
17th ACM Symposium on Operating Systems Principles (SOSP ’99)
Published asOperating Systems Review, 34(5):80–92, Dec. 1999

Building reliable, high-performance
communication systems from components

Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey,
Mark Hayden, Kenneth Birman, Robert Constable 1

Department of Computer Science

Cornell University, Ithaca, NY 14850

xliu,kreitz,rvr,ken,rc@cs.cornell.edu, jyh@cs.caltech.edu, hayden@pa.dec.com

Abstract

Although building systems from components has attractions,
this approach also has problems. Can we be sure that a cer-
tain configuration of components is correct? Can it perform
as well as a monolithic system? Our paper answers these
questions for the Ensemble communication architecture by
showing how, with help of the Nuprl formal system, configu-
rations may be checked against specifications, and how op-
timized code can be synthesized from these configurations.
The performance results show that we can substantially re-
duce end-to-end latency in the already optimized Ensemble
system. Finally, we discuss whether the techniques we used
are general enough for systems other than communication
systems.

1 Introduction

Building systems from components has many attractions.
First, it can be easier to design, develop, test, and optimize
individual components of limited functionality than when
the same functionality is embedded within a large mono-
lithic system. Second, systems built from components may
be more readily adapted and tuned for new environments
than monolithic systems. Third, component-based systems
may be extended at run-time with new components, facilitat-

1The current addressof J. Hickey is California Institute of Tech-
nology, CS Dept., M/S 256-80, Pasadena, CA 91125. The cur-
rent address of M. Hayden is Compaq SRC, 130 Lytton Ave., Palo
Alto, CA 94301. This work is supported in part by ARPA/ONR
grant N00014-92-J-1866, ARPA/RADC grants F30602-96-1-0317
and F30602-98-2-0198, and NSF grant EIA 97-03470.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-17 12/1999 Kiawah Island, SC
c©1999 ACM 1-58113-140-2/99/0012. . . $5.00

ing evolution. And components can be individually formally
specified and verified more easily, allowing safety-critical
applications to be synthesized from such components.

The component-based approach has long been used suc-
cessfully by VLSI designers. Yet, realizing the development
of an efficient and correct software system from components
has been difficult. One problem is that the abstraction barri-
ers between the components impose high overheads arising
from additional function calls, poor locality of data and code
(leading to cache and TLB misses), redundant code that is
not reachable in a particular configuration of the components
(resulting in unused fields in data structures and message
headers), and separate compilation (causing non-optimal use
of existing optimization techniques).

Another problem is that configuring a system from
components is often much harder than installing a shrink-
wrapped system. Such a configuration includes the selection
of components, the parameterization of the individual com-
ponents, and the layout or composition of the selected com-
ponents. Finally, although smaller components make it pos-
sible to prove the correctness of the algorithms or protocols
used in each component, the generation and verification of
the code of the components themselves is still very difficult.

In spite of these problems, we have seen a prolifera-
tion of component-based systems in the last two decades.
The trend towards componentization is yielding systems that
have more functionality than ever before. But these sys-
tems are generally not more reliable or faster, in spite of
the tremendous improvements in hardware performance and
compiler technology.

In this paper, we present encouraging, intermediate re-
sults of a cooperation between two groups at Cornell Uni-
versity: the Ensemble group communication group, and the
Nuprl automated formal reasoning group. The project has
two orthogonal goals: hardening communication protocol
components and configurations of components, and improv-
ing their efficiency. This is approached by combining tech-
nology from a variety of different fields:

• (Communication protocols) Protocols are developed
within the Ensemble framework. This architecture is

80

presented in Chapter 2 of [10]. Protocols are decom-
posed intomicro-protocols, each specialized to do one
task well in a specific environment. For different en-
vironments, the same task is implemented in differ-
ent ways for improved efficiency. A particular micro-
protocol implementation constitutes a component.

• (Programming languages) Components are written in
Objective Caml (OCaml) [17], a dialect of ML [20].
For our project, the two important aspects of this
choice are that 1) OCaml has a formal semantics that
allows the code to be manipulated by formal tools, and
2) OCaml compiles to efficient machine code.

• (Specification) Specification of the behavior of both
protocols and micro-protocols is done using I/O au-
tomata (IOA) [18]. IOA specifications are accessible
to programmers because their syntax is close to stan-
dard programming languages such as C, and thus ease
the transition between specification and code. Further-
more, IOA specifications can be composed, and have
formal semantics.

• (Formal methods) For program reasoning and transfor-
mation we use the Nuprl [7] system. Nuprl is able
to “understand” both the IOA specifications and the
OCaml code, and can rewrite the code for the purpose
of optimization. Nuprl’s proof strategies can be tai-
lored for reasoning about distributed systems, which
we use for correctness proofs.

These parts each contribute to the realization of a reli-
able, high-performance, component-based communication
system. By decomposing protocols into a large number
of micro-protocol components, Ensemble provides a highly
flexible communication system, but the implementation has
the usual problems. The large numbers of module bound-
aries introduce significant latency, and application-specific
protocols can be difficult to configure. We use the formal
tools to address these problems. The OCaml programming
language has a precise mathematical semantics that we use
as the foundation for formal reasoning. IOA specifications
provide the requirements for configuration and performance
optimization, and we use Nuprl to automate the optimiza-
tion. Eventually, we hope to leverage Nuprl for the configu-
ration process as well.

We were able to synthesize code from the original im-
plementations automatically, whose latency is within 50% of
the best hand-optimized code generated for Ensemble. For
example, we optimized a 4-layer stack that provides reliable
multicast. On a 300 MHz SparcStation, the processing over-
head for sending a message through the stack is 2µs (down
from 13µs in the original Ensemble stack), and the overhead
for delivery is 4µs (down from 10µs).

Significantly more work is required to optimize one pro-
tocol stack using our formal framework than to do so by
hand. If one were to optimize a single monolithic proto-
col stack, such as TCP/IP, it would probably make sense to
do so by hand. The two advantages to our approach are (1)
the optimization is guaranteed to preserve correctness of the

protocol and (2) once initial work has been done to prepare
each protocol layer, it is possible to automate the optimiza-
tion of all their combinations. Thus the fact that Ensemble is
highly configurable is important. Ensemble protocol stacks
can be combined in1000’s (if not more) ways. It would not
be feasible to optimize them all by hand.

Although we have not yet completed a machine-
generated proof of a distributed property (a property that in-
volves more than one participant) of a non-trivial protocol,
we have written specifications of four protocols and a man-
ual proof of the total ordering protocol and its configuration
in a virtually synchronous communication stack. This led
to the discovery of a subtle bug. This effort has also hard-
ened and simplified configuration of protocols in Ensemble,
an otherwise difficult and error-prone process [11].

The Ensemble, OCaml, and Nuprl systems are described
in Section 2. Section 3 describes how protocol behaviors are
specified and protocol implementations and configurations
are checked for correctness. In Section 4 we show how we
use Nuprl in the optimization process, and we discuss the
resulting performance. We review related work in Section 5.
Section 6 discusses the feasibility of using our approach in
other settings.

