BUILDING RELIABLE INTEROPERABLE
DISTRIBUTED OBJECTS WITH
THE MAESTRO TOOLS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Alexey Vaysburd
May 1998

© Alexey Vaysburd 1998
ALL RIGHTS RESERVED

BUILDING RELIABLE INTEROPERABLE DISTRIBUTED OBJECTS WITH
THE MAESTRO TOOLS

Alexey Vaysburd, Ph.D.
Cornell University 1998

This work presents the Maestro Tools for development of reliable interoperable
object-oriented distributed applications. We discuss the three fundamental parts
of Maestro — the object group tools, the client/object interoperability tools, and the
group protocols which implement state machine replication of distributed objects
— with a special focus on practical usability and system integration issues.

Biographical Sketch

Alexey was born in the city of Odessa in Ukraine in 1970. He graduated from High
School #100 in 1987 and went on to study at Odessa State University. In 1990
Alexey’s family emigrated to the United States and he transferred to New York
University, from which he graduated in May 1993 with a B.A. in Mathematics and
Computer Science. In the fall of that year Alexey entered the PhD program in
Computer Science at Cornell. He earned an M.S. in Computer Science in 1995 and
graduated with a PhD in May 1998.

11

To my parents

v

Acknowledgements

The first thing I did on my first day at Cornell, even before finding out where my
own room would be, was to look up the number of the office of Ken Birman, run
there, and tell Ken right away that I wanted him to be my advisor. This started
my exciting five years in Ken’s Horus group. I am grateful to Ken for his guidance
throughout those years, for his strategic insights, where sometimes a single phrase
mentioned by him in passing would suddenly light up a whole new dimension
of which I had not even been aware before, and keep me thinking for days and
weeks — which would eventually result in my seeing both a research problem and
an opportunity to solve it where I had previously seen neither. I am grateful to
Ken for his encouragement and the freedom I've usually had to work on projects
interesting to me, in the directions I wanted to pursue.

I knew of Robbert van Renesse even before I came to Cornell. As one of
the creators of the Amoeba system he seemed almost a legendary person, and I
remember how excited I was when Ken introduced me to Robbert on that same first
day and told me I was going to work with him on the Horus project. Spending five
years in a graduate school is not just about writing code and papers but, perhaps
even more importantly, it is about interactions with people. I am happy that I have
had the opportunity to work with Robbert and learn not only from his brilliant
ideas and programming style, but also from his humanness and kindness.

I would like to thank Anil Nerode for being on my Special Committee.

I wrote my first paper with Roy Friedman, which has been a great experience
for me. I am very grateful to Roy for the opportunity to work with him during
those several years that he spent at Cornell.

I want to thank everybody in the Horus group for all the discussions and com-
ments over the five years that have contributed to this work. Many thanks to Tim
Clark for maintaining and supporting Maestro code within Ensemble releases. The
classes with Sam Toueg and Joe Halpern that I took, and the many discussions
we’ve had, have taught me a lot and shaped my perspective on the area of dis-
tributed systems. I am grateful to Silvano Maffeis for the pleasure it has always
been to work with him. I am happy to have had a chance to work with Dave
Bakken. I also would like to thank BBN for their financial support.

There is no doubt that all the people I have worked with have left their imprint
on my way of thinking, the style and approach to research, and I am grateful to

all of them. Going back into the past, however, I must start with expressing my
ever deep gratitude to Arkadiy Markovich Alt who, back in HS #100 in Odessa,
was first to show me the light of intellectual freedom in the country still entangled
in dark ages.

I would not have been able to survive the five years of graduate school without
my great officemates and all my friends in Ithaca, in New York, and many other
places. I want to thank all of them for being there.

