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ABSTRACT
In this paper we present a trace-driven framework capable of
building realistic mobility models for the simulation studies
of mobile systems. With the goal of realism, this frame-
work combines coarse-grained wireless traces, i.e., associ-
ation data between WiFi users and access points, with an
actual map of the space over which the traces were collected.
Through a sequence of data processing steps, including fil-
tering the data trace and converting the map to a graph
representation, this framework generates a probabilistic mo-
bility model that produces user movement patterns that are
representative of real movement. This is done by adopting
a set of heuristics that help us infer the paths users take
between access points. We describe our experience applying
this approach to a college campus, and study a number of
properties of the trace data using our framework.

Categories and Subject Descriptors
I.6 [SIMULATION AND MODELING]

; G.3 [PROBABILITY AND STATISTICS]

General Terms
Measurement, Experimentation

Keywords
Statistical Mobility Model

1. INTRODUCTION
Mobility models are an indispensable tool in simulating

mobile systems. They supply the movements for each node,
allowing one to examine a wide variety of patterns and be-
haviors. However, the vast majority of models have little or
no relevance to real-world movements. The most common
example, Random Waypoint [15, 8], models nodes with com-
pletely random destinations in a bounded, open area—not
at all similar to the way real people move.
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While there have been some important strides in improv-
ing this state of affairs, we are not aware of any modeling
approach that is able to faithfully represent real movement.
We believe this is due primarily to the difficulty of captur-
ing such movement. For example, one could recruit a set of
users to wear or carry a location-tracking device, such as a
GPS receiver or a PlaceLab [4] client, but building a large
enough user community for a meaningful model would be
challenging at best. Furthermore, many users are uncom-
fortable having their specific locations tracked and reported
for any significant period of time. Alternatively, one could
passively monitor a physical space, watching and recording
movement, but this is both time consuming and cumber-
some.

In this paper, we present a system that is able to de-
rive a representative, realistic mobility model by combin-
ing coarse-grained wireless traces—association data between
WiFi clients and access points—with a map of the measured
space. The map is first converted to a graph representation,
with known locations for each measured access point. The
wireless traces are then filtered, giving us at minimum a se-
quence of starting and ending points for trips taken by each
user. Users with devices that are always on can yield even
more movement data.

The map combined with a set of heuristics allows us to
model the user movement as a second-order Markov chain
and generate from the filtered data trace a set of transition
probabilities from one map location to another. Specifically,
the heuristics generate candidate routes between locations,
biasing for distance, and constrained by map features; tran-
sition probabilities are then obtained by aggregating across
such routes. The model is initially populated by estimating
user densities at each map location, also obtained from the
data trace.

We have applied our scheme to a college campus. We
evaluated the quality of the derived model by comparing
the transition probabilities computed at a variety of inter-
sections with actual observations of pedestrians at those lo-
cations. While our model does not perfectly capture these
counts, individual predictions made by the model show high
correlation and low error when compared to actual traffic—
in short, coarse-grained data gives us surprisingly represen-
tative results.

This modeling framework carries with it several advan-
tages:

• a statistical mobility model that is based on real move-
ment, not a random distribution,

• it requires only coarse-grained data collection in the
form of AP associations—a data set relatively easy to
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Figure 1: Statistical mobility model (SMM) generating system overview.

obtain—but is able to generate representative move-
ment at much finer grain by combining a physical map
with reasonable heuristics,

• the coarse-grained collection imposes a relatively mod-
est privacy intrusion, and

• the models can be updated easily by using recent trace
data.

If one draws from longitudinal data, the resulting model
captures aggregate characteristics, but not diurnal effects.
By considering only subsets of the trace data—for example
weekday mornings”—one can also tailor models for a specific
time window of interest.

Realistic, site-specific mobility models have several inter-
esting applications beyond serving as a basis for mobile sys-
tem simulation. For example, urban planning projects de-
pend on measuring traffic through various points; doing so
through first-hand observation is very expensive. Likewise,
socially-based games and augmented reality applications de-
pend on physical movements in a real setting.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly covers related work on mobility models so far.
Section 3 describes how to generate our model, while Sec-
tion 4 shows the evaluation of our model by comparing the
results to the real measurement. Furthermore, we apply our
model to a larger size of trace data for in-depth analysis on
mobility in Section 5. Section 6 concludes this paper.

2. RELATED WORK
Most mobility models used in simulation studies have been

synthetic random mobility models [8, 23, 9, 13, 22, 5, 26,
21, 7, 18]. While they differ in details, each follows a similar
pattern. Given some idealized, typically open, space, each
of a number of principals independently repeatedly chooses
a destination or direction and speed or transit time, at ran-
dom, from some probability distribution. Some of these [19]
augment this basic approach with a stochastic selection of
various classes of mobility to enrich the model. These mod-
els have several advantages: they are simple, and it is easy to
compare different protocols and systems using them. How-
ever, they all suffer from the same problem—they may or
may not capture the way people move in realistic spaces.
Worse, one may be led to incorrect conclusions based on
these models, as has been shown in the literature [26, 21, 7].

To overcome the lack of reality, Jardosh et al. [14] imple-
mented a mobility model considering obstacles (e.g., build-
ings) that block the signal propagation. This provides a
better model of space, but may not significantly increase
the realism of movement in that space. On the other hand,
Herrman [11] and Musolesi et al. [20] proposed two differ-
ent social mobility models considering the interactions and

relationships between mobile users. Furthermore, Tan et
al. [25] collected the real trace data from a networked first-
person-shooter game and built a modified version of random
waypoint model for networked games. These improve plau-
sibility, but still may or may not generate models represen-
tative of any particular physical space.

One could presumably record the precise movements of
individuals and derive more accurate models than our own.
However, we are unaware of any study that has done so.
Such a study would either require significant personnel re-
sources to observe a large number of locations, or a fine-
grained, large-scale, ubiquitous location-tracking infrastruc-
ture; either is prohibitively expensive. Our contribution pro-
vides a midpoint between purely hypothetical models and
fine-grained observations; we generate plausible models that
adequately match real behavior, without significant costs or
infrastructure beyond common wireless access deployments.

3. GENERATING THE STATISTICAL
MOBILITY MODEL (SMM)

In this section we describe the design methodology used
to produce statistical mobility model (SMM). At the high
level, our method is a trace-driven one in that it takes as
input real movement trace data and produces as output a
statistical mobility model, which generates synthetic move-
ment patterns that are statistically similar to the trace data.
This model is built offline using trace data, and can be used
to generate movement for use in a simulation study.

