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Abstract

The ProteomeTools project builds molecular and digital tools from the human proteome to 

facilitate biomedical and life science research. Here, we report the generation and multimodal LC-

MS/MS analysis of >330,000 synthetic tryptic peptides representing essentially all canonical 

human gene products and exemplify the utility of this data. The resource will be extended to >1 

million peptides and all data will be shared with the community via ProteomicsDB and 

proteomeXchange.
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Proteomic research greatly relies on the mass spectrometric and bioinformatic analysis of 

proteolytic digests of complex protein mixtures to infer protein identity and quantity1. Albeit 
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very powerful, there are technical and conceptual limitations in commonly followed 

approaches that make the measurement of complete proteomes very challenging. In part, this 

is due to the vast molecular complexity of proteomes that arises from e.g. gene expression, 

splicing of mRNAs or post-translational modification of proteins. As a result, the precise 

composition of a proteome is essentially always unknown. In addition, the measurement of 

protease digested proteomes by mass spectrometry creates large quantities of spectra of 

varying quality. The computational tools used in the field all make assumptions as to the 

presumed content of a proteome by matching mass spectra to peptides and to infer proteins. 

The statistical methods applied invariably represent compromises in terms of the sensitivity 

and specificity with which proteins are identified from complex mixtures. In analytical 

chemistry, verifying the identity of a molecule with certainty often makes use of synthetic 

reference standards. However, in proteome research the generation or use of such standards 

is only beginning to be implemented systematically2–4. To facilitate this, we have embarked 

on a project termed ProteomeTools (Fig. 1) in which we aim to synthesize ~1.4 million 

individual peptides to cover all human proteins. Here, we report on the synthesis and 

multimodal LC-MS/MS analysis of >330,000 synthetic tryptic peptides covering essentially 

all canonical human proteins as annotated in Swissprot. Peptides were chosen either based 

on their experimentally determined proteotypicity5, 6 or by brute force (all peptides within 

the typical mass range of a mass spectrometer) for hitherto unobserved proteins or those 

with little prior experimental evidence. We also included a subset of peptides of the Human 

SRMAtlas3 (Supplementary Table 1). As more data on the use of alternative proteases 

become available7, such peptides (~300,000) will be systematically incorporated into the 

project to increase spectral and sequence coverage for any given protein. Another 200,000 

peptides are earmarked for protein sequence variants such as protein isoforms or important 

natural or pathological variants. A substantial part (~350,000) of the capacity will be 

devoted to post-translationally modified peptides such as phosphorylation, acetylation, 

methylation, ubiquitinylation and mono-glycosylation8. While some of these peptides may 

be synthetically more challenging, their impact will likely be high as they represent the 

result of enzymatic activity that often modulates the function of proteins. Finally, we are 

reserving 200,000 peptides to represent other interesting biology such as disease associated 

mutations, HLA neo-antigens, protease cleavage products, small open reading frames or 

translated lincRNAs (Fig. 1a).

Tryptic peptides were individually synthesized, combined into pools of ~1,000 peptides and 

spiked with 66 non-naturally occurring and 15 stable isotope labeled peptides for retention 

time calibration. Whenever possible, we designed pools such that peptides do not have 

identical masses to avoid ambiguity in the mass spectrometric data or cover the entire LC 

gradient (Supplementary Figure 1). Each pool was subjected to an initial LC-MS/MS 

analysis using HCD and CID fragmentation on an Orbitrap Fusion Lumos mass 

spectrometer in order to determine which peptides were successfully synthesized, to 

determine their chromatographic retention times (RT) and compute retention time indices 

(iRT; Supplementary Figure 2)9. For each peptide pool, an inclusion list was generated to 

target peptides for fragmentation in further LC-MS experiments using five different 

fragmentation methods (HCD, CID, ETD, ETHCD, ETCID) with ion trap or Orbitrap 

readout and HCD spectra were recorded at 6 different collision energies (Supplementary 
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Figures 3–7). Peptides ranged from 7 to 40 amino acids in length and up to 96 % of these 

could be detected by LC-MS/MS in individual pools (78 % average recovery, 

Supplementary Figure 8–9). Using the open modification search option of MaxQuant/

Andromeda10, we were able to assess the side product profile to estimate the approximate 

yield of each peptide by measuring the percentage of the total MS signal that can be 

attributed to the target peptide sequence (Fig. 1b; Supplementary Figure 10). As expected, 

the purity of the synthesized peptides varied and many of the chemical by-products 

correspond to incompletely removed protection groups or missing amino acids. The 

presence of by-products turned out to be useful as truncated peptides provided additional 

evidence for the presence of the correct full length peptide. They may in the future also serve 

to refine retention time and fragmentation prediction or to identify some of the many good 

quality spectra that remain unidentified in typical proteomic experiments11.