Finally, and most importantly, I want to thank my family for their love and
support, which in the end is what has made this dissertation possible.

vi

Table of Contents

Biographical Sketch iii
Dedication iv
Acknowledgements s
List of Figures X
1 Introduction 1
2 Group Communication Tools 4
2.1 Maestro Tools and Prior Work 4
2.2 Group Members 7
2.2.1 Initialization 7

2.2.2 Participating in the Membership Protocol 7

2.2.3 Sending and Receiving Messages 9

2.2.4 External Failure Detectors 11

2.2.5 Example: A Chat Program 12

2.3 Group Clients and Servers 14
2.3.1 Initialization and State Transfer Options 15

2.3.2 Sending Messages 16

2.3.3 Membership Monitoring 16

2.4 State Transfer L 16
2.4.1 Protocol Framework 17

2.4.2 A Pull-Style Protocol 23

3 Object Interoperability Tools 29
3.1 Introduction 29
3.2 Related Work: Approaches and Tradeoffs 32
3.3 Maestro I[IOP Bridge and ORB Framework 37
3.3.1 IIOP Bridge: Server Side 37

3.3.2 IIOP Bridge: Client Side 39

3.3.3 Object Keys 39

vii

3.3.4 Building ORBs over the Maestro IIOP Bridge 40

3.4 Reliable Maestro ORB (Replicated Updates) 44
3.4.1 ORB Interfaces 45
342 ALookInside, 47
3.4.3 Client Perspective: Failover/Transparency Issues. 49

3.5 Building Object Adaptors and Applications with Maestro 50
3.5.1 Implementing Objects/Object Adaptors 50
3.5.2 System Configuration/Initialization 53
3.5.3 Setting Up the Client Side 54

3.6 Performance 58

3.7 The Maestro Wizard 61

4 Protocol Support: Implementing State Machine Replication 66

4.1 Introduction 66

4.2 Background and Related Work L. 68

4.3 System Model and Protocol Support in Horus 70
4.3.1 Partitionable Group Membership Service 72
4.3.2 Atomic Message Delivery Within a View 75
4.3.3 State Machine Replication Within a View 76

4.4 Globally Consistent State Machine Replication 78
4.4.1 State Version Numbers 79
4.4.2 Installation of Primary Views 80
4.4.3 Globally Safe Delivery and State Transfer 82
4.4.4 Restarting Objects After Crashes 87
4.4.5 State Machine Replication Properties 90

4.5 Performance 91

4.6 Discussion 93

Bibliography 96

viii

List of Figures

2.1
2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8

4.1
4.2

The Maestro Class Hierarchy: Core Classes and Application Examples 6
The object-adapter approach: Building applications by overloading

the Maestro GroupMember class 8
Maestro downcalls/callbacks and Membership Protocol: Joining
the group 9
Maestro downcalls/callbacks and Membership Protocol: Leaving
the group 10
Maestro downcalls/callbacks and Ensemble messages: Sending a
multicast L 11
State Transfer Protocol in Maestro 18

A State Merge protocol: When two group components merge to-
gether, they exchange their states using getState() /sendState() down-

calls of Maestro 22
State transfer protocol: Under certain failure scenarios, state trans-

fer may be canceled and restarted later 23
A Pull-Style implementation of State Transfer Protocol 24
CORBA ORB Architecture 30
Maestro Interoperability Architecture: Multiple Request Managers

(ORBs) can be supported over a shared IIOP bridge 31
CORBA Reliability Solutions 33
Maestro IIOP Bridge: The Server-Side Interface 38
Maestro Replicated Updates ORB 48

Compound Interoperable Object References in Maestro: An IOR
may contain multiple IIOP profiles pointing to different copies of

the replicated object residing at different processes 49
Performance of the Maestro Replicated Updates ORB (over Horus)
and Orbix 2.2, 59
Performance of the Maestro Replicated Updates ORB (over Ensem-
ble) and Orbix 2.2 60

The Two-Phase Commit Protocol blocks when the coordinator crashes 67
The Three-Phase Commit Protocol blocks when the network par-
TICIOMS 68

X

4.3

4.4
4.5

4.6
4.7
4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19
4.20

State Machine Replication: The group behaves as one reliable highly-
available objecto
Layered protocol architecture of Horus
Partitionable group membership service in Horus: Multiple concur-

rent views can be installed simultaneously
The View Change Protocol in Horus
View Atomic Message Delivery: Group members included in two

consecutive views deliver the same set of messages between the view

changes
Total ordering protocols available in Horus.
Execution of member objects may diverge when the view partitions

into several components
When views merge, the state of the more advanced view is trans-

ferred to members of the other view. When a primary view is

installed, all included members are always in the same state
When any two different primary views are proposed, they are always

assigned different sequence numbers
If objects deliver messages which are not safe (i.e. not acknowledged

by a majority), their state may need to be corrected (or rolled back)

later L
With the globally safe delivery layer, messages are only delivered

when they become safe. If an unsafe message is rolled back, the

application is notified with an abortCast() callback
Integration of the primary views layer, globally safe delivery layer,

and the state transfer protocol of Maestro
Maestro-level state transfer and internal transfer of unsafe messages

may proceed in opposite directions
If objects restarted after crashes still count when computing a quo-

rum, the state of the group may become inconsistent
When an object is reincarnated after a crash, it remains a zombie