There are two important features of our approach. First,
it takes as input not only the trace data, but also a spe-
cific topological map on which the trace data were collected.
Consequently the statistical mobility model generated by
this method is also within the context of a given map. While
the applicability of the resulting mobility pattern is limited
to this particular topological environment, our methodology
is much more general. In addition, we argue that any real
movement cannot exist without a topological environment.
In this sense the inclusion of such a map makes SMM more
realistic.

Second, the trace data we use are coarse-grained while
the synthetic movement data generated by SMM are fine-
grained (as typically required by any simulation study of a
mobile system). This inevitably requires certain interpola-
tion procedure. We accomplish this by taking advantage of
topology information provided by the map and by adopt-
ing simple heuristics based on distance. The validity of this
approach is verified by comparing the data generated by
SMM and real measurements of pedestrians on campus, as
we show in the next section.

Figure 1 illustrates the methodology underlying the gen-
eration of SMM. As shown, the SMM generating system
accepts two inputs: wireless trace data and a map. The
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Figure 2: Definitions and concepts in our initial processes in Section 3.1.

map provides graph information in the form of vertices and
segments, and the coordinates of APs, buildings, and inter-
sections, as detailed in Section 3.2. Our system produces
two outputs: a set of transition probabilities (Section 3.5)
and user densities (Section 3.6). These two outputs also con-
stitute the statistical mobility model. Specifically, the user
density is used by the model to generate initial positions of
mobile users in the network along with their destinations.
The transition probabilities are used to generate in a se-
quential way the movement of an individual user (in the
form of a randomly selected path between her origin and
destination). These are discussed in more detail in Section
3.7. When we use these two components to generate actual
movement, we also need to adopt certain timing/speed as-
pect that can specify a user’s speed (e.g., randomly chosen).
Under our method this aspect is added as an external com-
ponent independent of the statistics obtained from the trace
data. More is discussed in Section 3.7.

3.1 Filtering Trace Data
The trace data we used for this study were collected over

a campus-wide wireless network at Dartmouth College [1].
The traces include observations from syslog, SNMP, and tcp-
dump. Among these, we used syslog to build SMM. One
could also imagine using SNMP data, but we did not do
so. Our traces contain the log data transmitted from each
AP—Cisco 340 and 350 running VxWorks and Cisco IOS.
It records times at which a user’s wireless card is associ-
ated, authenticated, roamed, re-associated, disassociated, or
deauthenticated. Each line of log data lists the AP name,
MAC address of the wireless card, and the type of message
transmitted. There were some APs owned by Dartmouth
but taken off-campus captured in the original trace, but
these were removed after the fact.

These traces were filtered to generate a chronological list
of “trips” taken by each user. Each trip consists of an ori-
gin, a destination and any possible intermediate locations,
denoted by an AP or building. For simplicity, we coalesce
different APs in the same building to one location.

The filtering process consists of three steps: separating
discontinuous trips, smoothing out high frequency pingpong
phenomena, and identifying a trip with stationary/transient
points. Figure 2 shows definitions and concepts that were
used in these steps. We explain each step below.

3.1.1 Initial Processing
The first step of initial processing is to separate the sys-

log data, which contain information of all users, into traces
for individual users. There are primarily two types of users
present in these traces, the laptop users and the VoIP phone
users, identified by the OS type of mobile device in the trace
data. It turns out that the VoIP trace is more fine-grained
than the laptop trace in that the former contains more asso-
ciation logs with intermediate APs whereas the latter rarely
contains ones. The reason is because a VoIP phone user is
more likely to keep his wireless device on while moving, and
therefore to register with all APs he passes on his way. By
contrast, a laptop user typically turns the laptop off when
moving, and therefore does not register with APs he passes
through. Our methodology applies to both types of users.
Therefore throughout our discussion we will use the term
trace data to refer to both types unless specified otherwise.

The result of the above is a list of successive APs accessed
by each user. The second step of the initial processing is to
segment such a list into separate and shorter lists based on
the timestamps. Specifically, if two successive AP logs (say
AP 1 and AP 2) are time stamped more than Tg hours apart,
Tg being some threshold parameter which is tunable, then
we segment the list into two, with the first one ending at AP
1 and the second one starting at AP 2 (see Figure 2). By
repeating this process we obtain shorter lists of successive
AP accesses that have occurred closer in time. The rationale
behind this step is that two successive accesses with a long
time lag in-between are likely to be unassociated with the
same trip. For the rest of our discussion, an AP list refers
to the shortened list resulting from the above two steps.

In the third/last step of initial processing, we compute the
average stay time of a given AP/building as follows. Con-
sider a sequence of AP associations denoted by the ordered
list of the couple (APi, si), i = 1, 2, · · · , where APi is the
ith AP association that occurred at time si, and si ≤ sj for
i < j. We will define the stay time of APi, denoted by ti, as

ti = si+1 − si ,

i.e., the stay time at an AP is the time lag between this
AP and the next one. The average stay time at an AP, say
AP 1, denoted by t̄AP1, is the total stay time at AP 1 di-
vided by the number of occurrences of AP 1 in the AP list.
This average is computed for each user separately, reflecting
on average how much time a particular user spent at differ-
ent buildings. The notion of average stay time is used for
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smoothing out the pingpong phenomenon and for identifying
a trip, discussed in the next two subsections, respectively.

3.1.2 Smoothing out the pingpong phenomenon
The so-called “pingpong” phenomenon was originally re-

ported by [10, 24]. It happens when a user is within the
coverage of two or more APs. The wireless channel fluctu-
ation causes the estimated signal strength from these APs
to fluctuate as well. For example, the log data may show
that user A was associated with AP 1 at some time s, and
associated with AP 2 located 100m away after 1 second.
Another second later, the log says that the user was associ-
ated back with AP 1. Considering practicality, it is unlikely
that the user physically moved from one AP to the other
within seconds. A more plausible explanation is that the
user was somewhere within the range of both APs, and the
rapid switching between APs is due to the fact that the
wireless device was trying to associate with a stronger sig-
nal. When the pingpong phenomenon occurs, there may be
many entries in the log that do not necessarily suggest sig-
nificant movement on the user’s part. However, it is not
always clear when such entries should be recognized as a
pingpong event. For instance, if the same sequence of AP
associations were observed, but with time gaps on the or-
der of minutes instead of seconds, it is hard to tell whether
this is a pingpong event or not (and thus hard to tell if real
movement had occurred). It is clearly possible for a VoIP
phone user to visit a neighboring building and come back in
several minutes.

While there is no perfect solution to this problem due to
incomplete information and the ambiguity in its interpreta-
tion, we can reduce and smooth out high frequency pingpong
switching by applying a moving average filter to the logs as
follows.