One important goal of the project is to generate reference mass spectra for the identification 

and quantification of human peptides and proteins. At an arbitrarily high Andromeda score 

cut-off of 100, indicating very high spectral quality, we obtained a total of 11.3 million 

peptide spectrum matches (PSMs) mapping to 211,895 peptides and covering each gene by a 

median of 9 peptides (Fig. 1c). The median precursor intensity fraction (PIF; i.e. the fraction 

of the precursor signal vs. the total signal selected for fragmentation) was 92%, indicating 

that the spectra of most peptides are largely free of other contaminating peptides. Very high 

quality tandem mass spectra were obtained for all eleven tandem MS methods used but with 

varying degrees of proteome coverage. Analysis of the Andromeda search engine score 

distribution (Fig. 1d) showed that the 211,895 peptides (peptide FDR <0.002%) led to the 

identification of 19,735 of the 20,036 human genes deposited in Swissprot thus providing 

very high quality reference spectra for 98.5% of the human proteome (Supplementary Table 

2). The remaining genes/proteins often contain proline-rich repeats or retroviral sequences 

that cannot be covered by tryptic peptides of reasonable length. Some of these may 

eventually be covered when synthesizing peptides using other digestion enzyme 

specificities. As an interesting side note, because of considerable protein sequence 

conservation between the human and mouse proteomes, the peptide library also contains 

60,961 (proteotypic) peptides covering 12,599 (77%) unique mouse genes, thus considerably 

expanding the scope and utility of these peptides (Supplementary Table 3; Supplementary 

Notes).

One obvious use of synthetic peptide reference spectra is to confirm identifications of rarely 

(or newly) observed proteins. At the time of writing, there were only two spectra in 

ProteomicsDB supporting the identification of the same peptide of Aquaporin 12B with 

identification Q-scores different from the target-decoy distributions using the ‘picked’ 

target-decoy approach12 (Fig. 2a). The mirror plot showing the ion trap spectrum of the 

endogenous peptide and the corresponding spectrum of the synthetic peptide indicates very 

good agreement thus validating the identification of this protein from a single peptide.

We recorded HCD spectra at six different normalized collision energies with the aim to 

identify conditions for the measurement of peptides by targeted assays such as SRM, PRM 

or SWATH13, 14. To evaluate if HCD spectra obtained in this study are suitable for this 

purpose, we compared our data to ~9,000 peptides from a SWATH spectral library built from 
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proteome digests acquired on a QTOF instrument15. The analysis shows that there is very 

high correlation between the two types of data (R>0.9) and that spectra with poor correlation 

may represent false positives in the SWATH spectral library (Fig. 2b; Supplementary Figure 

11).

As an example to illustrate the usefulness of the data for developing software, we built a 

prototype classifier based on multiple HCD spectra for the same peptide at a particular 

collision energy. This classifier predicts the fragment ion intensity of tandem mass spectra of 

any peptide with Pearson correlation coefficients of around 0.9 (Fig. 2c, Supplementary 

Figures 12–14). Such tools may complement or eventually replace experimental data for the 

development of SRM/PRM/SWATH assays or facilitate the transfer of data recorded on a 

discovery proteomics instrument to an assay instrument. We consciously decided not to 

synthesize stable isotope encoded peptides for this project because their fragmentation 

spectra can be easily simulated based on spectra of the unlabeled version. It is also 

economically more efficient to create heavy peptides tailored to the project at hand. 

However, we are in the process of measuring peptides following chemical derivatization by 

tandem mass tags (TMT) and di-methyl labeling to cover the most commonly used stable 

isotope labeling methods.

An important aspect of the project is to enable and engage the proteomics community and 

this will be done in a number of ways. We encourage the community to propose sets of 

peptides to include in the project. Our stocks contain 100 clones of the peptide library which 

can be handed out to research groups willing to generate data on alternative mass 

spectrometric platforms such as QTOF instruments, ion mobility devices or different 

chromatographic systems. All of the current data is available in proteomeXchange and 

ProteomicsDB6, 16 and we will do the same for all upcoming data to engage the 

bioinformatics community to enable re-use and re-analysis of what we believe is a valuable 

resource.