(denoted by the dashed line) until it receives an up-to-date state

and becomes a member of a primary view
Average round latency for different group sizes
Average throughput per group member for different group sizes . .
Average throughput for the whole group for different group sizes

Chapter 1

Introduction

The focus of this work is on integration aspects in development of reliable object-
oriented distributed applications. It appears that complexity of building commu-
nication protocols and efficient architectures at different levels of a distributed
system is overshadowed by the complexity of putting all individual pieces together
and getting them to work coherently as a whole. There seems to be some kind of a
“law of diminishing impact”, where practical usability of a system component that
implements a new technology is significantly decreased with each layer separating
the new module from the final application level. This trend becomes especially ob-
vious in systems with intrinsically complex interdependencies between individual
layers and components, which in case of reliable distributed systems involve not
only compatibility and adequacy of modules’ interfaces, but, importantly, a num-
ber of subtle sophisticated logical properties of provided protocols and assumptions
on the system model and the formal abstractified view of the application.

It is unrealistic to expect that multiple system layers and communication pro-
tocols will fit nicely together and provide the expected behavior to the application
if they were not designed from the beginning with a “vertical” top-bottom view
of the system, with an integration of all components in mind. The focus on in-
dividual tools, rather than on their integration within complete applications, may
result in a kind of a “virtual existence” paradox, where a piece of software which
implements some clearly useful technology and is even released to customers may
still be practically unusable when it comes to actual applications.

One reason for the usability problem is specifics of experimental research, which
is often more concerned with development of new technologies that could be used as
“pieces of the puzzle”, rather than with the whole puzzle itself. It would indeed be
unnatural to expect that research tools were built to immediately fit actual real-
world applications, in particular because design priorities, system requirements,
and quality-of-code expectations are very different for a piece of research code and
enterprise software, especially when high-reliability issues are involved. However,
these differences sometimes result in an unfortunate situation when a new technol-

ogy badly needed by real systems is well understood at the research level and even
implemented with a collection of tools, and is shown to work with simple example
applications, but is practically inaccessible to enterprise developers, who are not
familiar with and scared away by the complexity of the involved technology and
the low level of provided interfaces and protocol properties.

The wrong abstraction level of distributed tools from perspective of an applica-
tion developer is a major problem, as it usually means both underspecification of
application-relevant properties and owverspecification of low-level implementation
details. In other words, the application developer often doesn’t have adequate
hooks for controlling the behavior of underlying system components and proto-
cols and does not get a high-level view of their composite properties, yet at the
same time is overwhelmed by the complex yet irrelevant component/protocol-level
(but not application-level) specifications. The mismatch of abstraction levels un-
avoidably arises when the last step in a development of a collection of tools — the
integration and smooth transfer of technology into applications — is missing.

It would be unrealistic indeed to expect that an application programmer con-
cerned with system reliability should be able to understand the complex group
communication protocols and their semantics and interdependencies in order to
use them effectively when the high-level properties are not clearly specified. In
practice, the users often hope that by merely plugging in the provided tools they
will magically obtain high reliability and availability of their application, and be-
come disappointed having realized this is not at all the case. Even if several simple
tests seem to be running fine and, for example, a to-be-reliable application appears
to survive a couple of manually-engineered process crashes, there is no reason to
expect that the logical behavior of the system will be as expected in all cases
and scenarios and that the incomprehensible (to the application developer) “black
magic” of underlying group communication protocols will miraculously make a
perfect fit with the system environment and the abstract model of the given ap-
plication. This situation can be compared to trying to glue all holes in a sieve
so as to close all leaks in it. It may be acceptable for a stand-alone experimental
research tool to “leak properties” in some situations as long as the main concept
is proved to work correctly, assuming the proof of the concept has been the main
goal. However, in order to be usable by other components of the system or by the
application, all properties provided by an exported module need to be rigorously
specified and all “property leaks” need to be fixed; otherwise the integration of
different layers and components will unavoidably falter.

