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Abstract

In this paper we discuss a system that can learn
personal maps customized for each user and infer
his daily activities and movements from raw GPS
data. The system uses discriminative and genera-
tive models for different parts of this task. A dis-
criminative relational Markov network is used to
extract significant places and label them; a gener-
ative dynamic Bayesian network is used to learn
transportation routines, and infer goals and poten-
tial user errors at real time. In this paper we focus
on the basic structures of the models and briefly dis-
cuss the inference and learning techniques. Experi-
ments show that our system is able to accurately ex-
tract and label places, predict the goals of a person,
and recognize situations in which the user makes
mistakes €.g, taking a wrong bus).

Introduction

as failing to get off his bus at his usual stop on the way
home.

We describe a system that builds personal maps automati-
cally from raw location data collected by wearable GPS units.
Many potential applications can be built upon the system.
A motivating application for this work is the development
of personal guidance systems that helps cognitively-impaired
individuals move safely and independently throughout their
community[Pattersoret al, 2004. Other potential applica-
tions includecustomizedjust in time” information services
(for example, providing the user with current bus schedule
information when she is likely to need it or real time traffic
conditions on her future trajectories), intelligent user inter-
face (instructing a cell phone not to ring when in a restaurant
or at a meeting), and so on.

This paper is focused on the fundamental techniques of
learning and inference. We develop probabilistic models that
bridge low level sensor measuremerits.( GPS data) with
high level information in the personal maps. Given raw GPS
data from a user, our system first finds a user’s set of sig-
nificant places, then a Relational Markov Network (RMN) is

constructed to recognize the activities in those plaees, (

works within a geographic region. In this paper, we preseny,ing visiting, and dining out); as discriminative models,

the concept of :?’erson‘?" mapwhich is custpmlzed based RMNs often outperform their corresponding generative mod-
on an individual’s behavior. A personal map includes persongg .9, HMMs) for classification taskiTaskaret al, 200.
$he system then uses a dynamic Bayesian network (DBN)
?ﬁodel[Murphy, 2002 for learning and inferring transporta-
on routines between the significant places; such a generative
odel is well-suited for online tracking and real-time user er-
r detection.
The paper is organized as follows. In the next section, we
discuss related work. In Section 3, we present the discrimina-
Mive model for place extraction and labeling, followed by the
generative DBN model in Section 4. We show experimental
¢ Discriminate a user’s activities (is she dining at a restau-evaluations before concluding.
rant or visiting a friend?);

e Predict a user's future movements and transportatio® Related Work

nmec;ges{,rebec;tg 'Pnﬂ:,e) SVCitl)lrtS;]eerm (,[V\giclr ?E: kt)%m;fftthat rt]giOver the last years, estimating a person’s activities has
bus s?o 2) aﬂdienierms of digtimt oals (issshe gin t%ained increased interest in the Al, robotics, and ubiqui-
p: 9 90INg 5ys computing communitie§Ashbrook and Starner, 2003;

centers, and meeting places and personally significant rout
(i.e. the paths and transportation modes such as foot, car,
bus, that the person usually uses to travel from place to place
In contrast with general maps, a personal map is customize'q)
and primarily useful for a given person. Because of the cus-

tomization, it is well-suited for recognizing an individual’s
behavior and offering detailed personalized help. For exal
ple, in this paper we use a personal map to

her workplace?);
e Infer when a user halsroken his ordinary routinén a

Hariharan and Toyama, 20Dkearn significant locations from
logs of GPS measurements by determining the time a person

way that may indicate that he has made an error, suchpends at a certain location. For these locations, they use



frequency counting to estimate the transition parameters dfut remains an open and challenging research problem. We
Markov models. Their approach then predicts the next goapresent the results on abnormality and error detection in loca-
based on the current and the previous goals. Our system gogsn and transportation prediction using a simple and effective

beyond their work in many aspects. First, our system not onlapproach based on comparing the likelihood of a learned hi-

extracts places, but also recognizes activities associated wittrarchical model against that of a prior model.

those places. Second, their models are not able to refine the

goal estimates using GPS information observed when moving Extracting and Labeling Places

from one significant location to another. Furthermore, such §, s section, we briefly discuss place extraction and activ-
coarse representation does not allow the detection of potefyy, |apeling. For full technical details of the activity labeling
tial user errors. In contrast, our hierarchical generative modglgser to[Liao et al, 2004.

