,

for each experiment, the SVM is trained and tested three

times using three different pixel samplings (where the SVM

parameters are set empirically). For each experiment, we test

all the three SVM models on every images of our dataset,

resulting in three sets of refined masks. All the three sets of

masks are then evaluated and the average Quality value is

considered for each image.

In Fig. 12. (a), the training data is sampled from images

I1 and I2 which contain only flat roof buildings. As the

results show, the refined masks outperform only for the images

containing flat roof buildings (e.g., I1, I2, I3), whereas in

the case of pitched roofs the refined masks are even worse

than the given masks. To demonstrate that adding more similar

knowledge does not help in compensating the SVM model’s

bias, in Fig. 12 (b), we train the SVM model on samples from

I3 (which also contains only flat roof buildings) in addition

to I1 and I2. The results indicate that there is practically no

change in the classification performance (i.e., mask quality)

comparing to the previous experiment. Fig. 12. (c) illustrates

the model bias when it is trained on pitched roof buildings.

As the figure illustrates, while the refined masks outperform

the original masks for the pitched roofs (e.g., I4, I6, I7, I8,

I9), they are worse for the flat roofs (e.g., I1, I2, I3).

Considering the results of these experiments, we conclude

that SVM models should be trained by various building

roof types and surroundings in order to avoid model biases.

Fig. 12. (d) shows the quality of the refined masks using an

SVM model trained on both flat and pitched roof buildings.

The results indicate that for most of the images, the quality
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Fig. 12. The Quality measure of the given and refined masks of the images I1 − I10 using SVM classification. For training, 30% of the pixels within the
building boundaries, indicated by the masks, is sampled from images: (a) I1 and I2, (b) I1, I2, and I3, (c) I4, I6, and I8, (d) I1, I3, I4, and I8.

of the refined mask is significantly higher than that of the

given mask. Therefore, we will further use the refined masks

resulting in this experiment for the building outline extraction

task.

B. Building Outline Extraction

In this section, using the refined masks, we extract outlines

of the buildings through the line segment extraction, regular-

ization, adjustment, intersection, and connection steps.

1) Qualitative Evaluation: Fig. 13 and 14 show the fi-

nal extracted building outlines depicted on our 10 sampled

panchromatic images. As demonstrated by the results, despite

the complexity of the buildings’ structures such as the exis-

tence of inner yards, the extracted outlines are significantly

close to the buildings’ original edges. For delineating edges

of building with inner yards, we extract the line segments of

the buildings’ outer boundaries and those of its inner yards

separately. Then we consider all the extracted line segments

together in order to determine the buildings’ main orientations

and regularizing the line segments. Since the edges of inner

yards are usually aligned with the buildings’ outer edges,

considering them together increases the robustness of the

resulting building outlines.

Besides its superior results, there are cases where our

approach fails correctly extracting building outlines. Fig. 15

exemplifies these case. In Fig. 15. (a), the building edges e1
and e2 were not correctly delineated, probably due to the

imperfection of the computed building skeleton caused by

the selected threshold for the morphological process in the

regularization step (see Section III-B). This affects the building

decomposition (see Section III-B) in which those edges were

grouped into the main orientation class of the e3 and e4.

In Fig. 15. (b) and (c), the extracted building outlines were

affected by the incompleteness of the building masks caused

by occlusion (e.g., trees), shadow, height threshold used for

mask generation, etc.

2) Comparison to an Existing Line Simplification Method:

In order to extract building outlines, line simplification meth-

ods such as Douglas-Peucker [22] have been conventionally

used. However, due to their shortcoming in delineating build-

ing fine details such as sequential corners, in this article, we

propose a line segment extraction method as described in

Section III-A. Fig. 16 compares the building outlines derived

by our proposed method and by the Douglas-Peucker method,

e1
e2

e3
e4

(a) (b) (c)

Fig. 15. Failure case examples of the proposed approach.

with the building footprints. The results for both methods are

presented after regularization as explained in Section III-B.

As the figure shows the building outlines obtained based on

our proposed method are usually closer to the footprint as

compared to the results based on the Douglas-Peucker method.

In Fig. 16. (a), due to the small size of the building, which

limits the number of the available line segments, together with

its multiple main orientations, the building outlines computed

based on Douglas-Peucker cannot meet the buildings’ original

boundaries. However, since our proposed method relies on

every single line segment, it results in a more accurate building

outline. In Fig. 16. (b) the results of both methods are quite

similar and pretty close to the building boundaries. However,

a part of the building (the bottom part) remains undetected

by both methods. This is due to the incompleteness (caused

by occlusion, shadow, etc.) of the building mask. Fig. 16. (c)

shows that Douglas-Peucker method performs poorly in delin-

eating building corners composed by intersection of sequences

of small line segments, whereas our proposed method is able

to extract these details precisely.