The concerns raised above have motivated the integrated approach to design
and implementation of the Maestro tools, which are composed as building blocks
for reliable interoperable object-oriented applications. The Maestro tools cover
three broad problem areas arising in development of such applications, including
(1) interfaces and tools to support creation of reliable distributed objects; (2) in-
teroperable protocols and flexible mechanisms to access the reliable objects from

outside clients; and (3) communication-level protocols to implement a meaningful
high-level semantics for object reliability through replication. The three-fold focus
of the Maestro tools, with a special attention to the “leak-free” integration of those
three system components, is reflected in the structure of this dissertation. We de-
scribe Maestro Group Communication Tools in Chapter 2, followed by a discussion
of Maestro Interoperability Tools in Chapter3. In particular, we show there how
the group tools and interfaces provided by Maestro can be used to implement dif-
ferent styles of client /object interaction, with different reliability requirements and
communication patterns. Finally, in Chapter 4 we present group protocols which
implement a fundamental group-communication-based reliability paradigm called
state machine replication [Sch86,Bir96]. Again, our discussion is concerned with
integration of all involved system modules and, in particular, between Maestro
group interfaces and tools (such as the state transfer tool) and underlying protocol
layers. In spite of complexity of the low-level protocols involved, we have been
able to express the precise semantics of state machine replication for application
objects at the application level of abstraction with just three concise properties
(Section 4.4.5), which are implemented by our protocols in cooperation with the
Maestro group tools and the application itself.

Throughout the presentation, we pay special attention to usability issues, which
pertains to both protocols and interfaces provided by the Maestro tools. With
usability goals in mind, we illustrate most important application usage patterns
with running code examples, and explicate the problems arising in design of state
machine replication protocols for partitionable environments with sufficient detail
(but without irrelevant implementation-specific distractions) so that they can be
reimplemented by an interested reader if necessary. All in all, throughput our work
we focus on practical aspects of developing reliable interoperable objects, with the
end goal of effective application of the Maestro tools in real-world distributed
applications.

Chapter 2

Group Communication Tools

Maestro provides a collection of tools and interfaces enabling a distributed systems
developer to program directly with group communication abstractions. The core
of the tools is a hierarchy of classes that implement fundamental abstract data
types for object groups with integrated state transfer protocols and group-member
interfaces.

Maestro supports the “object adapter” programming paradigm, where system
functionality is exported via public downcall methods in predefined base classes,
and application-specific behavior is implemented by overloading protected callback
methods in used-defined subclasses of the base classes. For example, message-
sending downcalls have matching callback methods invoked by Maestro to deliver
incoming messages to destination objects. The protocols of Maestro and the group
communication system underneath provide guarantees on ordering and reliability
of callback invocations with respect to corresponding downcalls, and well as other
system-level properties. The application, in its turn, specifies how objects will
process callbacks when messages are actually delivered, by overloading callback
methods in user-defined subclasses of Maestro base classes.

In the following sections we will describe the most important abstract data
types in the Maestro group communication class hierarchy and discuss their usage.

2.1 Maestro Tools and Prior Work

The conceptual design of Maestro tools follows the group programming model of
the Isis system [BJ87a,Bir96]. Isis defines a programming interface for creating
and joining process groups and sending multicast and point-to-point messages to
group members. Processes can join Isis groups as either members or clients, where
members are provided with a richer collection of system services and interfaces
and stronger guarantees on message ordering and membership consistency, while
clients have the advantage of scalability. Isis also provides a collection of tools,
including a state transfer tool, logging and spooling tools, the coordinator-cohort

tool, and other utilities [Isi92].

Whereas Isis is a complete self-contained distributed communication toolkit
(even including its own threads package) targeted to distributed application pro-
grammers, Maestro group tools are intended to be used at the application level as
well as to develop new protocols and other middleware software, such as, for ex-
ample CORBA ORBs, which has motivated the differences between the structure
of Maestro interfaces and Isis API. Most importantly, whereas Isis is a complete
group communication system together with a programming interface, Maestro is
mostly a programming environment, including an implementation of higher-level
protocols, interfaces and tools, which itself requires a group protocol engine (such
as Horus or Ensemble) running underneath.