2 Ensemble, OCaml, and Nuprl

Ensemble is a high-performance

Top

Membership

Total

Fragment

Network

application
Ensemble

Figure 1. Ensem-
ble architecture

network protocol architecture, de-
signed particularly to support group
membership and communication pro-
tocols. Ensemble’s architecture is
based on the notion of a protocol
stack. The architecture is described
in detail in Chapter 2 of [10]. The
system is constructed from simple
micro-protocol modules, which can
be stacked in a variety of ways to
meet the communication demands of
its applications. Ensemble’s micro-
protocols implement basic sliding
window protocols, fragmentation and
re-assembly, flow control, signing
and encryption, group membership,
message ordering, and other func-
tionality. Ensemble includes a library
of over sixty of these components.

Each module adheres to a com-
mon Ensemble micro-protocol inter-
face. There is a top-level and a
bottom-level part to this interface. The top-level part of the
interface of a module communicates with the bottom-level
part of the interface of the module directly on top of it. The
interface is event-driven: modules pass event objects to the
adjacent modules. Certain types of events travel down (e.g.,
send events), while others (such as message delivery events)
travel up the stack.

Ensemble is currently used in the BBN Aqua and Quo
platforms, a fault-tolerant testbed at JPL, the Adapt adap-

81

tive multimedia middleware system at Lancaster University,
a multiplayer game by Segasoft, and in the Alier financial
database tools.

Ensemble is written in OCaml [17]. Chapter 4 of [10]
explores the impact of building Ensemble in OCaml, includ-
ing comparisons with Ensemble’s predecessor, Horus [26],
which was written in C. For instance, the code for Ensem-
ble’s protocols was found to be about 7 times smaller than
functionally identical code in Horus. The reasons for this
include OCaml’s high-level manipulation of data structures,
automated memory allocation and garbage collection, and
automatic marshaling. [10] also reports that the Ensem-
ble developers found the OCaml code easier to develop and
maintain than C.

For our purposes, the main benefit of OCaml is that it
has a precise definition that we can use during operations
like synthesis, verification, and optimization. If performed
manually, these operations can be tedious and error-prone.
We use formal automation to address both problems—
automation makes it possible to re-use common reasoning
strategies, and formal reasoning guarantees the correctness
of program transformations.

We are not the only ones using OCaml for systems pro-
gramming. OCaml is also used in many systems, such as the
Pentasoft financial simulation system, the Switchware active
network at UPenn, a Mitre network filter, a network supervi-
sion system at France Telecom, and formal analysis of cryp-
tographic protocols at Stanford Research International.

In the work we present here, Nuprl acts as a source-to-
source translator. Unlike a compiler, every step made by
Nuprl has to be accompanied by a proof, which often re-
quires manual interaction. A semantics for the functional
subset of OCaml, as well as the imperative language fea-
tures that are required for implementing finite state-event
systems, was developed in [14]. In particular, exceptions
and support for object-orientation are currently not handled
by Nuprl. Ensemble’s implementation of micro-protocols
only uses the corresponding subset. Tools convert OCaml
code into the corresponding terms of Nuprl’s input language
and vice versa. This way, the Nuprl system can reason about
OCaml expressions and evaluate them symbolically.

The resultinglogical programming environment [16]
provides the infrastructure for the application of formal ver-
ification and optimization techniques to the actual code of
Ensemble. On this basis, we have developed formal tech-
niques for domain-specific optimizations of layered systems
[15, 10], which support the optimization of both individual
layers and whole layer stacks.

In summary, our formal environment has three parts: 1)
OCaml provides a precise code-level description of Ensem-
ble, 2) IOA specifications provide high-level logical descrip-
tions of the micro-protocol components, and 3) the Nuprl
prover provides the support for automating the reasoning
process.

3 Specifications and correctness

Specifications serve two purposes: 1) when we design a new
protocol, the specification can be used to guide the selection

of micro-protocols, and 2) by verifying an existing imple-
mentation against its specification, it becomes possible to
determine if the program iscorrect. We cover these in the
next two subsections.

3.1 Specification

Specifications of communication systems range along an
axis from specifying thebehavior of a system to specifying
its properties. When specifying the behavior, we describe
how the system reacts to events. For example, we may spec-
ify that the system sends an acknowledgment in response to
a data message. When specifying properties, we describe
logical predicates on the possible executions of the system.
An example of a property is that messages are always deliv-
ered in the order in which they were sent (FIFO).

Both kinds of specifications are important. The prop-
erties describe the system at the highest level. Since the
properties do not specifyhow to implement a protocol, they
are easy to compose. Behavioral specification provides the
connection to the code by describing how to implement the
properties. Behavioral specifications can be eitherconcrete
or abstract. Concrete specifications can be directly mapped
onto executable code, while abstract specifications are non-
deterministic descriptions that use global variables, and are
therefore not executable. The advantage of abstract specifi-
cations is that they are simple, and that global or distributed
properties such as FIFOness can be easily derived. The ad-
vantage of a concrete specification is that an implementation
can be easily derived from it. Below, when using the term
specification, we will meanbehavioral specification unless
otherwise noted.

We will now describe some examples of both abstract
and concrete behavioral specifications of networks and pro-
tocols. The programming model we use is that of astate
machine with event-condition-action rules. This is not much
different from an abstract data type, or a C++ or Java object,
except that all interactions between components are through
events. An abstract specification has a set of variables, and
a set of events that,under certain conditions, modify these
variables and allow interaction with the environment.

See Figure 2(a) for an example of an abstract specifica-
tion of a FIFO network, using a variant of IOA as the speci-
fication language. The state consists of a single global queue
that contains the messages that are in transit, paired with the
respective destinations. TheSend event specifies the des-
tination of a message and the message itself, and adds the
message to the queue. TheDeliver event of a particular
message at a particular destination can only trigger when that
pair is at the head of the queue. If so, that pair is removed
from the queue. No message loss or retransmissions, nor the
fact that there is no shared memory to implement the global
queue, needs to be considered. This specification is abstract
because it is not executable: it uses a global variable, and the
scheduling of events is not determined. Instead, each event
has a condition that specifies under which circumstances the
corresponding action can be evaluated.

Figure 2(b) specifies, again abstractly, a network that can
arbitrarily lose and reorder messages, as well as deliver them

82

Specification FifoNetwork()
Variables

in-transit: queue of 〈Address,Message〉
Actions

Send(dst : Address;msg : Message)
condition: true

{ in-transit.append(〈dst,msg〉); }

Deliver(dst : Address;msg : Message)
condition: in-transit.head() == 〈dst ,msg〉

{ in-transit.dequeue(); }

Specification LossyNetwork()
Variables

in-transit: set of 〈Address,Message〉
Actions

Send(dst : Address;msg : Message)
condition: true

{ in-transit.add(〈dst ,msg〉); }

Deliver(dst : Address;msg : Message)
condition: in-transit.contains(〈dst,msg〉)

{}

Drop(dst : Address;msg : Message)
condition: in-transit.contains(〈dst,msg〉)

{ in-transit.remove(〈dst ,msg〉); }

(a) (b)

Figure 2. (a) The abstract behavioral specification of a FIFO network; (b) a network that reorders, duplicates, and
loses messages.

Specification FifoProtocol(p : Address)
Variables

send-window, recv-window, ...
Actions

Above .Send(dst : Address;msg : Message)
Below .Send(dst : Address; 〈hdr ,msg〉 : 〈Header,Message〉)
Below .Deliver(dst : Address; 〈hdr,msg〉 : 〈Header,Message〉)
Above .Deliver(dst : Address;msg : Message)
Timer ()

Figure 3. The prototype of a concrete behavioral specification of a communication protocol that retransmits mes-
sages, removes duplicates, and delivers messages in order. Each process that participates in the protocol runs an
instance of one of these.

multiple times. In this case the state consists of an unordered
set of messages.Send just adds a (destination, message)
pair to the set, andDeliver delivers an arbitrary message
in the set. There is a third, internal event that drops arbitrary
messages from the set to model message loss.