The tryptic peptides reported here are only the beginning of the project and many further 

uses of the information generated can be envisaged. We plan to release new data every six 

months (~250,000 peptides per release) so that the community can access this data while the 

project progresses. As the physical reagents are finite resources, the long term value of the 

work lies in the data. It should be valuable for the development of software tools that may 

include intelligent data acquisition routines within the instrument control software17 or the 

development of more powerful database or spectral library search engines utilizing e.g. 

concepts of machine learning18. There is also still a need to develop improved statistical 

tools for the assessment of large-scale proteomic experiments particularly for data 

independent measurements such as SWATH or SRM/PRM. The spectral libraries generated 

in this project should provide ample opportunity to facilitate these applications19. Reagents 

and software aside, we also plan to build targeted assays in the next two years for sets of 

functionally important proteins such as kinases and phosphopeptides representing the 

activation status of signaling pathways. The results obtained so far demonstrate that the 

overall project is conceptually and technically feasible and yield scientifically meaningful 

and interesting results. We are therefore confident that the molecular and digital tools arising 
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from the ProteomeTools project will become a valuable resources for the proteomics 

community in the future.

Data availability

Reference spectra are available at https://www.proteomicsdb.org and updates to the resource 

are available at www.proteometools.org. The mass spectrometric data have been deposited 

with the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via 

the PRIDE partner repository with the dataset identifier PXD004732.

Online Methods

Synthetic peptide sets

To achieve extensive coverage of human proteins, three different sets of peptides were 

created or used in this study. First, a “proteotypic” peptide set covering confidently and 

frequently identified proteins was derived from prior mass-spectrometric evidence available 

in ProteomicsDB20, 21. We selected between 2 and 10 unique (at gene level) tryptic peptides 

for each human gene to reach a cumulative proteotypicity of ~95 % (i.e. we stopped 

selecting further peptides when the selected peptides covered at least 95% of all cases a 

particular protein was identified). Further constraints included a peptide length of 7 to 40 

amino acids and no more than two missed tryptic cleavage sites. The resulting list contained 

124,875 peptides covering 15,855 human Uniprot/SwissProt annotated genes. Second, a 

“missing proteome” set was constructed containing tryptic peptides mapping to genes which 

lacked confident experimental identification evidence in ProteomicsDB. Here, any gene-

unique tryptic peptide between 7 to 30 amino acids in length and allowing for a maximum of 

one missed cleavage site was included in the selection without restricting the number of 

peptides per gene. The resulting list contained 140,458 peptides covering 4,818 genes. 

Third, we obtained a subset of the “SRMAtlas” peptides comprising 90,967 peptides 

mapping to 19,099 genes also covering proteins with empirical evidence and “missing” 

proteins22. Altogether, the three sets of tryptic peptides contained 330,286 non-redundant 

peptides covering 19,840 human genes as annotated in Uniprot/SwissProt (Version 

2016-07-20; 42,164 protein sequences) (see Supplementary Table 1).

Peptide pool design

Peptide pools for synthesis and LC-MS measurement consisted of approximately 1,000 

peptides each. The peptide pools representing the “proteotypic” and “missing proteome” sets 

were designed to have a narrow peptide length distribution to support optimal synthesis. 

Near isobaric peptides (± 10 ppm) were distributed across different pools of similar length to 

avoid ambiguous masses in pools wherever possible (Supplementary Table 1). To this end, 

peptides were first ordered by length and mass. Second, the peptides were sorted by taking 

every nth peptide within the ordered list of peptides of one length, where n is the number of 

pools needed to distribute these peptides. The resulting ordering provided a well sampled 

sub-population of peptides with the same MW distribution. In a third step, peptides with 

near isobaric (± 10 ppm) mass were identified and, as long as no additional near isobaric 
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conflict was created, distributed across pools with similar peptide length (max 2 AAs 

difference).

The “SRMAtlas” peptide set was acquired in 96 well plates with each well containing one 

individual proteotypic peptide of 7–30 amino acids in length (i. e. one peptide per well, 

PEPotec Grade 1, suspended in 0.1% TFA in 50% (v/v) acetonitrile/water). These were also 

pooled into sets of approximately 1,000 peptides. To create plate pools, the peptides from 

every plate were first manually pooled together resulting in mixtures of 95 peptides (one 

quality control peptide present in each plate was discarded to avoid accumulation of this 

peptide in the subsequent pooling process). To create measurement pools of ~1,000 peptides, 

either 10 (for fully-tryptic peptides; i.e. C-terminal K/R) or 14 (non- and semi-tryptic 

peptides; i.e. non-K/R C-terminal) plate pools were combined. In order to avoid bias in 

pools of 1000 peptides regarding mass (MW) or hydrophobicity index (HI)23, the pooling 

scheme was computed to best mimic the overall MW and HI distribution of the entire set. 