The Isis programming interface is a flat library of functions that can be used
by programmers to quickly develop distributed applications. However, the pro-
grammers cannot see what is going on “under the hood” and cannot modify the
implementation of functions should they not adequately match their requirements.
On the other hand, some higher-level group programming idioms using Isis may
recur in many applications, yet would not naturally become a part of Isis toolkit.
Maestro, in contrast, has been designed as an open toolkit, with multi-layered ex-
ported interfaces allowing the user to pick up at the most appropriate level and
build new layers with necessary properties. In order to provide maximum general-
ity, flexibility, and reusability of code, Maestro tools are structured as a hierarchy of
Abstract Data Types corresponding to fundamental group abstractions (members,
clients, servers with state transfer), with class semantics becoming progressively
richer and more specific when climbing the class hierarchy.

Usually protocol policies implemented by a class become mechanisms when used
in a subclass in the class hierarchy. For example, a class may implement certain
protocol policies on synchronization of state transfer with membership changes, but
not stipulate how the state should be actually transferred. Using this state transfer
framework as a general mechanism, different subclasses may implement their own
policies on transferring state, which, in their turn, will become mechanisms when
used from yet higher programming levels. Thus, a programmer using Maestro will
normally find the class in the Maestro hierarchy which implements the most specific
mechanisms appropriate for the intended application, and use it as a starting point
for further development (see Figure 2.1). This programming approach is different
from Isis where the API is exported as a single layer and is not as easily extensible
as in Maestro.

An important difference from the programming model of Isis is Maestro’s object
orientation. Whereas Isis implements process groups, Maestro’s groups are com-
prised of objects. In particular, several group member objects can reside within the
same process. Although it is not clear whether real applications will often need to
create multiple group members within the same process, this feature is obviously
useful for testing and debugging purposes. In general, raising the level of group-

Maestro_GroupMember
(group members)

7 X

Maestro_CISv

Skl (clients/servers +
(Internet chat
application) state transfer
pp framework)
Maestro_CSX
(clients/servers + Maestro CSM
. / pull-style (clients/servers +
Maestro_Prim state transfer) state merge
(primary partition protocol)
mode) *
Maestro_Ad Maestro_ORB_RU ”'aefr‘ﬁg{gg =
(Object Adaptor (replicated Object difector
for Electra ORB) Request Broker) service;/

Figure 2.1: The Maestro Class Hierarchy: Core Classes and Application Examples

member abstraction from “processes” to “objects” can help system developers bet-
ter modularize and encapsulate the implementation of application components and
increase flexibility and reusability of code.

Isis supports scalable client/server groups, where large sets of clients interact
with comparatively small groups of processes acting as servers. A client can pick
a member of the server group and issue RPC calls to it or, alternatively, multi-
cast to the entire group. With another group structure implemented in Isis, called
diffusion groups, clients do not issue requests but passively receive messages multi-
cast by group members [Isi92]. One of the most significant differences between Isis
and Maestro is that Maestro primarily focuses on the flat group model, where all
members or clients/servers are members of the same object group, and does not
support built-in scalable clients the way Isis does. However, Maestro Interoper-
ability Tools (discussed in Chapter 3) provide a general mechanism for connecting
external clients to group objects through the standard IIOP protocol. Various
protocols for client-to-group communication appropriate for different applications
can be built over this mechanism.

Besides Isis, the programming model of Maestro has also been influenced by
the design of Basic Object Adaptors (BOA) in the CORBA architecture [OMG97].

With the BOA model, the application defines a subclass of the pre-generated server
skeleton class which provides a default (usually no-op) implementation of the appli-
cation object’s exported interface. The interface methods are invoked as callbacks
when the object receives requests coming from clients. Thus, the application only
needs to overload relevant callback methods in order to implement the required
functionality. Maestro follows this general paradigm in the design of its group-
objects class hierarchy. Namely, each class exports a collection of public downcall
methods and protected callback methods. The callbacks cannot be accessed directly
but are automatically invoked by Maestro when corresponding events occur. Using
the default implementation, usually no action is taken when an exported callback is
invoked. However, the programmer can implement a more specific communication
protocol or a higher-level group member semantics by defining a subclass of a Mae-
stro group-object class and overloading the appropriate callback methods. Note
that only the callback methods which need to be modified have to be overloaded,
thus eliminating unnecessary code and speeding up the development process. This
programming model of Maestro is discussed in more detail in the sections below.