The prototype (orsignature in IOA terminology) of a
concrete specification of a protocol that implements a FIFO
network on top of a lossy network is presented in Figure 3.
(Including the specification of the actions would take up too
much space.) A concrete specification only involves state
and events local to a single participant in the protocol. For
every event the condition specifies if it can be executed. An
instance of this specification has to run on each process that
is a participant in the protocol. (Each instance has its own
copy of the variables.) Note that a concrete specification has
twoSend events and twoDeliver events.Above.Send
is visible only to the application, whileBelow.Send is vis-
ible only to the network. There is also an internal timer event
that takes care of retransmissions.

The difference between a concrete specification and an
implementation is small: in an implementation, the pro-
grammer also needs to detect which conditions are true, and
specify the order in which the corresponding actions should

be executed. This does not affect the correctness of the im-
plementation.

The relationship between abstract behavioral specifica-
tions, concrete behavioral specifications, implementations,
and properties can be pictured as follows:

Scheduling

Refinement Proof

Properties

Specification
Abstract Behavioral

Specification

Implementation

Concrete Behavioral

A concrete specification is derived from the abstract
specification by a process calledrefinement. This involves

83

designing a protocol that implements the abstract require-
ments. On the other hand, the properties of the abstract spec-
ification are derived by proof. The alternative, to derive an
implementation directly from properties, or prove properties
given the implementation, would be much harder.

If we wish to prove the correctness of FifoProtocol, we
use an instance of LossyNetwork, and an instance of Fi-
foProtocol for each participant in the protocol. We then
compose them by tying all Below.Send events to the Send
event in LossyNetwork, and similarly for the Below.Deliver
events. Two events can be tied together by combining the
conditions and actions of those events. We then have to show
that any execution of this composed specification, which is
an abstract specification, is also an execution of FifoNet-
work. (An execution is basically the sequence of externally
observable events of a specification.) A good example of
such a proof, by hand, can be found in [11], which demon-
strates the correctness of one of Ensemble’s total ordering
protocols. (This exercise located a subtle bug in the original
implementation.)

3.2 Is Ensemble correct?

One way to answer this question is to first come up with
an abstract behavioral specification of a network that im-
plements the properties that some particular application re-
quires. Then, we must show that the composition of the ab-
stract specification of the actual network used, and the con-
crete specifications of the micro-protocols in the protocol
stack, results in the same executions as that of the required
abstract specification. Since there are many networks, many
applications, and many micro-protocols, the correctness of
Ensemble is no easy matter. But even for a single applica-
tion, network, and protocol stack, this approach would be an
almost impossible task.

The approach that we are taking instead is the following.
For each micro-protocolp, we present two abstract specifica-
tions,p.Above andp.Below. p.Above specifies the behav-
ior that the protocol implements, whereasp.Below specifies
the behavior that the protocol requires of the networking en-
vironment below it. When proving the correctness of a stack
of protocols for a particular network and application, we can
therefore limit ourselves to showing that, for each pairp and
q of adjacent protocol layers (p below q), every execution
of p.Above is also an execution ofq.Below and vice versa.
Since we are now working at the level of relatively simple
abstract specifications, andp.Above andq.Below will gen-
erally be identical or similar, the task is tractable.

It would be nice if, given a particular application and net-
work, we could automatically select a set of micro-protocols
and generate a correct configuration. A brute force solu-
tion of trying all possible combinations obviously will not
work. Instead, the Ensemble system contains an algorithm
for calculating stacks given the set of properties that an ap-
plication requires. This algorithm encodes knowledge of the
protocol designers and appears to work quite well, but we
cannot currently be sure that it always generates a correct
stack. (We could check the correctness afterwards using the

methodology described above, but this has not yet been au-
tomated.) Also, the heuristic only knows about approxi-
mately two dozen different properties, so it cannot generate
stacks for applications with specific unique requirements.

4 Optimization

Maintaining good communication performance in a layered
system is hard, and a variety of projects have tried to address
this problem. For example, the VIA Giganet interface pro-
vides 10µs one-way end-to-end latency for messages of 256
bytes or smaller [27]. A highly optimized layering system
like Ensemble adds about 1 to 2µs per layer to the latency
of pure layering overhead, and having more than 10 layers is
not uncommon.

Chapter 3 of [10] describes the following optimizations:

1. Avoiding garbage collection cycles. In the original
Ensemble system, an OCaml object was allocated for
each message sent or delivered. These relatively large
objects tend to be short-lived, a scenario for which the
OCaml garbage collector is not optimized. The En-
semble distribution now has its own message alloca-
tor, which is formed by a single OCaml string object.
Ensemble is itself responsible forfreeing messages.
Using other careful coding techniques, creating short-
lived objects was avoided in the normal case, greatly
reducing garbage collection overhead.1 In addition, by
triggering garbage collection when the system is idle, it
became highly unlikely that garbage collection is nec-
essary during stack processing.

2. Avoiding marshaling. Ensemble allows any OCaml
value to be sent and delivered. As a value is sent, each
layer encapsulates the value into another one consist-
ing of the header of that layer and the headers of the
layers above it. The resulting data structure needs to
be serialized before sending along with the message
payload. (Note that there is no fixed wire format for
headers in Ensemble.) Ensemble uses the OCaml value
marshaler for this, which traverses the data structure,
and copies all the data into a byte string. A similar op-
eration, copying parts of the string back into dynami-
cally allocated data structures, happens on delivery. In
many common cases, the headers contain only one or
two integers, and all this generality leads to substan-
tial overhead. By providing specialized marshalers for
these cases, and by using the UNIX scatter-gather ca-
pability, we can avoid this overhead.

3. Delaying non-critical message processing. For exam-
ple, a message can often be sent or delivered before
the message is buffered. Doing so takes the buffering
overhead out of the so-calledcritical path, and reduces
end-to-end message latency.

1OCaml now has a new compacting garbage collector that may
reduce the effectiveness of these optimizations.

84

4. Identifying common paths and eliminating layer
boundaries. A common technique for optimizing lay-
ered protocol implementations is to identify the com-
mon outcomes of if-statements, andoutline the uncom-
mon code (i.e., move it into a different section of mem-
ory than the common path to improve locality). Using
function inlining, the layer boundaries can be removed.
The resulting common code path is compact and has
better cache performance.

5. Header compression. Many layers need to add some
information to the message header, and all layers con-
tribute to some processing overhead for every message
that is sent or received. Fortunately, most informa-
tion in headers seldom changes, allowing for signifi-
cant compression of headers, typically to just 16 bytes.

The first three steps do not affect the layering abstraction
itself. However, the final two steps require generating spe-
cial code for common cases. Finding common cases and
compressing headers is far beyond the capabilities of cur-
rent compiler optimization techniques, and therefore previ-
ous work [1, 2, 9, 21] involves hand-optimization or at least
significant annotation of the code.

Both [1] and [13] report that this is a difficult and error-
prone process, which is consistent with our own experience
in trying to do so. Chapter 5 of [10] shows how such op-
timizations can be formalized using predicates and partial
evaluation of code, using a 4-layer protocol stack as an ex-
ample. In this section, we describe how we have developed
this into push-button technology using Nuprl which can be
applied to any protocol stack.