Again consider a sequence of AP associations (APi, si)
and the corresponding stay times ti = si+1−si, i = 1, 2, · · · .
Then for the ith entry on the list that occurred at time si,
we can estimate the “average location” of the user by using
his registered locations in the past (within a time window
W ), weighted by their respective stay times:

(x̄(si), ȳ(si)) =

Pni(W )
k=0 ti−k · (xi−k, yi−k)Pni(W )

k=0 ti−k

, (1)

where (xi, yi) is the x and y coordinates of the ith AP on
the list, ni(W ) is the number of AP associations within the
window W that ends at si. In other words, si−ni(W )−1 <
si − W < si−ni(W ). This average is calculated by giving
more weight to buildings with longer stay times.

This average computation is done for every AP entry
on the list, i.e., producing the couple (x̄(si), ȳ(si)) for the
APi, i = 1, 2, · · · . We then replace the ith entry APi with
an AP whose location is closest to the computed average

(x̄(si), ȳ(si)), denoted by dAPi. At the end of this step, we
group consecutive appearances of the same AP into one log
entry with the stay time being the sum of all.

Figure 3 shows an illustration of applying this smoothing
method, where Figure 3(a) gives the original list of APi,

Figure 3(b) gives the result of averaging, the list of dAPi,
and Figure 3(c) shows the result after merging a sequence
of the same APs. As shown, an indication of the pingpong
phenomena between APs Bldg1 and Bldg2 can be observed
in Figure 3(a). By averaging over a window of W = 1800
seconds, the occurrences of Bldg2 is removed. Similarly,
between Bldg3 and Bldg4, the former is averaged out.

Name Time
Bldg1     151
Bldg2     9
Bldg1     274
Bldg2     19
Bldg1     401
Bldg3     6
Bldg4     920
Bldg3     16
Bldg4     548
Bldg3     2

Name Time
Bldg1     151
Bldg1     9
Bldg1     274
Bldg1     19
Bldg1     401
Bldg1     6
Bldg4     920
Bldg4     16
Bldg4     548
Bldg4     2

Name Time

Bldg1     860

Bldg4     1486

Moving average Accumulation

(a) (b) (c)

Figure 3: An illustration of applying the moving
average filter weighted by stay times with W = 1800
seconds.

The choice of the moving window size W has a number
of implications. In general, the larger the window size is,
the more AP entries with small stay times we filter out. On
one hand, large W can provide a better guarantee of the
elimination of pingpong events. On the other hand, large
W also increases the likelihood of accidentally removing AP
entries that are part of some actual movement. That is, a
large value of W leads to an increased miss rate, whereas a
small value of W leads to an increased false alarm rate. For
example, a user that moves from AP 1 to AP 3 via AP 2
registers with all three APs. Since he is only passing by AP
2, the stay time at AP 2 is very short. If W is set too large,
due to the fact that the average is weighted by stay times,
AP 2 could be removed from the AP list (see Figure 3(c)).
This is undesirable, since the association with AP 2 could
provide us with valuable information as to which route the
user takes to travel from AP 1 to AP 3. This is particularly
relevant to VoIP traces, because such intermediate points
are more often available.

To address this problem we apply different W values to
different APs/buildings based on their average stay time
(t̄AP ) calculated during the initial processing. The idea here
is that the average stay time is a measure of how likely a
particular building is used by a particular user as a passing-
through building or a building where he spends significant
time (e.g., where his office/classroom is). By comparing a
user’s average stay time at a building with a pre-set thresh-
old Tt, we can decide whether the building falls into the
first category (i.e., t̄AP ≤ Tt), or the second category (i.e.,
t̄AP > Tt). For the first type of buildings, W is set to a
smaller value (e.g., 10 minutes as used in our experiment),
and for the second type, W larger (e.g., 30 minutes as used
in our experiment).

The end result of this filtering step is a shortened and
consolidated AP list with not only short-lived redundant
AP entries removed but also loss of valid intermediate points
minimized.

As an aside, one could imagine using pingponging to con-
strain a user’s location to the intersection of their coverage
areas. Unfortunately, Dartmouth’s deployment density is
high enough that this is not worth the increased complexity
in filtering logs.

3.1.3 Identifying a trip and its origin/destination
The previous smoothing process filters out short-lived en-

tries on the AP list. From the resulting list of AP associa-
tions, we can infer the trips a user has taken. We describe
this process next.
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In general the origin, destination, and intermediate points
along a trip may be inferred by examining the stay times
at these locations. If the stay time is significant, we may
regard the location as the destination of the previous trip
and/or the origin of the next trip. Specifically, for each
AP entry on the list, we will examine both its stay time of
that entry and its average stay time calculated earlier. If
either quantity is larger than the threshold Tt (same as the
threshold introduced for determining the window size W ),
this AP entry is marked as a stationary point for the user
as shown in Figure 2. If both quantities fall below or equal
to Tt, then this AP entry is marked as a transient point for
the user.

Once we complete this process for every AP entry on the
list, the entries between two consecutive stationary points
are recognized as a “trip”, and the two stationary points
are recognized as the origin and destination of that trip,
respectively. Any possible entries between the origin and
destination are recognized as intermediate points/locations.
Thus we have turned the original AP list into multiple lists,
one per trip.

of course, this inference method is by no means unique
or perfect. In particular, anything that occurred during
the gap between any two consecutive time instants, if not
recorded, is not known. This is the inherent limitation of
coarse-grained data traces. While VoIP trace data are more
fine-grained than laptop trace data, it also has a significant
amount of gaps. Nevertheless, as we show in Section 4, com-
bined with heuristics in reasoning about the routes a user
takes, this method generates mobility patterns that are quite
realistic.

In our processing we set Tt = 3 minutes. This allows
enough time in general for a user to pass by a building on
foot. This quantity was selected also because the histogram
of the stay times at buildings, as shown in Figure 4, indi-
cates that the decrease in the distributions for both laptop
and VoIP phone users slows down noticeably at around 3
minutes, which may be viewed as the division between the
more frequent transient points and the less frequent station-
ary points.

3.2 Converting a map to a graph
The previous trace filtering step gives us the origin, des-

tination and intermediate APs that a user accesses during
a trip. The next step is to infer the route/path the user
takes on that trip. In order to do this, we need to have a
proper representation of the geographical environment, in
which each route is uniquely defined and identified. In this
subsection, we illustrate the procedure we take to convert a
conventional campus map to a graph that consists of vertices
and links (or segments) for our purpose. Figure 5 shows the
steps of this conversion process.