2.2 Group Members

Maestro implements the basic object group functionality with the
Maestro_GroupMember class. In this section we discuss how to use
Maestro_GroupMember’s features to build object-group applications.

2.2.1 Initialization

Initialization options in the constructor are used to specify the required system-
level properties of group member objects, such as the name of the object group
to join, the transport protocols supported by the machine where the object is run-
ning, the group protocol properties, which include message ordering options (such as
safe or totally ordered delivery), security options (message authentication and ap-
plication data encryption), membership protocol options (failure detection, view
synchronization), partitioning behavior (support for group merges and primary
views), and a number of others. Those options determine configuration for the
group communication system (such as Ensemble) underneath.

2.2.2 Participating in the Membership Protocol

Maestro provides two downcall methods, join() and leave(), which are in-
voked by objects to join or leave their group. A Maestro GroupMember object can
only be a member of one group, the one whose name is specified when the object
is created.

Application
(user-defined
subclass)

application

Downcalls
to Maestro

Maestro
GroupMember

I

Group communication system
(Ensemble)

Figure 2.2: The object-adapter approach: Building applications by overloading the
Maestro_GroupMember class

After an object joins the group, it initially installs a singleton membership
view (with itself as the only member). After that, the object may merge with other
components of the group and will be receiving ongoing group membership updates.
In particular, whenever an object leaves the group or otherwise becomes unavailable
and is excluded from the current list of members, the group communication system
reports a membership change to Maestro, which passes the information to the
application via the AcceptedView() callback (see Figure 2.3). The application
can overload the callback method (no-op by default) to do whatever is necessary
when a membership change is reported.

Parameters in the AcceptedView () function specify the current membership in
the group, the lists of new and departed members since the previous membership
change, and other group information. When a new membership list (a group view)
is about to be installed, one of the group members is elected to be the coordinator.
As a part of the view change protocol, the coordinator can multicast a view message
to all group members included in the new view.

The application may use view messages as a simple mechanism for doing state
transfer or distributing system configuration parameters. If necessary, implemen-

join()

AcceptedView()
’ ViewMsg()
Initially, > <
accept a e
singleton
view
\ Coordinator
', sets up the
. A & view message
AcceptedView() which is sent
to all group
A . members
" Merge with""”'--»..,‘ L 1
another
group
._component

Figure 2.3: Maestro downcalls/callbacks and Membership Protocol: Joining the
group

tations of group objects can overload the ViewMsg() callback (no-op by default)
to push application-specific data into the view message. The message is delivered
to member objects along with the AcceptedView() callback when the new view is
installed.

The leave () function is the last downcall a group object may invoke while it is a
member of the group. Following a call to leave (), the group will reconfigure to ex-
clude the leaving member, which will be notified of completion of the group-leaving
protocol by an invocation of the Exit () callback by Maestro. The remaining group
members will learn of the membership change with the AcceptedView() callback,
as described earlier (see Figure 2.4). After a group member leaves the group, it
can rejoin by calling the join() method again.

2.2.3 Sending and Receiving Messages

Maestro supports the closed group model, where object must be members of the
group in order to be allowed to send multicast messages. External clients can
connect to group objects via external communication channels, for example using
the IIOP protocol supported by Maestro Interoperability Tools (see Chapter 3).

10

- ol -
leave()
BN
al N
Exit() AcceptedView()

Figure 2.4: Maestro downcalls/callbacks and Membership Protocol: Leaving the
group

After a Maestro_GroupMember object joins the group, it can send point-to-
point and multicast messages to other group members. Maestro provides two
downcalls, cast () and send (), which can be used to send multicast and point-to-
point messages respectively. The arguments to the cast() and send() methods
specify the message to be sent and, in case of send(), the destination of the
message (the endpoint ID of the receiver object). An invocation of a cast() or
send () downcall by a group member object is eventually followed by a call to the
ReceiveCast (correspondingly ReceiveSend) callback at the destination(s) of the
message (see Figure 2.5). However, in certain failure scenarios the message may
never be delivered. The specific reliability /fault-tolerance, atomicity, ordering, and
security guarantees on message delivery are provided by the group communication
system underneath Maestro (such as Ensemble), according to the required group
properties specified with Maestro_GroupMember configuration options (as described
in Section 2.2.1 above).