4.1 Formal optimization in Nuprl

To understand the way

Bottom

no

Top

Pt2Pt

Mnak

F
ull S

tack

no

APPLICATION

yes

yes

CCP
down

CCPup

NETWORK

TRANSPORT

Bypass
Code

Figure 4. Optimized
code architecture

Nuprl interprets a protocol, it is
useful to think of a protocol as a
function. Such a function takes
the state of the protocol (the
collected variables maintained
by the protocol) and an input
event (a user operation, an
arriving message, an expiring
timer, ...), and produces an
updated state and a list of
output events. This function
can be optimized if something
is known about an input event
and the state of the protocol.
We express this knowledge
by a so-calledCommon Case
Predicate (CCP): a Boolean
function on the state of a
protocol and an input event.
CCPs are specified by the
programmer of a protocol,
and are typically determined
from run-time statistics. We call the result of optimizing a
protocol abypass.

For example, a CCP may be true if the event is a Deliver
event, and the low end of the receiver’s sliding window is
equal to the sequence number in the event (in other words,
this is the next expected packet to arrive, and it was not lost
or reordered). If a message is received for which the CCP
predicate is satisfied, that message may be delivered and the
low end of the window moved up, without a need for buffer-
ing.

Bypass code fragments from a stack of layers can be
composed to obtain a single bypass function guarded by a
single common-case predicate. The same CCPs that are used
at compile-time to generate the bypass code are also used at
run-time to decide whether to deliver an event to the bypass
or to the original stack, as illustrated in Figure 4. (The Trans-
port module below the protocol stack provides marshaling
of messages.) The CCP for a composed bypass is the logical
conjunction of the individual CCPs for its components. It
is necessary to generate efficient code for this CCP, since it
will be executed for every event.

The partial evaluation of a layer removes all the unreach-
able code for the corresponding CCP condition. Often, as a
result, much of the header for that particular layer becomes a
constant, for example, because the CCP condition prescribes
that the packet is an unfragmented DATA packet. All these
constant header fields in the combined headers of all layers
can be combined into a single, short, identifier, thus com-
pressing the header and reducing handling overhead.

4.1.1 Methodology

There are two levels of formal optimizations. The first, or
static level, depends solely on the code of the individual
modules of the Ensemble toolkit. It is performed semi-
automatically under the guidance of the programmer who
developed a particular Ensemble protocol layer, and an ex-
pert on the Nuprl system. This optimization may take any-
thing from 1/2 hour to an entire afternoon to develop. Its
result is part of the optimization tool that is made available
to the application developer.

The second, ordynamic level, depends on the particu-
lar communication stack that an application developer builds
with the Ensemble toolkit and thus cannot be provided a pri-
ori. This level is completely automated and requires only
the names of the protocol layers that occur in the applica-
tion stack. Its result, which is typically obtained in less than
1/2 minute, is the complete code for an optimized protocol
stack, the bypass.

It should be noted that optimization is orthogonal to ver-
ification. Our formal tools prove that the resulting code is
semantically equal to the original protocol stack but do not
make any assumptions about properties of the stack. Our op-
timization tool is built within the interactive Nuprl proof de-
velopment system [7], which — due to its expressive logic
— supports formal reasoning not only about mathematics
but also about program properties, program evaluation, and
program transformations. In the rest of this section we will
explain the technical details of the optimization tool.

85

4.1.2 Static optimization of protocol layers

In order to be able to formally reason about Ensemble and to
optimize its protocol stacks, we first have to import its code
into the Nuprl proof development system. For this purpose
we have developed a tool that parses the OCaml code of En-
semble’s modules and converts it into terms of Nuprl’s log-
ical language that represent its formal semantics (see [14]
for details). Nuprl’s display mechanism allows us to give
these terms the same syntactical appearance as the OCaml
code they represent and thus to include “code fragments” in
formal mathematical statements. This makes it easier to un-
derstand Nuprl’s formal text and makes sure that all code
transformations are semantically correct.

The static optimizations of the Ensemble toolkit are
based on an a priori (before compilation) analysis ofpos-
sible bypass paths through each individual protocol layer. A
bypass path through a layer is a branch in the code of the
layer. The CCP of this branch is the conjunction of the pred-
icates in the conditions of the corresponding if-statements.

The optimization of a protocol layer proceeds by a series
of code transformations that are based on the following basic
mechanisms:

• Function inlining and symbolic evaluation simplifies
the layer’s code in the presence of constants or func-
tion calls. Logically, this meansrewriting the code by
definition unfolding and controlled partial evaluation.

• Directed equality substitutions such as the application
of distributive laws lead to further simplifications of
the code. Technically, we apply lemmata from Nuprl’s
logical library. Adding a direction to each lemma (e.g.,
in the case of equality, whether the lemma should be
applied from left-to-right or vice versa) guarantees ter-
mination of this process.

• Context-dependent simplifications help in extracting
the relevant code from a layer. They trace the code
path of messages that satisfy the CCPs and isolate the
corresponding code fragments. Technically, we con-
sult a CCP in order to substitute a piece of code by a
value and then rewrite the result with the above two
mechanisms.

All these mechanisms preserve the semantics of a layer’s
code under the assumption of the CCPs. To control their au-
tomated application, we restrict inlining to functions from
a few specific Ensemble modules. Symbolic evaluations
and distributive laws can be applied to any expression in
the code, but the automatic strategy chooses the outermost
possible. The fact that the code of all protocol layers has a
common outer structure allows us to start the optimization
of a layer with a predetermined sequence of controlled sim-
plifications.

Optimizations for each layer are initiated for four funda-
mental cases: down or up going events (sending or receiving
messages) for both point-to-point sending and broadcasting.
The CCPs for these cases are created automatically and the
Ensemble programmer may add additional CCPs to describe
the common case. After applying the initial fixed series of

simplifications we reach a choice point (e.g., a conditional)
in the code. The system then applies context-dependent sim-
plifications for each of the CCPs until the corresponding
code fragment has been isolated. All these steps are com-
pletely automated and usually the optimization can stop at
this point. However, we give the Ensemble programmer
an opportunity to invoke additional simplifications explicitly
before committing the result to Nuprl’s logical library.

Performing these steps in a logical proof environment
guarantees that the generated bypass code is equivalent to the
original code of the layer if the CCP holds. In most cases this
means that about 100-300 lines of code have been reduced
to a single update of the layer’s state and a single event to be
passed to the next layer.

4.1.3 Dynamic optimization of application stacks

In contrast to individual layers, application protocol stacks
cannot be optimized a priori, as thousands of possible con-
figurations can be generated with the Ensemble toolkit. But
the application developer has little or no knowledge about
Ensemble’s code. Therefore, an optimization of an appli-
cation stack has to be completely automatic. We have de-
veloped a tool for optimizing arbitrary Ensemble protocol
stacks which proceeds as follows (see Figure 5).

Given the names of the layers in the protocol stack, the
system consults the a priori optimizations of these layers and
composes them into a bypass. The individual CCPs and state
updates are instantiated and composed by conjunction. This
is done separately for each of the four fundamental cases
(point-to-point send and receive, as well as broadcast send
and receive events).Header compression, described below,
is integrated as well. Afterwards the four cases are joined
into a single program that uses the CCP as switch between
the bypass code and the normal stack. This program is then
exported from Nuprl to the OCaml programming environ-
ment to be compiled and executed.