is able to learn more specific motion patterns of transpiration
routines, which also enables us to detect user errors. 3.1 Place Extraction

In the machine learning community, a varietyrefational  Similar to [Ashbrook and Starner, 2003; Hariharan and
probabilistic modelswere introduced to overcome limita- Toyama, 2004 our current system considers significant
tions of propositional probabilistic models. Relational mod-places to be those locations where a person typically spends
els combine first-order logical languages with probabilisticextended periods of time. From the GPS data, it first looks for
graphical models. Intuitively, a relational probabilistic model |gcations where the person stays for a given amount of time
is atemplatefor propositional models such as Bayesian net-(e.g, 10 minutes), and then these locations are clustered to
works or MRFs (similar to how first-order logic formulas can merge spatially similar points. An extension of the approach
be instantiated to propositional logic). Templates are defineghat takes into account more complex features is discussed in
over object classes through logical languages such as Hofature work (Section 6).
clauses, frame systems, SQL, and full first-order logic. Given o )
data, these templates are thestantiatecto generate propo- 3.2 Activity Labeling
sitional models (typically Bayesian networks or MRFs), onWe build our activity model based on the Relational Markov
which inference and learning is performed. Relational probNetwork (RMN) framewor Taskaret al, 2004. RMNs de-
abilistic models use high level languages for describing sysscribe specific relations between objects using clique tem-
tems involving complex relations and uncertainties. Since thelates specified by SQL queries: each quénselects the
structures and parameters are defined at the level of classeslevant objects and their attributes, and specifipstantial
they are shared by the instantiated networks. Parameter shdinction, or clique potentialp-, on the possible values of
ing is particularly essential for learning from sparse trainingthese attributes. Intuitively, the clique potentials measure the
data and for knowledge transfer between different people. A%compatibility” between values of the attributes. Clique po-
a popular relational probabilistic model, Relational Markov tentials are usually defined as a log-linear combinations of
Networks (RMN) define the templates using SQL, a widelyfeaturefunctions,i.e., ¢c(ve) = exp{w¢ - fo(ve)}, where
used query language for database systems, and the templaigs are the attributes selected in the quefey() is a feature
are instantiated into (conditional) Markov networks, whichvector forC, andw{. is the transpose of the corresponding
areundirectedmodels that do not suffer the cyclicity prob- weight vector. For instance, a feature could be the number of
lem and are thereby more flexible and convenient. Since theulifferent homes defined using aggregations.
introduction, RMNs have been used successfully in a number To perform inference, an RMN isnrolled into a Markov

of domains, including web page classificatidiaskaret al., network, in which the nodes correspond to the attributes of
2004, link prediction[Taskaret al, 2003, and information  objects. The connections among the nodes are built by apply-
extraction[Bunescu and Mooney, 20D4 ing the SQL templates to the data; each tempfatean re-

In the context of probabilistic plan recognitidiui et al, sult in several cliques, which share the same feature weights.

2004 introduced the abstract hidden Markov model, whichStandard inference algorithms, such as belief propagation and
uses hierarchical representations to efficiently infer a personMCMC, can be used to estimate the conditional distribution
goal in an indoor environment from camera information.of hidden variables given all the observations.

[Bui, 2003 extended this model to include memory nodes,Relational activity model

V-Vh|Ch- enables the t(ansfer of context_lnformauon over myl'Because behavior patterns can be highly variable, a reliable
tiple time steps. Bui and colleagues introduced efficient in-

ference alqorithms for their models usin Rao-BIackweIIiseadiscrimination between activities must take several sources of
g 9 evidence into account. More specifically, our model defines

parpcle filters. Since our model has_a similar structure tothe following templates:
theirs, we apply the inference mechanisms develop§Blin ) o )
2003. Our work goes beyond the work of Bat al. in that 1. Temporalpatterns: Different activities often have differ-
we show how to learn the parameters of the hierarchical ac- €Nt temporal patterns, such as their duration or the time
tivity model, and their domains, from data. Furthermore, our ~ ©Of day. Such local patterns are modeled by clique tem-
low level estimation problem is more challenging than their ~ Plates that connect each attribute with the activity label.

indoor tracking problem. 2. Geographicevidence: Information about the types of
The task of detecting abnormal events in time series data  businesses close to a location can be extremely use-
(callednovelty detectionhas been studied extensively in the ful to determine a user's activity. Such informa-

data-mining community [Guralnik and Srivastava, 19R9 tion can be extracted from geographic databases like
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plates of temporal, geographic, and transition features; bold solid
curves represent spatial constraints (activity 1 and 4 are associate