The arguments in ReceiveCast and ReceiveSend callbacks specify the sender
of the message and the message itself. By default, no action is taken when a
message is received. Message callbacks are intended to be overloaded in subclasses

11

Application Application
Application
cast(m) cast_Callback(m)
cast_Callback(m)
Maestro Maestro
Maestro
f N
Ensemble Ensemble

Figure 2.5: Maestro downcalls/callbacks and Ensemble messages: Sending a mul-
ticast

of the Maestro_GroupMember class to implement application-specific functionality.

2.2.4 External Failure Detectors

Maestro expects that the group communication system underneath (Ensemble)
implements a failure detection mechanism. Failure detectors are used to track and
report unavailability of group member objects. Those reports eventually result in
membership reconfigurations, whereby unavailable (either slow, partitioned away,
or crashed) members are removed from the group view.

With Maestro running over Ensemble, built-in failure detection can be en-
abled by requesting a corresponding group property (called Suspect) within group
member configuration options. The application may also provide its own failure
detectors, which can be used as a complement or a replacement of Ensemble’s fail-
ure detection mechanism. External failure suspicions can be reported to Maestro
with the suspect() downcall. The parameter to suspect() specifies the list of
group member objects to be excluded from the membership view (presumably due
to their unavailability).

12

If external (application-supplied) failure detectors are used to completely re-
place Ensemble’s built-in mechanism, they must provide certain logical properties
in order for membership protocols of the group communication system underneath
to work properly. Two minimal properties required include the detection of crashes
and detection of unfair links !, which are defined as follows:

Detection of Crashes: A group member that crashes is eventually reported with
a suspect () downcall by a member that doesn’t crash (if such a member
exists).

Detection of Unfair Links: A group member that doesn’t crash will eventually
report with a suspect () downcall any member of its view for which the link
between the two members is unfair.

These two properties are so called completeness properties (in terminology
of [CT93]), since they only specify in which cases an object must be reported
as faulty, but do not set any bounds on accuracy of failure detection. For example,
it is possible that a group member will be suspected and removed from the group
view even though it didn’t crash and is well connected to other group members.
In general, accuracy requirements are too application-specific to be stipulated at
the generic level of Maestro tools. However, the application can expect that built-
in failure detection mechanisms of the group communication system underneath
(such as Ensemble) are based on fixed timeouts: A group member not heard from
for a certain period of time is suspected to be faulty and is removed from the view.
The application can set the length of the suspicion timeout with group member
configuration options.

2.2.5 Example: A Chat Program

In this section we present an example of a simple application written in Maestro.
The program implements the “chat” functionality: Several copies of the program
can be started on different machines; the users can type in strings which are multi-
cast to all members in the specified “chat group” and printed out to the standard
output. In order to implement the chat application, we only need to define a
subclass of the Maestro_GroupMember class and overload several relevant callback
methods:

// A Maestro Example: The Group Chat Application.
#include ‘‘Maestro.h’’

// Define a subclass of Maestro_GroupMember.
class Chat: public Maestro_GroupMember {
public:

LA link is fair if any message sent infinitely many times is received infinitely many times by
its destination. A link is unfasr if it is not fair.

13

Chat (Maestro_GrpMemb Options &ops): Maestro_GroupMember (ops) {
initialized = 0;
// Join the specified chat group.
joinQ);
}
protected:
// Overload exported protected callbacks of Maestro_GroupMember:
// Received a multicast message.
void grpMemb ReceiveCast_Callback(Maestro EndpID &origin,
Maestro Message &msg) {
Maestro String str;
// Eztract the multicast string from the msg and print it out.
msg >> str;
cout << str << endl;
}
// Installed a new view.
void grpMemb_AcceptedView Callback(Maestro GrpMemb ViewData &viewData,
Maestro Message &msg) {
cout << ‘‘Current members in the chat group:’’ << endl;
cout << viewData.members;
// If this is the first view, start the input processing thread.
if (!initialized) {
initialized = 1;
Maestro_Thread: :create(processInput, (void#*) this);