3) Quantitative Evaluation: For a quantitative evaluation

of the extracted building outlines, we compare them to

the reference data using a newly introduced metric, namely

Polygons and Line Segment (PoLiS) [35]. The PoLiS metric

has been proposed for measuring the similarity of any two

polygons [35]. It is a positive-definite and symmetric function

which satisfies the triangle inequality. The PoLiS distance

changes linearly with respect to small translation, rotation,

and scale changes between the two polygons. In our exper-

iments, in order to measure the PoLiS distance between a
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(a) (b)

(c) (d)

(e)

Fig. 13. Extracted outlines of the buildings within the images (a) I2, (b) I7, (c) I3, (d) I6, and (e) I8, using our proposed approach.
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(a) (b)

(c) (d)

(e)

Fig. 14. Extracted outlines of the buildings within the images (a) I4, (b) I1, (c) I5, (d) I9, and (e) I10, using our proposed method.
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(a) (b) (c)

Fig. 16. Comparison of the building outlines based on our proposed line segment extraction method (red) and the Douglas Peucker algorithm (green), after
regularization step. The yellow lines depict the building footprints.

(a)

PoLiS =1.5985

(b)

Fig. 17. Illustrations of PoLiS distance of the extracted (blue) building
polygons to the reference (red) ones. (a) PoLis = 5.19, (b) PoLiS = 1.60.

building’s extracted outline (polygon) and its corresponding

reference polygon, we compute the average distance between

the extracted polygon vertices, and their closest vertices on the

reference polygon. After that, the average distance between

the reference polygon’s vertices and their closest vertices

on the extracted polygon is computed. The PoLiS distance

between the two polygons is computed as the summation of

the two average distances. Fig. 17 exemplifies PoLiS distance

measurement.

The average PoLiS distances of the extracted building

outlines in our 10 images are displayed in Fig. 18. (a). In

this figure, the red bars indicate the PoLiS distance when

only the given masks are used, the green bars represent

the PoLiS distance after mask refinement, and the blue bars

demonstrate the PoLiS distance when the refined masks are

used coupled with line segment regularization, adjustment,

intersection, and connection steps. As demonstrated by the

results, using the mask refinement step reduces the PoLiS

distance between the extracted outlines and the reference

data to a large degree. Moreover, applying the regularization,

adjustment, intersection, and connection steps further reduces

the PoLiS distances significantly.

Fig. 18. (b) indicates up to which degree the mask refine-
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Fig. 18. (a) PoLiS distance between the extracted and the reference building
outlines when, only the given DSM-based masks (the red bars), refined masks
(the green bars), and regularization and line segment adjustment (the blue
bars) are used. (b) Degree of improvement to the building outlines extracted
using the given DSM-based masks when refinement step (the green bars), and
regularization and line segment adjustment steps (the blue bars) are employed.

ment (the green bars), and the line segment regularization,

adjustment, intersection, and connection steps (the blue bars)

improve the building outlines obtained by using only the

given masks. According to the results, our proposed additional

modules can increase the precision of the extracted building

outlines up to 70% for some images (e.g., I4 and I9). For

I4, refining the building mask improved the building outlines

about 35%, while after line segment regularization, adjust-

ment, intersection, and connection steps, the results’ precision

increased up to about 70%. This shows that the imperfections

of the building outlines are caused by both the building masks’

faults and the complexities of the building structures. However,

for I9 the improvement is already almost achieved by refining

the building mask, which indicates that in I9, the building

complexities are less problematic than in I4.

Table III represents the PoLiS distance of the building

outlines obtained based on our line segment extraction method

and the Douglas-Peucker method, for the buildings shown

in Fig. 16. Results indicate that the higher accuracy of the

outlines extracted are based on the proposed method.

V. CONCLUSION AND FUTURE WORK

This article proposes a new approach for extracting and

simplifying building outlines. It detects buildings and gen-

erates their mask using DSM data. The resulting masks are
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TABLE III
COMPARING THE POLIS DISTANCE OF THE EXTRACTED BUILDING

OUTLINES USING OUR METHOD AND DOUGLAS-PEUCKER

Image Our method Douglas-Peucker

Fig. 16. (a) 1.34 3.17

Fig. 16. (b) 9.11 9.24

Fig. 16. (c) 5.19 5.54

further refined based on high spatial resolution panchromatic

images in order to represent the building edges closer to

the original ones. After that, the refined masks are used in

a new method composed of line segment extraction, regu-

larization, adjustment, intersection, and connection steps, to

extract building outlines as polygons. Experimental results

show that the extracted building outlines are close to the

buildings’ original edges to a high degree. Moreover, our

method can be generalized to various types of buildings and

it is robust against complexities of building structures such as

the existence of inner yards and multiple main orientations.

In our further work, we will fit curves to the building round

corners and the extracted building outlines will be used for

full 3D model reconstruction.
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