We used the Kolmogorov-Smirnov test (KS-test) to quantify the distance of the MW and HI 

distribution between mixtures of plate pools to the total distribution of the total set. Starting 

with a plate pool or mixture of plate pools, all other (still available) plate pools were tested 

to generate a combined mixture that is closest to the overall set. The best match (lowest p-

value) was chosen and the process was repeated until the desired number of plate pools for 

combination was reached (Supplementary Figure 1). The resulting 96 measurement pools 

were desalted on C18 material (Waters, SepPak) before storage at -20 °C. All peptide 

sequences and their pool membership are listed in Supplementary Table 1.

Peptide synthesis

All peptides were individually synthesized following the Fmoc-based solid phase synthesis 

strategy. A carboxyamidomethylated cysteine building block was used to eliminate the need 

for cysteine modification prior to MS analysis. Peptides of the “proteotypic” and “missing 

gene” sets were synthesized by SPOT-synthesis on cellulose membranes at a scale of 

approximately 2–5 nmol of peptide per spot as described24. Depending on the length of 

peptides in a given pool, up to 6 peptide pools (containing at most 6,000 peptides; see 

Supplementary Notes) were synthesized in parallel using a purpose built peptide synthesizer. 

Five quality control peptides were synthesized along with every peptide pool. Peptides were 

cleaved from the membrane into pools of 1,000 peptides following the design criteria 

described above. Following solvent evaporation, peptides were stored at -20 °C until use. 

Peptides from the “SRMAtlas” set were synthesized in 96 well synthesizers (Thermo-Fisher 

Scientific, PEPotec Grade 1) at a scale of 0.1 mg per peptide. They were pooled and stored 

as described above.

Sample preparation for mass spectrometry

Dried peptide pools were initially solubilized in 100% DMSO to a concentration of 10 pmol/

μl by vortexing for 30 min at room temperature. The pools were then diluted to 10% DMSO 

using 1% formic acid in HPLC grade water to a stock solution concentration of 1 pmol/μl 

and stored at −20 °C until use. 10 μl of the stock solution were transferred to a 96-well plate 

and spiked with two retention time (RT) standards. The first set of retention time peptides 

(JPT Peptide Technologies) consisted of 66 peptides with non-naturally occurring peptide 
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sequences (Supplementary Table 1). 200 fmol per peptide was used per injection. The 

second RT standard (Pierce, Thermo Scientific) comprised 15 13C-labelled peptides and 100 

fmol per peptide was used per injection. Samples in the resulting 96-well plates were 

vacuum dried and stored at −20 °C until use.

Nanoscale liquid chromatography

For LC-MS analysis, the peptide pools in the 96 well plates were dissolved in 0.1% formic 

acid in water to a concentration of 100 fmol/μl per peptide (residual DMSO concentration of 

~1%). An estimated amount of 200 fmol of every peptide in a pool was subjected to liquid 

chromatography using a Dionex 3000 HPLC system (Thermo Fisher Scientific) using in-

house packed C18 columns. The setup consisted of a 75 μm × 2 cm trap column packed with 

5 μm particles of Reprosil Pur ODS-3 (Dr. Maisch GmbH) and a 75 μm × 40 cm analytical 

column, packed with 3 μm particles of C18 Reprosil Gold 120 (Dr. Maisch GmbH). Peptides 

were loaded onto the trap column using 0.1% FA in water. Separation of the peptides was 

performed by using a linear gradient from 4% to 35% ACN with 5% DMSO, 0.1% formic 

acid in water over 50 min followed by a washing step (60 min total method length) at a flow 

rate of 300 nL/min and a column temperature of 50 °C.