. Edge transition
with the same place and so are 2 and 5); dashed curves stand fq . @\O Lof;[;ﬂ:d"vefochy’ and
global features, which are label-specific cliques (activity 1 and 4 are Q = o Y/ carlocation: e
both labeled as 'AtHome’ or 'AtWork’ at this moment). .\é) g:‘;:::;?g“js"“a“"“ o
http://www.microsoft.com/mappoint . Since lo-

cation information in such databases is not accuratéigure 2:Hierarchical activity model representing a person’s out-
enough, we consider such information by checkingdoor movements during everyday activities. The upper level esti-

whether, for example, a restaurant is within a certainmates the user mode, the middle layer represents goals and trip seg-
range from the location. ments, and the lowest layer is the flat model, estimating the person’s

. . . .. location, velocity, and transportation mode.
3. Transitionrelations: First-order transitions between ac-

tivities can also be informative. For example, going from Petween0 and 1 uniformly, and compare. with the given
home to work is very common while dining out twice in thresholdy (y = 0.5 in our experiments).
arow is rare. Leaming

4. Spatialconstraints: Activities at the same place are oftenThe parameters to be learned are the weights the features
similar. In other words, the number of different types of that define the clique potentials. To avoid overfitting, we per-
activities in a place is often limited. form maximum a posterior (MAP) parameter estimation and

5. Globalfeatures: These are soft constraints on the activiiMPose an independent Gaussian prior with constant variance
ties of a person. The number of different home locationg0r €ach component okv. Since the objective function for
is an example of the global constraints. Such a constraif!AP estimation is convex, the global optimum can be found
is modeled by a clique template that selects all places 1a4Sing standard numerical optimization algorithfaskaret

beled as home and returns how many of them are differdl- 2003. We apply the quasi-Newton methods to find the
ent. optimal weights because they have been found to be very ef-

ficient for CRFs[Sha and Pereira, 20D3Each iteration of
Inference this technique requires the value and gradient of the objective

In our application, the task of inference is to estimate the lafunction computed at the weights returned in the previous it-

bels of activities in theinrolled Markov networks (see Fig. 1 eration. In[Liao et al, 2004, we presented an algorithm that

for an example). Inference in our relational activity modelsSimultaneoushestimates at each iteration the value and its

is complicated by the fact that the structure of the unrolleddradient using MCMC.

Markov network can change during inference. This is due Although parameter learning in RMNs requires manually

to the fact that, in the templates of global features, the labdabeled training data, parameter sharing makes it easy to

of an object determines to which cliques it belongs. We callransfer knowledge. For example, in our system, we can learn

such cliquedabel-specific cliquesBecause the label values agenericmodel from people who have manually labeled data,

are hidden during inference, such cliques potentially involveand then apply the model to people who have no labeled data.

all the labels, which makes exact inference intractable. Generic models in our system can perform reasonably well,
We perform approximate inference using Markov Chainas we will show in the experiments.

Monte Carlo (MCMC)[Gilks et al,, 1994. We first imple-

mented MCMC using basic Gibbs sampling. Unfortunately.4 | earning and Inferring Transportation

this technique performs poorly in our model because of the Routines

strong dependencies among labels. To make MCMC mix

faster, we developed a mixture of two transition kernels: theNe estimate a person’s activities using the three level dy-

first is a block Gibbs sampler and the second is a Metroponamic Bayesian network model shown in Fig. 2. The indi-

lis sampler (seélLiao et al., 2009 for details). The numbers vidual nodes in such a temporal graphical model represent

of different homes and workplaces are stored in the chains adifferent parts of the state space and the arcs indicate depen-

global variables. This allows us to compute tjlebal fea-  dencies between the noddgurphy, 2002. Temporal depen-

tureslocally in both kernels. In order to determine which dencies are represented by arcs connecting the two time slices

kernel to use at each step, we sample a random number k& — 1 andk. The highest level of the model indicates the user



mode, which could be typical behavior, user error, or deliber-
ate novel behavior. The middle level represents the person’s
goal (.e., next significant place) and trip segment ( defined
below). The lowest level is thitat model, which estimates
the person’s transportation mode, location and motion veloc-
ity from the GPS sensor measurements. In this section, we
explain the model from bottom up; referftoiao et al., 2004

for more details.