To ensure that the generated optimized code is semanti-
cally equal to the original protocol stack inall cases, these
steps are performed in the framework of formal optimization
and composition theorems.

An optimization theorem proves that, under a given CCP,
a piece of bypass code is semantically equal to the Ensem-
ble protocol stack from which it was generated. For indi-
vidual protocol layers (i.e., 1-layer stacks) these theorems
are created and proven automatically from the a priori opti-
mizations stored in Nuprl’s library. A bypass path through
Ensemble’sBottom layer, for instance, is described by the
following optimization theorem.

OPTIMIZING LAYER Bottom
FOR EVENT DnM(ev, hdr)
AND STATE s bottom
ASSUMING getType ev = ESend ∧

s bottom.enabled
YIELDS EVENTS [:DnM(ev, Full nohdr(hdr)):]
AND STATE s bottom

This theorem formally states that, under the assump-
tion that the layer isenabled, a down-goingsend-event

86

equivalent to

Composition

Stack

Layers

(***)
(* PARTIAL_APPL.ML *)
(* Author: Mark Hayden, 8/95 *)
(* Modified: Xiaoming Liu with Robbert vanRenesse 2/98 *)
(***)
open Trans
open Layer
open Util
open View
open Event
open Appl_intf
open New (* from Appl_intf *)
(***)
let name = Trace.source_file "PARTIAL_APPL"
(***)

type state = {
recv_cast : (Iovecl.t -> Iovecl.t naction array) array ;
recv_send : (Iovecl.t -> Iovecl.t naction array) array ;
interface : t ;
send_xmit : seqno array ;
send_recv : seqno array ;
mutable got_expect : bool ;
mutable send_expect : seqno Arrayf.t ;
mutable handlers : Iovecl.t handlers ;
mutable leaving : bool ;
mutable next_sweep : Time.t ;
mutable blocked : blocked ;
mutable dn_block : bool ;
mutable up_block_ok : bool ;
mutable failed : bool Arrayf.t

}

(***)

let init s (ls,vs) =
.
.

let hdlrs s (ls,vs) {up_out=up;upnm_out=upnm;dn_out=dn;dnlm_out=dnlm;dnnm_out=dnnm} =
.

let up_hdlr ev abv () = up ev abv

and uplm_hdlr ev () = match getType ev with
.
and upnm_hdlr ev = match getType ev with
.
and dn_hdlr ev abv = match getType ev with
.
and dnnm_hdlr ev = match getType ev with
.

in {up_in=up_hdlr;uplm_in=uplm_hdlr;upnm_in=upnm_hdlr;dn_in=dn_hdlr;dnnm_in=dnnm_hdlr}

let l args vs = Layer.hdr init hdlrs None (LocalNoHdr ()) args vs

let _ = Layer.install name l
(***)

let compose top bot state vf =

(* Initialize the two layers.

*)

let s1,top = top state vf in

let s2,bot = bot state vf in

let loop (s1,s2) (emit,midl) =

Fqueue.loop (fun ((s1,s2),emit) midl ev ->

match ev with

| UpM(ev,msg) ->

let s1,evs = top (s1,UpM(ev,msg)) in

let (emit,midl) = split_top (emit,midl) evs in

(((s1,s2),emit),midl)

| DnM(ev,msg) ->

let s2,evs = bot (s2,DnM(ev,msg)) in

let (emit,midl) = split_bot (emit,midl) evs in

(((s1,s2),emit),midl)

) ((s1,s2),emit) midl

in

(* Outer handler takes a single event and then passes it to

* appropriate layer and then splits the emitted events.

*)

let hdlr = function

| ((s1,s2),DnM(ev,msg)) ->

let s1,emitted = top (s1,DnM(ev,msg)) in

let (emit,midl) = split_top (Fqueue.empty,Fqueue.empty)

loop (s1,s2) (emit,midl)

| ((s1,s2),UpM(ev,msg)) ->

let s2,emitted = bot (s2,UpM(ev,msg)) in

let (emit,midl) = split_bot (Fqueue.empty,Fqueue.empty)

loop (s1,s2) (emit,midl)

in

((s1,s2),hdlr)

Composition Theorems

Up/Linear Up/BounceUp/Split

Dn/Split Dn/BounceDn/Linear

Top Layer

Layer

Layer

Bottom Layer

(static, a priori)

Optimize Common Case

Verify Simple Compositions

Application Stack

(dynamic)

Optimize Common Case

(static, a priori)

Join & Generate Code

Stack Optimization Theorems

Layer Optimization Theorems
Up/Send Up/Cast Dn/Send Dn/Cast

Up/Send Up/Cast Dn/Send Dn/Cast

NuPRL

Code

OCaml Environment

Protocol Layers

Compose Function

Optimized Application Stack

Figure 5. Optimization methodology: composing optimization theorems.

does not change the states bottom and is passed
down to the next layer, with its headerhdr extended to
Full nohdr(hdr).

Optimization theorems for larger stacks are created from
those for single layers by applying formalcomposition theo-
rems. These theorems describe abstractly the effect of apply-
ing Ensemble’s composition mechanism to common combi-
nations of bypass paths, such aslinear traces (events passes
straight through a layer),bouncing events (events that gener-
ate callback events), andtrace splitting (message events that
cause several events to be emitted from a layer) — both for
up- and down-going events ([10], Chapter 5).

OPTIMIZING LAYER Upper
FOR EVENT DnM(ev, hdr)
AND STATE s up

YIELDS EVENTS [:DnM(ev, hdr1):]
AND STATE s1 up

∧ OPTIMIZING LAYER Lower
FOR EVENT DnM(ev, hdr1)
AND STATE s low

YIELDS EVENTS [:DnM(ev, hdr2):]
AND STATE s1 low

⇒ OPTIMIZING LAYER Upper |||Lower
FOR EVENT DnM(ev, hdr)
AND STATE (s up,s low)

YIELDS EVENTS [:DnM(ev, hdr2):]
AND STATE (s1 up, s1 low)

The formal theorem above, for instance, expresses the obvi-
ous effect of composing down-going linear bypass paths: if
an event passes straight down through the upper layer and
then through the lower one, then it passes straight through

the composed layers (Upper |||Lower) as well. The state
of the combined layer is updated according to the individual
updates.

While the statement of such a composition theorem is al-
most trivial, its formal proof is quite complex, because the
code of Ensemble’s layer composition function uses a gen-
eral recursion. By analyzing this code abstractly, and pro-
viding the result of the analysis as a formal theorem, we
have lifted the optimization process to a higher conceptual
level: we can now reason about composition as such instead
of having to go into the details of the code of each layer and
of the composition mechanism. It also speeds up the opti-
mization process significantly: optimizing composed proto-
col layers is now asingle reasoning step, while thousands of
simplification steps would have to be applied to the code of
the entire stack to achieve the same result.

Like the optimization theorems for individual protocol
layers, all composition theorems are provided a priori as part
of the optimization tool, as they do not depend on a particu-
lar application stack. As a result, the optimization theorems
for a protocol stack can be generated automatically. To cre-
ate the statement of such a theorem, we consult the theorems
about layer optimizations for the corresponding events and
compose them as described by the composition theorems.
To prove the theorem, we first instantiate the optimization
theorems of the layers in the stack with the actual event that
will enter them. We then apply, step-by-step, the appropri-
ate composition theorems to compose the bypass through the
stack.