The trace data were properly anonymized such that the
identity of each AP is not known (i.e., the building in which
they are located). However, the relative coordinates of them
are available. At the same time, we can also find the other
relative coordinates of buildings from the conventional cam-
pus map. This allows us to match all APs that have been
actively used and recorded in the trace data on the campus
map, to the building they reside in with a numerical index.
As mentioned earlier, for simplicity we consider all APs in
a single building as one and the same. Thus each building
has only one number representing all APs in the building as
shown in Figure 5(a). These buildings will be used as origins
and destinations for the SMM to generate user movement.
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Figure 4: Histograms of laptop and VoIP stay times
at buildings within 1 hour from the trace data in
Section 4. Dotted lines on the magnified graphs
show the points from which the decrease seems to
start to slow down noticeably.

In mapping out the roads/paths connecting these build-
ings, again for simplicity we will limit our selection to only
the major roads plotted on the map as shown in Figure
5(a). All roads are approximated and represented by piece-
wise linear segments (e.g., a curve consists of multiple line
segments).

The buildings are then connected to the adjacent major
roads via entrances and exits as illustrated in Figure 5(b).
Specifically, buildings are either connected to the closest ma-
jor roads via a pathway perpendicular to the major road, or
connected to the closest intersection. In reality, a build-
ing may have many entrances and exits at various locations
around it. In our conversion process, we considered only the
main entrances that most people use. Minor buildings are
assumed to be accessible from the most adjacent major road
for simplicity.

Once all roads and connections between roads and build-
ings are included on the map, intersections are enumerated
as shown in Figure 5(b). The intersections are uniquely
identified, because they are used as the decision points for
the SMM to generate random routes as we show in the next
subsections. When a curved road is approximated by a se-
quence of line segments, the connecting point of two adjacent
segments is also considered as an intersection. By doing so
we convert the original roads/paths into a set of links.

Figure 5(c) is the final map produced after the above pre-
liminary processes. A small rectangle in the middle of Figure
5(c) is the area shown in Figures 5(a) and (b) above. Fig-
ure 5(d) is a final graph representation with vertices (i.e.,
squares as buildings, and dots as intersections) and links
(i.e., roads).
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(a) Step 1: Enumerating buildings on the map as vertices
and identifying major routes as segments.

(b) Step 2: Connecting buildings to adjacent major routes
and enumerating intersections as additional vertices.

(c) Final map: A rectangle on the map is the area shown
in Steps 1 and 2.
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Figure 5: Converting a map to a graph

3.3 Route candidates generator
We now have a graph consisting of vertices and links.

With the origin/destination/intermediate points (shown as
vertices on the graph) of a trip given by Section 3.1, we are
ready to infer the routes a user takes on this graph. In this
section, we focus on generating the likely routes taken by a
user, i.e., route candidates, on this graph, and in the next
section we derive the likelihood of a route candidate being
used.

In generating route candidates, we observe that the short-
est route between an origin and destination is often the pre-
ferred choice. However, this is not an absolute rule. What
constitutes the shortest route highly depends on the metrics
people use. For example, the shortest distance route is usu-
ally different from the shortest time route (e.g., MSN Maps
& Directions [2]). Other potential metrics include number
of turns, popularity, safety index, crime rate, scenic rank,
and so on. User preference also varies from person to per-
son, and from time to time even for the same person. For
example, a person may choose the quickest route to a des-
tination, while taking a more scenic route on the way back.
He might also prefer a secluded road for privacy during the
day, while favoring a safer and more popular road at night.
This motivates us to have a set of route candidates to select
from rather than a single shortest route defined in a specific
way.

In our experiment, we have used distance as a metric to
measure a route. This is primarily because distance is easier
to compute and manage given the coordinates, compared to
metrics like time or popularity (e.g., user density). In par-
ticular, time is not a good metric because it requires speed
information which we do not have. It is also difficult to
measure a user’s departure time in the trace data, because
in most cases a user simply shuts off his machine without
dissociation with AP before leaving. Popularity is not a
good metric either, not only because it is hard to measure
or collect, but also because using popularity as the only met-
ric may distort route search results. For example, all of the
searched and selected routes from a building to its neigh-
bor could be several times longer detours, not the obvious
straight route between them, if the measured popularity be-
tween two buildings is extremely low. So we stick to distance
as a metric for route searching.

Once the metric is determined, we can search for a set of
routes available between the origin and destination by using
an algorithm of finding N shortest paths (see for example
[16, 17]). This algorithm finds the shortest path up to the
Nth shortest one. We used N = 10, 30, and 50 in our
experiment. Comparison will be given in Section 4.

Even when there are a number of geographically available
routes between two buildings, not all routes can be consid-
ered because the kth shortest path for some large k tends
to result in a path that winds through buildings which does
not appear to be realistic. Therefore we exclude the routes
that are practically unlikely from the set generated by the
route search algorithm by setting a certain threshold C on
the route distance compared to the shortest path. The idea
is that it is reasonable to assume that most people are un-
likely to take a detour instead of shorter ones if that detour
exceed in distance by a certain amount. For example, C
= 2× means that the distance of route candidates does not
exceed more than 2 × the shortest distance for each pair of
origin and destination. We used C = 2×, 3×, 4×, and no
limit in our experiment, as will be shown in Section 4.
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Figure 6: Selecting the most probable route between
the origin and destination.

3.4 Selecting and counting routes
With the route candidates generated in the previous sub-

section, we now proceed to determine the likelihood of each
route being used. We do this by counting the frequency of
usage of each route throughout the trace data, i.e., the AP
lists resulting from the filtering process described in Section
3.1, over all trips taken by a user for all users.

Specifically, consider a trip with two consecutive station-
ary points Bldg1 and Bldg2. Suppose there are three possi-
ble routes between Bldg1 and Bldg2 generated by the route
candidate generator described in Section 3.3. Each route is
labeled with a weight indicating its preference as shown in
Figure 6(a). Since we use distance as a metric, the weight
of each route is simply the total distance of that route. The
inference follows that the user has visited Bldg1 and moved
to Bldg2 through one of these three routes. Thus this ob-
servation will be added to the frequency of one or more of
these routes. For example, ideally if we knew that the user
used route 1, then the usage frequency of route 1 would be
incremented by 1 while the frequencies of routes 2 and 3
would remain unchanged, and the same process would be
repeated over all trips taken by all the users.