4.1 Locations and Transportation Modes 0" AtHom tWork-
We denote byr;, = (i, vk, ;) the location and motion ve- ¢ D"‘{mgo‘“ A Visiting [ - | . &
locity of the person, and the location of the person’s tar Figure 3:Part of the locations contained in the data set of a single
(subscriptsk indicate discrete time). In our DBN model, lo- person, collected over a period of four montasakis is 8 miles
cations are estimated on a graph structure representing a strétg).

map. GPS sensor measuremesgsare generated by the per-

son carrying a GPS sensor. Since measurements are given/fjward and a backward filtering pass through the data log
continuouszy-coordinates, they have to be “snapped” to an2r€ c_omblned, based on which we update_the model parame-
edge in the graph structure. The edge to which a specific med€'S in the M-step. “:j Ol:]r Rao-B:ﬁckweflllsed ImOdi!I' edge
surement is “snapped” is estimated by the association variyansitions are counted whenever theanof a Kalman filter
abled,. The location of the person at timiedepends on his transits the edge. The learned flat model encodes informa-
previous locationi;,_, the motion velocityyy, and the ver- tion about typical motion patterns and significant locations

tex transition,r,. Vertex transitions- model the decision a PY €dge and mode transition probabilities.
person makes when moving over a vertex in the graph, for After we estimate the mode transition probabilities for each

example, to turn right when crossing a street intersection. €dge, we findnode transfer locations.e., usual bus stops
The mode of transportation can take on four different@nd parkl_ng I_ots, by looking for t.hose locations at which the
valuesm; € {BUS, FOOT, CAR, BUILDING. Similar mode switching exceeds a certain threshold.
to [Pattersoret al,, 2003, these modes influence the motion .
velocity, which is picked from a Gaussian mixture model. For4-2 Goals and Trip Segments
example, the walking mode draws velocities only from theA trip segment is defined by its start locatiof, end location,
Gaussian representing slow moticdBUILDING is a special  ¢¢, and the mode of transportatiafj?, the person uses during
mode that occurs only when the GPS signal is lost for signifithe segment. For example, a trip segment models information
cantly long time. Finally, the location of the car only changessuch as “she gets on the bus at locatiprand takes the bus
when the person is in tt@ARmode, in which the car location up to locationt¢, where she gets off the bus”. In addition
is set to the person’s location. to transportation mode, a trip segment predicts the route on
An efficient algorithm based on Rao-Blackwellised parti- which the person gets from to ¢¢. This route is not specified
cle filters (RBPFsJDoucetet al, 2004 has been developed through a deterministic sequence of edges on the graph but
to perform online inference for the flat model. In a nutshell,rather through transition probabilities on the graph. These
the RBPF samples transportation modg(?), transportation ~ probabilities determine the prediction of the person’s motion
mode switchf;"("), data associatiodl,”), edge transition ~direction when crossing a vertex in the graph, as indicated by

(9, and velocityv, (9, then it updates the Gaussian distrib- th?’-\aggzoggréos;ﬁt s the current target location of the per
. . (,L) . i . . u | -
ution of locationi,, ™ using a one-dimensional Kalman filter. son. Goals include the significant locations extracted using

After all components of each particle are generated, the 'Maur discriminative model. The transfer between trip segments

portance weights of the particles are updated. This is don . o
by computing the likelihood of the GPS measurement égdrg(s)stlascéisvggndled by the boolean switching notjesnd
k? :

which is provided by the update innovations of the Kalman : , .
To estimate a person’s goal and trip segment, we apply

filters [Doucetet al,, 2004. , . .
ot L the inference algorithm used for the abstract hidden Markov
We apply expectation maximization (EM) to learn the emory modeldBui, 2003. More specifically, we use a

model parameters. Before learning, the model has no pre£

erence for when a person switches mode of transportation ao-Blackwellised particle filter both at the low level and at
which edge a person transits to when crossing a vertex on tH8€ Nigher levels. Each sample of the resulting particle filter
graph. However, information about bus routes, and the facyontains the discrete and continuous states described in the

that the car is either parked or moves with the person, already €ViouS section, and a joint distribution over the goals and
provide important constraints on mode transitions. At eac Ip segments. These additional distributions are updated us-
iteration of EM, the location, velocity, and mode of trans- mgBexact mferenhce. | d th t of | ing the di
portation are estimated using the Rao-Blackwellised particle 2€¢auseé We have fearmed the Set of goals using the dis-
filter of the flat model. In the E-step, transition counts of acliminative model and the set of trip segments using the flat
' model, we only need to estimate the transition matrices at all
We include the car location because it strongly affects whethetevels: between the goals, between the trip segments given the
the person can switch to the car mode. goal, and between the adjacent streets given the trip segment.
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prior vs. learned model as prior mean (shown the error rates overtr“enes foot. (a) Given that the goal is the work place. (b) Given that
new places only).