87

The optimization theorems do not only describe a bypass
through a protocol stack but also provide the means for an
additional optimization that cannot be achieved by partial
evaluation or related techniques. They tell us exactly which
headers are added to a typical data message by the sender’s
stack and how the receiver’s stack processes these headers in
the respective layers. As most of the header fields are fixed
(constant) now, we only have to transmit the header fields
that may vary.

For this purpose, we generate code forcompressing and
uncompressing headers, and wrap the protocol stack with
these two functions. Both functions are generated auto-
matically by considering the free variables of the events in
the optimization theorems. We then optimize the code of
the wrapped protocol stack using the same methodology as
above. We have provided genericcompression anduncom-
pression theorems, which describe the outcome of optimiz-
ing a wrapped stack relatively to results of optimizing a reg-
ular stack, and use them to convert the optimization theo-
rems for the regular stack into optimization theorems for the
wrapped stack. All these steps are completely automated.

It should be noted that integrating compression into the
optimization process will always lead to an improvement in
the common case, because the optimized code will directly
generate or analyze events with compressed headers, instead
of first creating a full header and then compressing it. Only
for the non-common case there will be a slight overhead due
to compression.

All the above steps describe logical operations within the
Nuprl system. In a final step, their results are converted into
OCaml code that can be compiled and linked to the rest of
the communication system. To generate this code, we com-
pose the code fragments from the four optimization theo-
rems into a single program, using the CCPs as conditionals
that select either one of the bypass paths or the normal stack.
This program is proven to be equivalent to the original stack
in all cases, but generally more efficient in common cases
(introducing a slight overhead in the exceptional cases).

There may be multiple bypass paths for each layer in
a stack, resulting in many possible bypasses for the entire
stack. We hope to elaborate this technique into one that
would allow us to detect common combinations at run-time,
and generate the optimized code dynamically, using layer
optimization theorems for all possible bypass paths. We can
then make use of Ensemble’s support for dynamically load-
ing layers and switching protocol stacks on the fly [25].

4.2 Performance results

We will present and compare performance results for four
different versions of Ensemble stacks:

1. (Imperative or IMP) This is the normal version. In this
case, Ensemble has a central event scheduler. It in-
stantiates each protocol layer individually, and hands
events to the layers as they come out of the scheduler.
In the common case that no other events are queued
in the scheduler, an output event is directly passed to

the appropriate layer. Otherwise, output events are en-
queued back into the scheduler.

2. (Functional or FUNC) In this case no centralized event
scheduler is used. Composition is done based on
the following observation: When two protocols are
stacked on top of each other, the result is a new pro-
tocol. When stackingp on top ofq, one applies events
going down top, and up events going up toq. The
down events that come out ofp are applied toq, and
the up events that come out ofq are applied top, re-
cursively. The up events that come out ofp and the
down events that come out ofq are merged together to
form the output events. The state of the composition
of p andq is the combined states ofp andq. An entire
stack can be composed one layer at a time this way.

3. (Hand-Optimized or HAND) For particular common
protocol stacks, Ensemble provides carefully opti-
mizedbypass code for common paths through the pro-
tocol stack. These paths were created manually. The
stacks are built in the same way as in the functional
version, but just before events are given to the stack a
condition is checked to see if the event can be handled
by the bypass. The bypass can access the state of the
various layers in the stack.

4. (Machine-Optimized or MACH) Code generated from
the functional code using the techniques of the previ-
ous section. The resulting code is used as a bypass
much like in the hand-optimized case. Generating code
from the imperative version is much harder for Nuprl,
because the imperative code is harder to formalize than
the functional code, and should not result in any bene-
fit.

(None of these versions leverage concurrency. Ensemble
does supports running each layer in its own thread, but in
practice the context switch and synchronization overheads
are very large.)

It is important to note that we are optimizing already
heavily optimized code. That is, the first two optimiza-
tion steps, avoiding garbage collection and marshaling, have
been applied to all four versions.

When an application sends a message, it first travels
down the protocol stack to the EnsembleTransport module
(see Figure 4 in Section 4.1). The Transport module mar-
shals the message into a sequence of bytes before it is sent
out onto the network. At the receiver, the message is passed
through the Transport module, which unmarshals the mes-
sage. The message then travels up the protocol stack, and is
finally delivered to the application.

In case of the hand-optimized version (HAND), the mes-
sage goes through the bypass code instead of the protocol
stack and the Transport module. In case of the machine-
optimized code (MACH), there is only a bypass for the pro-
tocol stack, not for Transport. In both cases, the CCPs need
to be checked first.

In our experiments, the CCPs specify that messages are
delivered in FIFO order, are not fragmented, and no failure

88

MACH IMP FUNC
Down Stack 9 20 42
Down Transport 8 27 30
Up Transport 7 20 22
Up Stack 8 14 38
Total 32 81 132

HAND MACH IMP FUNC
Down Stack 2 2 13 14
Down Transport 4 6 4 6
Up Transport 6 7 8 9
Up Stack 2 4 10 13
Total 14 19 35 42

(a) (b)

Table 1. (a) 10-layer stack code latency in µs, for 3 different configurations using 4 byte messages. (b) 4-layer stack
code latency in µs, for 4 different configurations using 4 byte messages.

 4 24 100 1k
0

50

100

150

message size (bytes)

la
te

nc
y

(m
ic

ro
se

co
nd

s)

Down Stack

Down Transport

Up Transport

Up Stack

Figure 6. Code latency (10-layer protocol stack) comparison with different sized messages for the MACH, IMP, and
FUNC configurations.

or other membership events occur. In practice, these circum-
stances are very common, and in the measurements below
the outcome of the CCP checks is always the choice to run
the bypass code. In our case, checking the CCPs takes only
about 3µs. Thus, even with CCPs for situations that are
less common, a significant performance improvement may
be expected.

We ran our measurements on two UltraSparc stations
(300MHz) running Solaris 2.6, connected by a 100 Mbit Eth-
ernet. For the latency measurements, we used Solaris’get-
timeofday(). We ran each test 10,000 times and calcu-
lated the average. Since our experiments only measure code
latencies, and do not require system calls, thread switches, or
network communication, the variance in the reported num-
bers is negligible. We used the OCaml 2.0 native code com-
piler that produces good quality optimized machine code.
We chose two different Ensemble stacks for our experi-
ments. Both stacks provide reliable virtually synchronous
delivery of multicast and point-to-point messages. The first
stack uses 10 protocol layers and provides, additionally, total
order, flow control, and fragmentation/reassembly. For com-
parison with the hand-optimized code we used a much sim-
pler 4-layer stack, due to the difficulty of hand-optimization.

The hand-optimized code contains an optimization for
the case when a process that is delivered a message imme-

diately sends another message (e.g., a response). If the first
message is delivered through the bypass code, it assumes
that the next message can be sent through the bypass as well,
without checking the CCPs. For many cases this is true, and
leads to a significant performance improvement. However,
it may not be a correct assumption (e.g., the response may
need to be fragmented), and therefore the optimization can-
not be generally substituted for the original code). In order
to compare fairly between the hand-optimized code and the
machine-generated code for the 4-layer case, we have added
the same optimization procedure to the machine-generated
code. (This could have been done by Nuprl itself, but we did
it by hand.)

In Table 1(a), we show the code latencies involved in
both the 10-layer protocol stack and the Transport module,
for both the up and down event handlers. The latencies are
for 4 byte messages. The savings in the Transport module
are mostly due to header compression, resulting in less over-
head in marshaling of headers. Most of the savings in the
Stack processing is due to inlining of the common code path.
In Table 1(b), we show the code latencies for the 4-layer
stack. The performance improvements are naturally more
substantial for larger stacks, but even for the small 4-layer
stack a better than two-fold improvement is obtained.