Mass spectrometry

The HPLC system was coupled on-line to an Orbitrap Fusion Lumos mass spectrometer 

(Thermo Fisher Scientific). Each peptide pool was first measured using a “survey method” 

consisting of an Orbitrap full MS scan (60k resolution, 5e5 AGC-target, 50 ms maximum 

injection time, 360–1300 m/z, profile mode), followed by MS2 events with a duty cycle of 2 

s for the most intense precursors and a dynamic exclusion set to 5 s as follows: (i) HCD scan 

with 28% normalized collision energy and Orbitrap readout (15k resolution, 1e5 AGC-

target, 22 ms maximum injection time, inject ions for all available parallelizable time 

enabled, 1.3 m/z isolation width, centroid mode); (ii) CID scan with 35% normalized 

collision energy and ion trap readout (rapid mode, 3e4 AGC target, 0.25 activation Q, 22 ms 

maximum injection time, inject ions for all available parallelizable time enabled, 1.3 m/z 
isolation width, centroid mode). From this data, inclusion lists with retention time 

constraints were generated for each pool and used for three subsequent LC-MS 

measurements focusing on different acquisition types. Precursors detected in the “survey 

method” were scheduled for fragmentation within a 5 min RT window. Peptides lacking 

identification in the survey run were added to the inclusion as 2+ or 3+ precursor ions, but 

without retention time scheduling. (1) The “HCD” method consisted of an Orbitrap MS1 

scan (120k resolution, 5e5 AGC-target, 50 ms maximum injection time, 360–1300 m/z, 

profile mode) followed by 3 seconds of MS2 scans with consecutive HCD scans at 20, 25 

and 30 normalized collision energy and Orbitrap readout (15k resolution, 1e5 AGC-target, 

20 ms maximum injection time, inject ions for all available parallelizable time enabled, 1.3 

m/z isolation width, centroid mode). (2) The “IT” method consisted of an Orbitrap MS1 

scan (120k resolution, 5e5 AGC-target, 50 ms maximum injection time, 360–1300 m/z, 

profile mode) followed by 3 seconds of MS2 scans with (i) CID scan with 35 normalized 

collision energy and ion trap readout (rapid mode, 3e4 AGC target, 0.25 activation Q, 20 ms 

maximum injection time, inject ions for all available parallelizable time enabled, 1.3 m/z 
isolation width, centroid mode); (ii) HCD scan with 28 normalized collision energy and ion 
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trap, (iii) HCD scan with 20 normalized collision energy and Orbitrap readout; (iv) HCD 

scan with 23 normalized collision energy and Orbitrap readout. (3) The “ETD” method 

consisted of an Orbitrap MS1 scan (120k resolution, 5e5 AGC-target, 50 ms maximum 

injection time, 360–1300 m/z, profile mode) followed by 3 seconds of MS2 scans with (i) 

ETD scan using charge dependent ETD parameters and Orbitrap readout25; (ii) EThcD scan 

using charge dependent ETD parameters and supplemental HCD activation with 28% 

normalized collision energy and Orbitrap readout; (iii) ETciD scan using charge dependent 

ETD parameters and supplemental CID activation with 35 normalized collision energy and 

Orbitrap readout with settings described above.

Data processing

The logistics of data processing and MS method generation was governed by an in-house 

database (Supplementary Figure 8). RAW data were analysed using MaxQuant version 

1.5.3.30 searching individual LC-MS runs against pool-specific databases (see 

Supplementary Table 2)26. If not mentioned otherwise, default parameters were used: 

Carbamidomethylated cysteine was specified as fixed modification, methionine oxidation as 

variable modification. First search tolerance was set to 20 ppm, main search tolerance to 4.5 

ppm and filtered for peptide and protein FDR of 1 %. Retention time windows of ±5 min 

were corrected for drifts using the internal retention time standards. The pool-specific 

inclusion lists were generated from confidently identified precursors (from the survey 

method) which passed an ad-hoc Andromeda score cut-off of 100. For analysis of synthesis 

side product, the survey MS run was searched with unspecific digestion and “dependent 

peptides” enabled.

Conserved peptide sequences in human and mouse

A current mouse protein sequence database representing 16,336 mouse genes was obtained 

from Swissprot (version dated 07/09/2016, 16,818 sequences). The database was in silico 
digested using tryptic cleavage specificity (no proline rule) and a maximum of 2 missed 

cleavages. The resulting peptide list was filtered for unique entries and mapped against our 

sequence list of peptides (see Supplementary Notes and Supplementary Table 3).

Comparison QTOF vs Fusion Lumos spectra

We systematically compared spectra generated in this project on an Orbitrap Fusion Lumos 

(Thermo) to a spectral library generated on a 5600 TripleTOF (QTOF) mass spectrometer 

(AB Sciex)27. For this, intensities of matching annotated fragment ions of the highest 

scoring (>100) beam-type CID spectrum per acquired normalized collision energy (Lumos) 

were correlated using Pearson correlation to the corresponding beam-type CID QTOF 

spectrum (acquired with rolling collision energy).