Since we do not know exactly which route is taken on a
particular trip, we consider the following two possible cases
in this incrementing/counting process. In the first case,
there are no transient points between the two consecutive
stationary points Bldg1 and Bldg2 in the trace data. Thus
there is no indication as to which route more likely has been
taken from the trace data. In this case we will assume that
the frequency of taking a route is inversely related to its
weight/distance, and simply distribute this single observa-
tion among all three routes in different proportions as fol-
lows. Route i gets an increment of ∆i given by

∆i =

1
wiPN

k=1
1

wk

(2)

where wi is the weight of route i, and N is the total num-
ber of route candidates generated for the origin-destination
pair. In other words, we increment the frequency of a shorter
route by more, assuming that a shorter route is more pre-
ferred than a longer one. For example, in Figure 6(a),
routes 1, 2, and 3 have weights 10, 20, and 40, respectively.

Their frequencies are incremented by
1
10

1
10+ 1

20+ 1
40

= 0.57,
1
20

1
10+ 1

20+ 1
40

= 0.29, and
1
40

1
10+ 1

20+ 1
40

= 0.14, respectively, for

this single observation of the pair of Bldg1 and Blag2 in
the trace data. Note that

PN
i=1 ∆i = 1, i.e., the increments

over all routes add up to 1 over a single observation/trip.
In the second case, transient points are registered between

the two consecutive stationary points as shown in Figure
6(b). In this case we may use this extra information to infer
which route likely has been taken. Suppose two transient
points Bldg3 and Bldg4 were observed between Bldg1 and
Bldg2 in the trace data with their respective locations as
shown in Figure 6(b). It follows that route 3 is likely to be
the route taken on this trip from Bldg1 to Bldg2, and the
frequency of route 3 is incremented by 1. To translate the
occurrences of these transient points into a particular route,
we utilize the distance information. Specifically, we com-
pute the Euclidean distance between each transient point
and each of the route candidates (i.e., the distance of the
connections between buildings identified as these transient
points and their closest main roads). We then select as the
most likely route the route whose sum of distances to each
of the transient points is minimum. In Figure 6(b) route 3
gives the minimum. The usage frequency of route 3 is then
incremented by 1 over this single observation/trip of the pair
of Bldg1 and Bldg2.

The above counting/incrementing process is repeated for
all routes over the entire trace data, i.e., all trips taken by
all users. The resulting usage frequencies are then used to
derive transition probabilities and user density, discussed in
the next two subsections, respectively.

3.5 Transition Probabilities
Technically the route frequency statistics produced by the

counting process described in the previous section could be
used directly to derive a probabilistic mobility model. Imag-
ine a set of users randomly generated over the vertices on the
graph (user density is discussed in Section 3.6) in simulat-
ing a certain mobile system. Thus each route is associated
with an initial origin. For each of these users, we can se-
lect a route (including its destination and the specific path
between the origin and destination) with a probability con-
sistent with the route frequencies statistics, and repeat the
same process.

Alternatively, we can also model the user mobility as a
Markov chain and turn the route frequency statistics into
a set of transition probabilities associated with each vertex
(including all building locations and intersections) on the
graph. With this approach, once we have all the transi-
tion probabilities we no longer need to store the routes and
their frequencies. In using the resulting mobility model, we
simply decide for each user moving on the graph his next
intersection given his current and past positions according
to the transition probabilities. With the right transition
probabilities this approach would generate statistically sim-
ilar routes and movement patterns to that generated by the
first approach. The advantage of using this approach is that
transition probabilities provide more direct information than
the first approach. Note that turning route frequencies into
transition probabilities at intersections directly tells us user
mobility information like ratio of pedestrians in each direc-
tion (which we use for evaluation in Section 4) at each in-
tersection. This is not directly available from route frequen-
cies, even though the same information can be obtained via
methods like computing the transition probabilities.
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Figure 7: Transition probabilities at the intersection
in a form of P [next intersection | current and pre-
vious intersections, origin, destination]. A decision
should be made at intersection 3 when a user arrives
from intersection 5 during the trip from the origin
Org to the destination Dst.

The SMM is built using the second approach, and the
model itself is essentially a second-order Markov chain, given
by a set of transition probabilities and a stationary proba-
bility distribution (user density). Specifically, a transition
probability for this second-order Markov chain is defined by
the following conditional probability:

Prob[next | current, previous, origin, destination]

where all terms refer to an intersection or a building location.
Within the context of Markov chain modeling, the position
of a user (the vertex where he is) will also be referred to
as the state of the user [6, 12]. As can be seen from this
definition, a user’s next state is determined by his current
and previous states (thus second-order) in addition to his
origin and destination. An example is shown in Figure 7.

Using conditional probabilities P [next | current, prev-
ious, origin, destination], if one of the routes between origin
O and destination D is O = v1 −→ v2 −→ · · · −→ vn =
D, then the probability of the route being taken among all
routes between the O −D pair is simply given by

P [O = v1, · · · , vn = D|O, D]

= P [v2, · · · , vn|O, D]

= P [v2|O, D]

nY
i=3

P [vi|vi−1, vi−2, O, D]. (3)

The transition probability P [ n | c, p, o, d ] can be
obtained from the route usage frequencies, by treating each
route as a sequence of decisions made by the user. The tran-
sition probability at a particular vertex/intersection is then
computed as the ratio between the number of decisions made
in each direction (i.e., next vertex) and the total number of
decisions made at this vertex given by

bP [ n | c, p, o, d ]

=
Number of decision n at c, given p, o, d

Number of all decisions at c, given p, o, d
. (4)

For example, in Figure 7, suppose from the route frequen-
cies we count that the decision of going to vertex 1 was
made 70 times at vertex 3, given the previous vertex was
5 while moving from origin Org to destination Dst. Sup-
pose further that the decisions of going to vertices 2 and
4 were made 20 and 10 times, respectively, and that no-
body turned back to vertex 5 from vertex 3. Then the total

number of decisions made at vertex 3, given the previous
vertex 5 with the origin Org and the destination Dst, is
70 + 20 + 10 = 100. Thus the transition probabilities are
P [1 | 3, 5, Org, Dst] = 70/100 = 0.7, P [2 | 3, 5, Org, Dst]
= 20/100 = 0.2, P [4 | 3, 5, Org, Dst] = 10/100 = 0.1, and
P [5 | 3, 5, Org, Dst] = 0/100 = 0.0.

Note that the transition probability in Equation (4) is only

an estimate (typically denoted by bP [·]) of the true value P [·]
which is unknown. This is because these transition proba-
bilities are obtained through empirical means by counting
the relative frequencies. They approximate the true values
well when the sample size is sufficiently large as we assume

in this study. The notation P [·] is used instead of bP [·] for
simplicity without causing ambiguity.

3.6 User density
The transition probabilities we obtained above describe

how users move around on a graph during a simulation. One
more remaining question is the determination of initial dis-
tribution and deployment of these users. This corresponds
to the initial state distribution of the Markov model we de-
veloped in the previous subsection, and is also referred to as
the user density.