89

Events Original Stack Optimized Stack
data mem refs 86293122 50905331
ifu ifetch 172272565 100082695
ifu ifetch miss 3335271 1631051
itlb miss 587083 361307
l2 ifetch 11075483 5525973
inst decoder 182715118 98031212
ifu mem stall 143921523 76086051
cpu clk unhalted 348157540 199632585

10-layer stack
Layer Down Up

partial appl 684 392
total 820 1348
local 1388 1420

collect 44 2685
frag 900 144

pt2ptw 932 4899
mflow 596 572
pt2pt 268 1040
mnak 152 428

bottom 300 5052
total size 6084 17980

MACH (from 10 layers) 3592 2108

(a) (b)

Table 2. (a) Data collected from Pentium performance monitoring counters for 10,000 send/recv rounds. (b) Object
code sizes (in bytes) of the protocol layers and the generated code. The sizes have been separated for code dealing
with down going events (such as Send), and upgoing events (such as Deliver).

These numbers donot include the network latency,
which is about 80µs in this case (using Ethernet). For the
10-layer stack, this means a total improvement of protocol
processing in end-to-end communication from 50% to 29%,
while for the 4-layer stack the improvement is from 30%
down to 19%.

The performance improvements are more substantial for
low latency networks than for high latency ones. For our
Ethernet, using the 10-layer stack, the end-to-end latency
improvement due to our optimization is 30%. On VIA (with
10µs link latency), this would be 54%. For the 4-layer stack,
the improvement is 14% on Ethernet, while 36% on VIA.

The hand-optimized code performs 25% better than the
machine generated code. We believe that this difference can
be attributed to having integrated the Transport module into
the hand-optimized code.

In Figure 6, we show the same processing overheads of
the 10-layer stack for different message sizes, 4, 24, 100,
and 1024 bytes. For each size, there are three bars: from left
to right MACH, IMP, and FUNC. In each bar, from top to
bottom, we show the overheads of going down the protocol
stack, down the transport, up the transport, and up the proto-
col stack. As may be observed, these processing overheads
are mostly independent of message size. This is because we
avoid copying by making use of the scatter-gather interfaces
to socket communication.

To get more insight of micro-performance characteris-
tics, we did some measurements using the performance mon-
itoring counters on a Pentium II machine [12] running Linux
2.2.12. The machine we used has 32KB internal cache
(16/16KB instructional/data cache), 512KB L2 cache and
128MB RAM.

In Table 2(a), we show some output from the perfor-
mance monitoring counters. The result is for 10,000 rounds
of message exchanges. In particular, we found that in a
send/receive loop, the number of CPU cycles was reduced

from 34816 to 19963, and the number of TLB misses from
an average of 59 down to 36.

We believe most of this is due to partial evaluation and
inlining of code. To show what effect this had on code size,
we show, in Table 2(b), the object code sizes of both the up
event handler and the down event handler for each protocol
layer, as well as the size of the generated bypass handlers for
a 10-layer stack.

5 Related work

The CMU Fox project [3] also uses an ML dialect, an exten-
sion of Standard ML, for building protocol stacks. In con-
trast to our project, Fox has built standard TCP/IP protocol
software and a web server on top of that. The broader goal
of the Fox project is to investigate the extent to which high
level languages like ML, and particularly their support for
modularity, are suitable for systems programming.

Integrated Layer Processing (ILP) [6] is an approach to
reduce the overhead of layered protocols [1, 4]. By combin-
ing the packet manipulation of each layer, the total amount of
memory accesses are reduced, and data locality is improved.
The Filter Fusion Compiler (FFC) [22] implements ILP us-
ing partial evaluation. FFC has only been applied to very
simple protocols, and the code generated by FFC has to be
hand-modified to get good performance. ILP is most ap-
propriate for protocols that do many “data-touching” opera-
tions (checksum computation, encryption, etc.) on large data
packets. In our setting, many packets are quite small, and a
large amount of protocol latency is introduced by protocol
abstraction boundaries.

Our work presents a technique for optimizing mainly
non-data touching operations, similar topath-inlining [21].
Path-inlining turns out to be difficult because of message or-
dering constraints, and it is out of the reach of traditional
compiler optimization techniques because of the need for

90

path constraints that cross component boundaries. Formal
toolsare able to analyze global properties, and we use them
for synthesizing common code paths.

Other work has applied formal tools. Esterel [5] is an im-
perative, synchronous protocol specification language. The
Esterel compiler is used to convert the protocol specification
into a sequential finite automaton, from which efficient C
code is generated. Esterel was used to specify a large sub-
set of the TCP protocol, and to generate an implementation,
but a general problem with this approach is that it does not
scale easily to arbitrary protocol stacks.

Finding common execution paths is not always trivial.
Packet classifiers help analyzing common paths in commu-
nication systems [2, 9, 24]. In operating system research
there is related work on locating and optimizing common
paths. Synthesis [19], which influenced systems as Scout,
Aegis, SPIN and Synthetix, uses a run-time code generator
to optimize the most frequently used kernel routines. [23]
describes work on optimizing Synthetix kernel functions by
reducing the length of common paths.

6 Conclusion

This paper described how correct protocol stacks can be con-
figured from Ensemble’s micro-protocol components, and
how the performance of the resulting system can be im-
proved significantly using the formal tool Nuprl. Although
we chose a limited domain — all components are protocol
layers, and all configurations are stacks of these — we be-
lieve that our approach could generalize and scale to more
general configuration and component types.

Even for the limited domain, we feel that the following
ingredients were necessary to make our project a success:

1. Using small and simple components. Smaller compo-
nents are easier to reason about. On the other hand,
components should be large enough so that their con-
figurations do not become overly complex.

2. Using an event-driven, mostly functional implementa-
tion of components. Imperative implementations are
much less suitable to formal analysis and transforma-
tion.

3. Using a well-defined configuration operation on com-
ponents. The semantics of a configuration operation
on components has to have a formal meaning. (In our
case, a configuration of protocol components creates a
new protocol component.)

4. Using a language with a formal semantics. Languages
which do not have a formal semantics (e.g., C) do not
lend themselves to formal manipulation. (There is a
rich subset of Java that has a formal semantics.)

5. Using I/O automata as a specification language. IOA
have the look and feel of ordinary computer programs,
and can be easily understood by programmers who
have no background in computer science theory.

6. Using a formal tool. Hand-checking and hand-
optimizing even only a handful of components is an
arduous task. Our approach will only scale with ap-
propriate tools such as Nuprl.

7. Using in-house expertise from both systems and for-
mal groups. Neither the Ensemble nor the Nuprl group
alone could have accomplished what we have.

It should be noted that Ensemble was created as a ref-
erence implementation of Horus [26], which was written in
C. That is, Ensemble was designed to be verified, and there
was initially no plan to retire Horus. We consider it infea-
sible to verify a complex system such as Horus which was
not designed for verification. Because of the successful opti-
mization approach in Ensemble (Ensemble is now generally
as fast or even faster than Horus), the development of Horus
was stopped. We have not yet been able to generate a ma-
chine proof of a non-trivial group communication protocol,
but believe that we will complete a proof of one of Ensem-
ble’s total ordering protocols shortly.