Fragmentation Prediction

First, MaxQuant result files were parsed and only spectra of unmodified doubly charged 

peptides with a PIF > 0.8 and a score of higher than 100 were selected for training. For each 

combination of amino acids N-terminal (left) and C-terminal (right) of the fragmentation 

position at a given normalized collision energy, a local polynomial regression (LOESS) 
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model was fitted using the peptide length normalized fragmentation position and the base 

peak intensity (BPI) normalized intensity of the y-ions (see Supplementary Figure 11–13). 

The resulting models were tested on pool 66 of the “proteotypic” set using the same peptide 

selection criteria. Each possible y-ion for each peptide passing the filters was predicted using 

the corresponding LOESS-fit. The predicted y-ion intensities were scored against the 

measured spectra using the Pearson correlation coefficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AGC Automatic gain control

CE Collision energy

CID Collision induced dissociation

DIA Data independent acquisition

DMSO Dimethyl sulfoxide

ESI Electrospray ionization

ETciD Electron-transfer/collision induced dissociation

ETD Electron transfer dissociation

EThcD Electron-transfer/higher-energy collision dissociation

FA Formic acid

HCD Higher energy CID

HLA Human leucocyte antigen

IT IonTrap

iTRAQ Isobaric tags for relative and absolute quantification
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LC-MS/MS Liquid chromatography-tandem mass spectrometry

MS Mass spectrometry

NCE Normalized collision energy

nESI Nano-ESI

ORF Open reading frame

OT Orbitrap

PIF Precursor intensity fraction

QTOF Quadrupole time-of-flight

RT Retention time

SRM/PRM Selected reaction monitoring/parallel reaction monitoring

SWATH Sequential window acquisition of all theoretical fragment ion spectra

TMT Tandem mass tags
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Figure 1. Overview of the ProteomeTools project
(a) Planned segmentation of the 1.4 million peptides that will be selected from the human 

proteome and synthesized over the course of the project. Here, we report on the analysis of 

330,000 individually synthesized tryptic peptides. (b) Estimation of synthesis success using 

peptide precursor intensity information for the peptide SVSLLEER and its by-products. 

Here, 82% of the total MS signal can be attributed to the full length product. (c) Boxplots for 

the number of tandem mass spectra identifying a given peptide with very high confidence 

(Andromeda score >100; total of 11.3 million PSMs in 11 types of tandem MS); the number 

of such peptides (total of 211,895) covering a given protein/gene (total of 19,735) and the 

average precursor intensity fraction (PIF; see main text) of these peptides. (d) Distribution of 

peptide and protein identifications as a function of the Andromeda score. All data is 

available in ProteomicsDB and proteomeXchange.
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Figure 2. Data analysis and application
(a) Protein identification: target/decoy search results for the peptide 

LAAQGLGMQAACTLTR of Aquaporin 12B (AQP12B). There are only two spectra in 

ProteomicsDB with identification Q-Scores distinct from the decoy distribution (left panel). 

The inset shows the Q-Score distribution of all genes/proteins in ProteomicsDB, placing 

AQP12B well way from the decoy proteins. The right panel shows the best CID mass 

spectrum for AQP12B in ProteomicsDB (top) compared to the corresponding CID spectrum 

of the synthesized reference peptide confirming this identification. (b) Transferability 

between MS instruments: comparison of a spectrum acquired from a complex digest by 

beam-type CID on a QTOF instrument for the peptide VVSEDFLQDVSASTK compared to 

the corresponding spectrum of the synthesized reference peptide acquired by beam-type CID 

on an Orbitrap instrument (left panel). Fragment ion intensities show very high correlation 

(Pearson correlation of 0.9). Extending this analysis to ~9,000 peptides confirmed the high 

correlation of these two types of tandem mass spectra (right panel). (c) Development of a 

predictor for tandem mass spectra. HCD data were recorded at six collision energies. The 

left panel shows the median relative fragment ion intensities of 12 y-fragment ions for the 

peptide YYLIQLLEDDAQR. Using these characteristics for all spectra of all peptides, a 

predictive model was trained for each normalized collision energy. The comparison of 

measured and predicted spectra for YYLIQLLEDDAQR (middle panel) show very good 

agreement. The histogram on the right shows that the predictor (tested on 529 peptide 

sequences and 3,248 spectra) of pool 66 of the proteotypic peptide set, is generally able to 

Zolg et al. Page 13

Nat Methods. Author manuscript; available in PMC 2018 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predict the relative y-ion intensity for a given peptide with good quality (see Supplementary 

Notes for details).
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