From the route frequency statistics collected in Section
3.4, we can easily determine the initial distribution of origins
by counting the frequency of visits to buildings when they
occur as stationary points in the trace data. These statis-
tics give the likelihood of selecting a certain building as an
origin. Although we can compute both user densities in the
buildings and on the roads, the user density in the build-
ings is more appropriate for deploying mobile users with the
transition probabilities, because our transition probabilities
are conditioned on the stationary points as an origin and a
destination.

Similarly, we can also compute the destination distribu-
tion for each origin building. This is done by counting the
relative frequency of each building that appears as a desti-
nation (the second stationary point of a pair in the trace)
for a given origin (the first stationary point of a pair). This
distribution is used to determine the destination of a user’s
trip given his origin of that trip in the next subsection.

3.7 Implementation of SMM
Given transition probabilities and user density, we know

how to determine where users start from and how they move
around. These two elements essentially constitute a statis-
tical mobility model.

Following the approach outline in this section, we have
built an SMM scenario generator by modifying setdest, a
utility program in ns-2 [3] that generates movement scenar-
ios for ad hoc network simulations. The modified setdest,
named smm, accepts six input files: (1) graph information
with vertices and links, (2) their coordinates, (3) transition
probabilities, (4) user density over the buildings, (5) desti-
nation distribution over the buildings, and (6) the average
stay times in each building. Note that the graph informa-
tion and coordinates are obtained in Section 3.2, transition
probabilities in Section 3.5, user density and destination dis-
tribution in Section 3.6, and average stay times in Section
3.1. The route candidates generator and the rest of SMM
generating system in Figure 1 are written in C++ and Perl,
respectively.

SMM works as follows. First, the user deployment process
randomly picks a building as an origin from the user den-
sity, and selects another building as the destination from the
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Figure 8: Intersections 71, 81, and 103 on the cam-
pus map for the evaluation.

destination distribution. This process is repeated for each
user in the system. Next, the scenario generating process
specifies the user movement on the graph according to the
transition probabilities. Once a user arrives at the desti-
nation, he stays there first for the average stay time of the
building. Then he selects the next building from the des-
tination distribution of the current building (i.e., origin for
the next trip). The same process is then repeated. A user’s
speed is selected at random whenever he arrives at a vertex
and makes a decision on the next direction. Minimum and
maximum speeds are specified beforehand. For example, the
speed range from 0.5 to 1.5 m/s would be reasonable if peo-
ple are assumed to be on foot. The initial speed distribution
is given by the stationary distribution to avoid the transient
period in the beginning of the simulation [26].

4. EVALUATION OF SMM
To evaluate our methodology, we manually counted the

number of pedestrians passing through several intersections
on the campus of Dartmouth College, and compared these
real measurements to the results (or synthetic data) pro-
duced by the SMM generated from the wireless trace-driven
framework described in the previous section.

We selected three intersections on College Street passing
through the center of the campus, and named them intersec-
tions 71 (Maynard Street), 81 (Wentworth Street), and 103
(Wheelock Street), respectively, following our enumeration
in Section 3.2. These intersections are shown in Figure 8.
At each intersection, we manually counted the number of
pedestrians passing through at five or six different times for
ten minutes each. This was done over 2 days on October 24
and 25, 2005. Specific observations were taken from 10 to 11
AM on Oct 25 at location 71; 1-3 PM on Oct 25 at 81; and
2-4 PM on Oct 24 & 8-10 AM on Oct 25 at 103. These times
were chosen only to provide representative coverage during
normal business hours. Unfortunately, we were unable to
also obtain trace data for these periods, due to a change in
the trace collection mechanism.

We counted people on each leg of the intersection, for
both inbound and outbound directions. For example, in-
tersection 71 has north-, south-, and west-bound legs with
both inbound and outbound flows on each leg. This re-
sulted in counting people in six different directions, denoted
by Nin, Nout, Sin, Sout, Win, and Wout, respectively. These
quantities are measured simultaneously. For instance, if a
person passes through the intersection from south to north,
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(a) Real measurements of the number of pedestrians.
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(b) SMM-generated results of the number of laptop users.
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(c) SMM-generated results of the number of VoIP phone
users.

Figure 9: Normalized counts of real measurements
of pedestrians and SMM-generated results of laptop
& VoIP phone users in each direction at intersec-
tions 71, 81, and 103. N , S, E, and W stand for
north, south, east, and west legs of the intersection.
Subscripts i and o denote inbound and outbound at
the intersection. Parameters of max 10 routes and
no cutoff were used.

then we increment both Sin and Nout. When the traffic was
light, we used hand counters. When the traffic was heavy,
we videotaped the intersections and legs with a camcorder
and counted afterwards by play-back. Figure 9(a) shows
the real measurements of the number of pedestrians pass-
ing through intersections 71, 81, and 103, respectively. The
quantities shown here have been normalized for fair compar-
ison between different intersections. Thus, Figure 9(a) does
not imply that the flows of people at three intersections are
the same. The total counts per 10 minutes at intersections
71, 81, and 103 ranged from 22 to 48, 62–224, and 56–186,
respectively.

Obviously, not all of these pedestrians were necessarily
WiFi users. Our hypothesis was that enough Dartmouth
community members use WiFi regularly to make WiFi user’s
movement representative of the community as a whole. As
our comparisons show, this appears to be the case.

Since the wireless trace data for the same days as our
measurements have not been released yet, we used the trace
data collected during roughly the same academic calendar
period in past years for comparison and evaluation. Specif-
ically, our measurements are for Oct 24 (Mon) and Oct 25
(Tue), 2005, and we used the trace data collected on Mon-
days and Tuesdays in late October in the past three years:
Oct 22/23 & 29/30, 2001, Oct 21/22 & 28/29, 2002, and
Oct 20/21 & 27/28, 2003. Of these traces, we only used the
data within the same time window of real measurements,
plus 30 minutes at both ends of the window. These two
30-minute periods are added because for our filtering pro-
cess we need to know which APs users are associated with at
their origin and destination before and after passing through
intersections. These traces are then filtered through the pro-
cess described in the previous section, resulting in a set of
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Figure 10: Correlations and root mean squared er-
rors of normalized counts of real measurements and
system-generated results with various sets of param-
eters. N10, N30, and N50 denote max 10, 30, and 50
routes. C2, C3, and C4 stand for the cutoff thresh-
olds of 2×, 3×, and 4× minimum distance, respec-
tively.

transition probabilities and user densities. Figures 9(b) and
(c) show the normalized counts of laptop and VoIP phone
users, respectively, inferred from the above trace data with
parameters of max 10 routes and no cutoff, which is denoted
by N = 10 following our notation. To evaluate how well
the SMM-generated results match the real measurements,
we computed two metrics: normalized correlation and root
mean squared error (RMSE), both between 0 and 1 due to
the normalization. As shown in Figures 9(b) and (c), the
correlation between the real measurements and the SMM-
generated results at the intersections ranges from 0.7476 to
0.9270 for laptop users and from 0.8046 to 0.8305 for VoIP
phone users. On average, the correlations of both types of
users are greater than 0.8, implying that the real measure-
ments and the SMM-generated results are very close. The
averages of RMSEs for both types of users are around 0.2,
which roughly translates into an average error of 20% or so
when we use SMM-generated mobility patterns to approxi-
mate that of the real user.