We believe that it may be possible to use our approach
in other complex systems such as file systems, atomic trans-
action protocols, and memory paging hierarchies, and per-
haps eventually an entire operating system kernel. Because
of its logical foundation and the high level of abstraction, our
optimization techniques are relatively independent from the
Ensemble toolkit. The methodology described here can be
applied to other modular systems whose modules and com-
position mechanisms can be described semantically. As for
correctness proofs, the THE operating system kernel [8] was
built from layered components and proven correct, by hand,
in 1968. (THE was also designed with verification in mind.)
We believe it is crucial that the system be built from compo-
nents with well-specified behaviors, and that the components
are programmed in a language with a formal semantics.

In our experience, getting programmers to write specifi-
cations is a hard task. (Note that this does not hinder opti-
mization, which is now a push-button technology that does
not require specifications other than the code itself.) We still
have a long way to go with writing all the abstract specifica-
tions for the Ensemble layers. The prospect of writing over
60 such specifications is daunting. Fortunately, many layers
have similar specifications. Compare, for example, Figures
2(a) and (b). We are developing an object-oriented technique
of extending existing specifications. For example, FifoNet-
work may be generated from LossyNetwork by adding some
state and a few conditions and actions.

See http://www.cs.cornell.edu/Info/Projects/NuPrl and
http://www.cs.cornell.edu/Info/Projects/Ensemble for more
information.

Acknowledgments

We would like to thank Mark Bickford, Alan Fekete, and
Nancy Lynch for very helpful discussions. We also want to
thank the anonymous SOSP reviewers, and our “shepherd”
Peter Lee for numerous improvements made to our paper.

91

References

[1] A BBOTT, M., AND PETERSON, L. Increasing
network throughput by integrating protocol layers.
IEEE/ACM Transactions on Networking, 1(5):600–610
(Oct. 1993).

[2] BAILEY, M., GOPAL, B., PAGELS, M., PETERSON,
L., AND SARKAR, P. PATHFINDER: A pattern-based
packet classifier. InProceedings of the First Sympo-
sium on Operating Systems Design and Implementa-
tions (Apr. 1994), pp. 115–123.

[3] BIAGIONI , E. A structured TCP in Standard ML. In
Proceedings of the ’94 ACM SIGCOMM Conference
(London, UK, Aug. 1994), pp. 36–45.

[4] BRAUN, T., AND DIOT, C. Protocol implementation
using integrated layer processing. InProceedings of
the ACM SIGCOMM Conference (1995), pp. 151–161.

[5] CASTELLUCCIA, C., AND DABBOUS, W. Generat-
ing efficient protocol code from an abstract specifica-
tion. In Proceedings of the ACM SIGCOMM Confer-
ence (New York, 1996), pp. 60–72.

[6] CLARK , D., AND TENNENHOUSE, D. Architectural
consideration for a new generation of protocols. In
Proceedings of the ACM SIGCOMM Conference (Sept.
1990), pp. 200–208.

[7] CONSTABLE, R., ALLEN, S., BROMLEY, H.,
CLEAVELAND , W., CREMER, J. F., HARPER, R.,
HOWE, D., KNOBLOCK, T., MENDLER, N., PANAN -
GADEN, P., SASAKI , J., AND SMITH , S. Implement-
ing Mathematics with the NuPRL proof development
system. Prentice Hall, 1986.

[8] DIJKSTRA, E. The structure of the THE multiprogram-
ming system.Communicationsof the ACM, 11(5):341–
346 (May 1968).

[9] ENGLER, D., AND KAASHOEK, M. DPF: Fast, flex-
ible message demultiplexing using dynamic code gen-
eration. InProceedings of the ACM SIGCOMM Con-
ference (1996), pp. 53–59.

[10] HAYDEN, M. The Ensemble System. PhD thesis, Cor-
nell University, Jan. 1998.

[11] HICKEY, J., LYNCH, N., AND VAN RENESSE, R.
Specifications and proofs for Ensemble layers. In
5th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (1999),
R. Cleaveland, Ed., no. 1579 in Lecture Notes on Com-
puter Science, Springer-Verlag, pp. 119–133.

[12] INTEL CORPORATION, SANTA CLARA , CA, USA.
Intel Architecture Software Developer’s Manual, 1999.
http://developers.intel.com/design/pentiumii/manuals,
order numbers 243190, 243191, 243192.

[13] KAY, J., AND PASQUALE, J. The importance of non-
data touching processing overheads in TCP/IP. InPro-
ceedings of the ACM SIGCOMM Conference (Sept.
1993), pp. 259–268.

[14] KREITZ, C. Formal reasoning about communication
systems I: Embedding ML into type theory. Tech. Rep.
TR97-1637, Cornell University, June 1997.

[15] KREITZ, C. Automated fast-track reconfiguration of
group communication systems. In5th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (1999), R. Cleaveland,
Ed., no. 1579 in Lecture Notes on Computer Science,
Springer-Verlag, pp. 104–118.

[16] KREITZ, C., HAYDEN, M., AND HICKEY, J. A proof
environment for the development of group communi-
cation systems. In15th International Conference on
Automated Deduction (1998), C. . H. Kirchner, Ed.,
no. 1421 in Lecture Notes in Artificial Intelligence,
Springer-Verlag, pp. 317–332.

[17] LEROY, X. The OCAML System. INRIA, Rocquen-
court, France, 1998. http://pauillac.inria.fr/ocaml.

[18] LYNCH, N. Distributed Algorithms. Morgan Kauf-
mann, San Francisco, 1987.

[19] MASSALIN, H. Synthesis: An Efficient Implementa-
tion of Fundamental Operating System Services. PhD
thesis, Computer Science Department, Columbia Uni-
versity, 1992.

[20] MILNER, R., TOFTE, M., AND HARPER, R. The Def-
inition of Standard ML. MIT Press, Cambridge, MA,
1989.

[21] MOSBERGER, D., PETERSON, L., BRIDGES, P.,AND
O’M ALLEY, S. Analysis of techniques to improve pro-
tocol processing latency. InProceedings of the ACM
SIGCOMM Conference (New York, 1996), pp. 73–84.

[22] PROEBSTING, T., AND WATTERSON, S. Filter fu-
sion. InProceedings of the 23th Annual Symposium on
Principles of Programming Languages (St. Petersburg
Beach, Florida, Jan. 1996), pp. 119–130.

[23] PU, C., AUTREY, T., BLACK , A., CONSEL, C.,
COWAN, C., INOUYE, J., KETHANA, L., WALPOLE,
J., AND ZHANG, K. Optimistic incremental special-
ization. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles (Dec. 1995), pp. 314–
321.

[24] VAN RENESSE, R. Masking the overhead of protocol
layering. InProceedings of the ACM SIGCOMM Con-
ference (Aug. 1996), pp. 96–104.

[25] VAN RENESSE, R., BIRMAN , K., HAYDEN, M.,
VAYSBURD, A., AND KARR, D. Building adaptive
systems using Ensemble.Software—Practice and Ex-
perience, 28(9):963–979 (July 1998).

[26] VAN RENESSE, R., BIRMAN , K., AND MAFFEIS, S.
Horus: A flexible group communication system.Com-
munications of the ACM, 39(4):76–83 (Apr. 1996).

[27] VON EICKEN, T., AND VOGELS, W. Evolution of
the Virtual Interface Architecture.IEEE Computer,
31(11):61–68 (Nov. 1998).

92