i : , , . . thegoalis home.
Again, we use EM in the hierarchical model, which is simi- ;. o< from a single person over a time period of four months
lar to that in the flat model. During the E-steps, smoothing |sé

r

¢ db Kina th both f d and back see Fig. 3). It includes about 400 activities at 50 different
performed Dy tracking the states both forward and backward, -eq "The second data set consists of one-week of data from
in time. The M-steps update the model parameters using t

: > N&e different people. Each person has 25 to 30 activities and
frequency counts generated in the E-step. All transition parayq 14 15 gifferent significant places. We extracted from the
meters are smoothed using Dirichlet priors. logs each instance of a subject spending more thaminutes
4.3 User Modes at one place. Each instance corresponds to an activity. We

. . then clustered the nearby activity locations into places.
To detect user errors or novel behavior, we add the variable y y P

ug to the highest level, which indicates the user’s behaviors 1 Evaluating the RMN Model

QOdeiﬁstgﬁiOgg c&li%fle\frzﬁl, gg;ﬂgtegr?%r tlf:w)leﬁlf) rv?/g; vglrﬁtjg? theFor training and evaluation, the subjects manually labeled the
Uk pa : . P —~data with their activities from the following se{AtHome,
model. When user mode is typical behavior, the model is

X . . L AtWork, Shopping, DiningOut, Visiting, Other }. Then,
instantiated using the_ parameters learned from training dat@\'/e constructed the unrolled Markov networks using the tem-
When a user’s behavior iBrroneous, the goal remains the

; . L . .. plates described above, trained the models, and tested their
same, but the trip segment is set to a distinguished value U%

known” and as a consequence the parameters of the flat mo cl:gm% mﬁ‘gtCHInyIz:\/\liaeSIinde\t/\?a:?(I:r(])erSegy the activities for
(i.e, transportation mode transitions and edge transitions) are y 9 )

switched to their a priori values: An “unknown” trip seg- In practice, itis of great value to learngenericactivity
ment cannot provide any informétion for the low level pa_model t.h.at can t?e. |mmed|ately applled_to new users with-
rameters. When a user’s behaviotsuel, the goal is set to out additional training. In the first experiment, we used 'ghe

: ' data set of multiple users and performed leave-one-subject-

r;nmkentz\pénc’)fttrr:i tf:g?[ f:(?d”eulagﬁelsasi ;Oseliqgr:ﬁgpé aﬂgrtir\llzlﬂae;out cross-validation: we trained using data from four subjects,
X o 9 priort and tested on the remaining one. The average error rates are
To infer the distribution of.;, we run two trackers simul-

indicated by the white bars in Fig. 4(a). By using all the fea-

taneously and at each time their relative likelihood is used t?ﬁres, the generic model achieved an error ratzo6f. Note

update the distribution. The first tracker uses the hierarchicq at the alobal features and the spatial constraints are ver
model with learned parameters and second tracker uses th 9 P y

flat model with a priori parameters. When a user is foIIowingU%erI' To gauge the impact of different habits on the results,
her ordinary routine, the first track.er has higher likelihoods we also pgrformed _the same evaluation using the data set of
but when the user rﬁakes error or does something novel t’smgle subject. In this case, we used one-month data for train-
X ! .ﬁg and the other three-month data for test, and we repeated
second tracker becomes more likely. Unless the true goal i

A the validation process for each month. The results are shown
observed, the system cannot distinguish errors from novel beb

havior, so the precise ratio between the two is determined b y the gray bars in Fig. 4(a). In this case, the model achieved

hand selected prior probabilities. In some situations, how—Xn error rate of onlyrs. This experiment shows that it is

ever, the system knows where the user is going, if the possible to learn good activity models from groups of people.

o S . .~ . _|talso shows that if the model is learned from more “similar”
user asks for directions to a destination, or if a caregiver in-

dicates the “correct” destination, and thus the goal is fixedpeoDle’ then higher accuracy can be achieved. This indicates

that models can be improved by grouping people based on
treated as an observed, and therefdaenped After we have their activity patterns.