Figures 10(a) and (b) show the normalized correlations
and RMSEs, respectively, with various parameters including
N = 10. We note that while there are slight variations
from one parameter to another, the resulting correlation and
RMSE are approximately 0.8 and 0.2, respectively, for both

types of users regardless of the choice of parameters. Overall
Figure 10 suggests that our methodology is quite insensitive
to these parameters. Although the system with no cutoff
threshold seems to show a slightly better performance than
that with a cutoff threshold in Figure 10, the difference is
too small to assert that one is clearly better than the other.
The reason why the maximum number of routes and cutoff
threshold do not affect the performance much may be found
in the results in Section 5. This is because on average most
laptop and VoIP phone users turned out to have taken one of
the top five shortest routes among all available candidates
as shown in Figures 11 and 12. Thus, maximum number
of routes greater than 5 or so such as 10, 30, or 50 results
in little difference in the performance. This is also true of
cutoff threshold. As shown in Table 1 in Section 5, average
numbers of routes with cutoff thresholds of 2×, 3×, and
4× minimum distance are much greater than 5, which again
makes little difference in performance.

Another interesting observation from Figure 10 is the in-
sensitivity of our method with respect to the granularity
of the trace data. Recall that although both are coarse-
grained, the VoIP data is slightly finer in granularity than
laptop data. On the other hand, as we can see, the result
from laptop traces is approximately the same as or slightly
better than that from VoIP traces consistently. This is con-
trary to our expectation; one naturally expects to do better
with finer-grained trace data. Unfortunately we do not have
a precise answer for this. This discrepancy may simply be
due to the noise in the process; recall that our results con-
tain about 20% of error. Another plausible explanation is
that the number of VoIP phone users recorded in the trace
data is much smaller compared to the laptop users, and thus
less representative of the real movement captured by man-
ual measurement. Indeed, VoIP phone users in the trace
data were less than 5% of the laptop users. Thus a pedes-
trian passing through one of those intersections we mea-
sured is more likely to be a laptop user than a VoIP phone
user. This implies that the pedestrian-counting evaluation
method we used is more appropriate for laptop users than
for VoIP phone users.

5. CASE STUDY: TWO-MONTH TRACE
In evaluating our technique, we compared the model gen-

erated by a small trace to hand-collected observations over
the same period. In this section, we apply our model gen-
erator to a longer period of trace data, taken from October
1, 2003 to November 30 of the same year. This period was
chosen to be similar in character to our shorter verified pe-
riod. VoIP devices (Cisco 7920 and Vocera) were newly in
use, and the period is wholly contained by a Dartmouth fall
term. Thus, it is reasonable to expect that the data used
here contain the entire mobile activities of almost all the
wireless users on campus. During the above period, the logs
of 2039 laptops or PDAs and 94 VoIP phones were recorded.
Although a single user might have carried both a laptop and
a VoIP phone, we considered them separately. Dartmouth
had over 5700 enrolled students and nearly 600 faculty and
staff as of fall 2004.

5.1 Routes
As described in Section 3.3, our model generator has two

parameters: the maximum set of candidate routes consid-
ered between each endpoint, and the cutoff distance used to
prune candidate routes. In applying the generator to our
data, we considered maximum route sets of N = 10, 30, and
50 for each unique origin/destination pair.
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Condition Avg Number of Routes (± Error)

max 10, no cutoff 9.98 (± 0.01)
max 30, no cutoff 29.93 (± 0.02)
max 50, no cutoff 49.89 (± 0.04)
max 50, cutoff 2× 28.43 (± 0.30)
max 50, cutoff 3× 38.57 (± 0.27)
max 50, cutoff 4× 42.53 (± 0.24)

Table 1: Average number of the routes generated
with various parameters. Max means the maximum
number of routes allowed per pair of origin and des-
tination. Cutoff means the maximum distance of
routes allowed per pair of origin and destination.
For example, cutoff 2× means the maximum dis-
tance is 2× minimum distance. Error indicates the
confidence interval of 95%.

Without cutoff constraints, the route generator can find
the maximum number of candidates nearly every time, no
matter how close the origin and destination are; this is
shown in Table 1. But, this would make no sense in the
real world if the origin and destination are neighbors, be-
cause people are not likely to use 50 different routes to visit
the building next door. If we apply the cutoff threshold as
shown in Table 1, we reduce the number of clearly sense-
less route candidates. However, there are still more than 20
route candidates per origin and destination, even though we
apply the cutoff C = 2× minimum distance; farther trips
tend to generate more candidate routes.

Among more than 20 candidates for each origin and des-
tination, which route is most likely to have been taken by
laptop and VoIP phone users? There are two cases to con-
sider: with and without transient points between the origin
and destination in the trace data. Recall that selecting with
transient points picks only one route as the most probable
route, while selecting without them coalesces a set of can-
didates inversely proportional to their total route weight as
shown in Figure 6.

First, we made no distinction between the two cases. Fig-
ure 11 shows the percentage of each route taken by laptop
and VoIP phone users, counting the most probable route
in both cases. Without this distinction, most of the lap-
top and VoIP phone users in our system have taken a route
among the top five shortest route candidates, regardless of
the maximum number of route candidates N and the cutoff
threshold C. VoIP phone users seem to have preferred the
shortest route more than laptop users in Figure 11 in that
VoIP trace data are more fine-grained and thus more likely
to have transient points between the origin and destination
than laptop trace data. Thus, VoIP trace data enables us
to pick a single most probable route rather than consider a
variety of candidates.