clamped the goal, the probab_ility of nove] behavior becomgs When estimating the weights of RMNSs, a prior is imposed
zero and the second tracker just determines the probab|I|t|e|ﬁ order to avoid overfitting. Without additional information,

of an error. a zero mean Gaussian is typically used as the priaskaret

. al., 2004. Here we show that performance can also be im-
5 Experiments proved by estimating theyper-parameterfor the means of

To evaluate our system, we collected two sets of location datthe weights using data collected from other people. Similar
using wearable GPS units. The first data set contains locatioto the first experiment, we want to learn a customized model
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for a persom, but this time we also have labeled data fromthe tracker’s confidence in the user’'s success dropped (see

others. We could simply ignore the others’ data and use th&ig. 6(c)).

labeled data from®\ with a zero-mean prior. Or we can first

learn the weights from the other people and use that as the .

mean of the Gaussian prior féx. We evaluate the perfor- 6 Conclusions and Future Work

mance of the two approaches for different amounts of train- ) )

ing data from persor. The results are shown in Fig. 4(b). In this paper we hav<_a described a system that can build per-

We can see that using data from others to generate a prig°n@ maps automatically from GPS sensors. More specifi-

boosts the accuracy significantly, especially when only smalf@lly; the system is able to: recognize significant locations of

amounts of training data are available. a user and activities associated with those places, infer trans-
Using the Bayesian prior smoothly shifts from generic toPortation modes and goals, and detect user errors or novel

customized models: on one end, when no data from the giveﬁehavior. The system uses a Relational Markov Network for

subject is available, the approach returns the generic (priorggce classification and a hierarchical Dynamic Bayesian Net-

model: on the other end. as more labeled data become avalllork for online tracking and error detection. This technique

able, the model adjusts more and more to the specific patter
of the user and we get a customized model.

s been used as the basis for both experimentation and for
real context-aware applications including an automated trans-
portation routing system that ensures the efficiency, safety,
5.2 Evaluating the DBN Model and independence of individuals with mild cognitive disabil-

) ) ities (sed Pattersoret al., 2004).
The learning of the generative model was done completely In our future work we plan to improve the place extrac-

unsupervised without any manual labeling. Fig. 5 show thqion. The current approach only relies on measuring the time

e o s aEerioc  erson sy a each pace and uses a xed hresh-
P X y old to distinguish significant places from insignificant ones.

quent trajectories for traveling from home to the workplacey, ever it is hard to find a fixed threshold that works for

and vice-versa, as well as other common trips, such as to thﬁl significant places. If we set the threshold too big (say

homes of frlenc_js. . : 10 minutes, as in our experiments), some places could be
As we described, an important feature of our model is th issed €.g, places a user stops by to get coffee or pick up
capability to capture user errors and novel behavior using flis kids); if’we set the value too sma#.g, 1 minute), some
p?trﬁ_lletl trr;clgmg apprg%ctf;]. '][o”demontstrate the.perf?rmancﬁivial places (such as traffic lights) may be considered signif-
0 ISh ecf. nique, we did the fo owmgk mo expenmt()an SH icant. Therefore, to extract more places accurately, we will
Inrt] ef Irst experiment, arlluser took the wrong bus NOMeaya into account more features besides stay duration. For ex-
For the first 700 seconds, the wrong bus route coincided with e transportation mode is a very useful indicator: if a user
the correct one and the system believed that the user was fitches tfoot at some place duringear trip, that place is
{w;, = Normal} mode. But when the bus took a turn that i e\y to be significant. Since transportation mode itself has
the user had never taken to get home, the probability of errorg, g inferred, we must design a model that considers all these

route consistent with_ other previous goals (see_ Fig. (_S(b))._ inference and learning.

The second experiment was a walking experiment in which
the user left his office and proceeded to walk away from his
normal parking spot. When the destination was not specified{\cknowledgments
the tracker had a steady level of confidence in the user’s path
(see Fig. 6(d), there are lots of previously observed path¥his research is supported in part by NSF under grant number
from his office), but when the goal was specified, the sysdlS-0433637 and SRI International subcontract 03-000225
tem initially saw behavior consistent with walking toward the under DARPA's CALO project. We also thank anonymous
parking spot, and then as the user turned away at time 12%eviewers for their helpful comments.
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