If we only look at the cases with transient points between
the origin and destination, the tendency to select the short-
est route becomes more pronounced, as shown in Figure 12.
No matter what N and C are, the shortest route is taken
from nearly 40% to 60% of the time. Furthermore, the top
five shortest routes are nearly always taken, and the rest are
negligible. This result explains why the performance of our
system is not affected significantly by the parameters N and
C, as long as the average number of routes per origin and
destination is much greater than five or so, which is the case
here.
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Figure 11: Percentage of the Kth shortest route
taken by laptop and VoIP phone users with various
parameters.
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Figure 12: Percentage of the Kth shortest route
taken by the laptop and VoIP phone users, only con-
sidering routes with transient points.
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# of Trans. Pnts Laptop Data VoIP Data

0 182911 (92.3%) 4277 (66.7%)
1 8142 (4.1%) 1024 (16.0%)
2 6074 (3.1%) 437 (6.8%)
3 638 (0.3%) 274 (4.2%)
4 234 (1.2%) 174 (2.7%)
5 101 (0.5%) 90 (1.4%)

6+ 116 (0.6%) 139 (2.2%)

Table 2: Percentage of the routes observed in the
laptop and VoIP trace data with various number of
transient points between the origin and destination.
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(b) VoIP phone users.

Figure 13: Top 10 buildings visited by laptop and
VoIP phone users. Res, Lib, Adm, Acad, and Soc
stand for residential, library, administration, aca-
demic, and social buildings, respectively.

Although the cases with transients points between the
origin and destination can help us pick the most proba-
ble route more clearly, we cannot ignore the cases without
transient points between them, because a majority of the
trips observed in the trace data correspond to nomadic lap-
top users—they do not have any transient points between
the origin and destination; the breakdown of trips with and
without transient points is shown in Table 2. Laptop trips
with transient points are less than 10% of the total, while
the VoIP traces hold more than 30%.

5.2 Origin and destination
Stationary points form the basis of origins and destina-

tions in our model generator. Figure 13 shows top ten pop-
ular buildings visited by laptop and VoIP phone users during
the trace collection period. Recall that buildings are cate-
gorized into several groups such as residential, library, ad-
ministration, academic, and social buildings. According to
the categorization, there is an interesting difference of popu-
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(a) Laptop users’ destinations.
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(b) VoIP phone users’ destinations.

Figure 14: Laptop and VoIP phone users’ top 10
destinations from Acad18 in Figure 13.

lar buildings between laptop and VoIP phone users. Among
top ten popular buildings, laptop users ranked five residen-
tial buildings, while VoIP phone users preferred somewhere
else such as academic or administration buildings. This
may imply that people use their laptop mostly at home and
their VoIP phone at work (e.g., class or office). However,
the most popular building for both laptop and VoIP phone
users turned out to be an academic building. If we examine
the trace data to see where laptop and VoIP phone users
went from this building, shown in Figure 14, we can find
the same pattern as above once again: Laptop users mostly
went home for the next use (6 out of 10), whereas VoIP
phone users went to other academic buildings (6 out of 10).

5.3 User density on pathways
We can find popular pathways by counting the frequency

of routes taken by laptop and VoIP phone users, as pre-
dicted by our model. Figure 15 shows the laptop and VoIP
phone user densities on the segments for two months. As in
Figure 5(d), large squares and small dots represent build-
ings and intersections, respectively. The only difference is
that the lines in Figure 5(d) indicate roads, whereas those
in Figure 15 signify user density. A thicker line means a
higher user density on the segment. However, unconnected
dots or squares do not necessarily mean that there were no
people having visited those places. It simply means that
there was no log recorded in the trace data during the pe-
riod. In addition, although each road may have two different
user densities because pedestrians walk in two directions, we
coalesce them for simplicity in Figure 15.

As can be expected, laptop and VoIP phone user densities
on pathways are quite different. How does each set change
different parameters for our generator? They are relatively
insensitive to changes in N . However, if we compare the user
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(a) Laptop user density with max N = 30 routes and no
cutoff.
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(b) Laptop user density with max N = 50 routes and
cutoff C = 2×.
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(c) VoIP phone user density with max N = 30 routes and
no cutoff.
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(d) VoIP phone user density with max N = 50 routes and
cutoff C = 2×.

Figure 15: Laptop and VoIP phone user densities
on pathways. According to Table 1, the average
number of routes with N = 30 and that N = 50 and
C= 2× are almost the same. But the user densities
are different.
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(a) From Adm12 to Acad34.

Adm12

Acad21

65%

35%

(b) From Adm12 to Acad21.

Adm12 Res23100%

(c) From Adm12 to Res23.

Figure 16: Transition probabilities of laptop users
traveling from building Adm12 to three different
buildings through intersection 81 in Figure 8, when
N = 50 and C = 2×.

density across models generated with similar valid routes,
but different parameter settings, they look somewhat differ-
ent.

As an example, consider the different user densities with
N30 and N50, C2, respectively. Recall that the average
number of routes with N = 30 and that with N = 50 and C
= 2× minimum distance are nearly 30 in Table 1. Figures
15(a) and (c) are laptop and VoIP phone user densities with
N = 30, and Figures 15(b) and (d) are those with N = 50
and C = 2×. It can be seen that the user densities on the
road in Figures 15(a) and (c) are more or less evenly dis-
tributed and evenly thick in the adjacent area, while those
in Figures 15(b) and (d) are more concentrated on the spe-
cific segments. This is because the cutoff threshold limits
routes to those with shorter path lengths, resulting in more
re-use of candidate route segments. Thus, the user densities
in Figures 15(a) and (c) are more spread out, whereas those
in Figures 15(b) and (d) are more concentrated.

5.4 Transition probabilities
We also are able to collect transition probabilities at in-

tersections and build a transition matrix as described in
Section 3.5. As an illustration, we picked an origin build-
ing about 150m west and three destination buildings about
150m northeast, 120m southeast, and 300m east from one
of the three intersections that we used for evaluation in Sec-
tion 4. Figure 16 shows the transition probabilities of laptop
users traveling from building Adm12 to building Acad34,
Acad21, and Res23 through intersection 81, respectively, all
of which seem to be reasonable. Note that location of build-
ings in Figure 16 only implies their rough direction from the
intersection, not their distance from it.
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6. CONCLUSION
In this paper we presented a framework that generates a

statistical mobility model from coarse-grained wireless trace
data. Compared to other related work, this model is highly
realistic in that it is defined within a geographic environ-
ment given by a map, and the movement patterns generated
by this model are statistically similar to real movement col-
lected by hand. This method infers fine-grained route in-
formation from the coarse-grained laptop and VoIP trace
data with the aid of the map. We are able to obtain statis-
tics like the user densities on the road and in the buildings,
transition probabilities at each road intersection, and so on.
With these statistics, we have built a statistical mobility
model scenario generator for ns-2. With this method, one
can easily construct a site-specific mobility model simply by
plugging the site-specific trace data and the map into the
system.
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