}

private:
// Input processing thread: read strings from standard input and
// multicast to the group via the specified Chat object.
static void processInput(void *arg) {
Chat *chat = (Chatx*) arg;
char buf[128];
// In the loop: Read next string from stdin,
// convert into a Maestro_String, marshal into a message,
// and multicast to the chat group.
while (1) {
cin >> buf;
Maestro_String str(buf);
Maestro Message msg;
msg << str;
chat->cast (msg) ;

int initialized;

s

14

void main(int argc, char *argv[]) {
if (arge < 2) {
cerr << ‘‘Usage: ‘‘ << argv[0] << ‘¢ <chat-group-name>’’ << endl;
return 1;

}

// Setup configuration options.

Maestro_GrpMemb_Options ops;

ops.groupName = argv[1];

ops.transports = ‘‘UDP’’;

ops.argv = argv;

// Specify required group properties:

// Membership, failure detection, total ordering etc.

ops.properties = ‘‘Gmp:Sync:Heal:Switch:Frag:Suspect:Flow:Total’’;

// Create a Chat object. If this operation fails, the panic() method
// of Chat’s error handler will be invoked. In the default

// implementation, a call to panic() will terminate the process.
Chat *chat = new Chat(ops);

// Block the main thread forever.
Maestro_Semaphore sema;
sema.dec();

2.3 Group Clients and Servers

Maestro group communication tools include an implementation of abstract data
types for group clients and servers. The interfaces to both clients and servers
are almost identical, which reflects the Maestro’s approach of treating clients as
merely group members without the (replicated) group state. Thus, Maestro clients
are fully aware of group semantics and are notified of all membership changes in the
group, including addition and departure of both client and server members. Also,
both servers and clients can explicitly send messages to other group members, and
have the same ordering, reliability, and security guarantees on message delivery (as
provided by the group communication system underneath)?. Furthermore, Maestro
group clients may be upgraded to the server status upon request, in which case
they proceed through the state transfer protocol so as to bring themselves up to
the current state of server members in the group. On the other hand, server
members may temporarily lose their server status and become “clients” in certain
group-merge scenarios, in which case they, too, will need to participate in the

2This is different from semantics of external clients discussed in Chapter 3, which do not join
Maestro object groups directly but access them through a representative member using the IIOP
protocol.

15

state transfer protocol to receive the current state of the more updated merging
component, after which they may again be assigned the server status.

Maestro implements group clients and servers with the Maestro C1Sv class,
which is defined as a subclass of Maestro_GroupMember. Similarly to
Maestrp_GroupMember, the application will normally define a subclass of
Maestro_C1Sv which will overload the exported protected callbacks so as to imple-
ment the required event-processing functionality. The interface and implementa-
tion details of the Maestro_C1Sv class, including the state transfer protocol used
by server members, are discussed in the sections below.

2.3.1 Initialization and State Transfer Options

The options to the constructor method for the Maestro_C1Sv class specify (in addi-
tion to configuration options for Maestro _GroupMember) whether the group object
should be created in the client or server mode. Only server members participate
in the state transfer protocol. Another initialization option specifies state-transfer
safety level. Maestro supports several safety levels, which constrain the types of
messages that can be sent by group members during execution of the state transfer
protocol:

Free State Transfer: With free state transfer, all types of application messages
can always be sent, even during execution of the state transfer protocol.

Protected State Transfer: During protected state transfer, the application may
only send messages that do not result in modifications to the state of group
server objects. Those messages are marked as “safe” by the application and
are immediately sent out by Maestro. All other messages generated by the
application during state transfer are buffered in Maestro and sent out only
after the state transfer protocol completes.

Atomic State Transfer: With atomic state transfer, only messages generated
as a part of the state-transfer protocol are allowed to be sent immediately.
Those are internal state-transfer protocol messages sent by Maestro and ap-
plication’s messages marked as belonging to the “state-transfer” type. All
other messages sent by the application are delayed if sent during execution
of state transfer protocol.

The goal of Maestro has been to provide maximum flexibility with respect to
protocol properties of state transfer, so as to allow applications to implement their
own state transferring schemes. This flexibility is enabled, in particular, by letting
the application choose the appropriate safety level for the state transfer protocol
and letting it have explicit control over safety types of individual messages.

16

While providing support for potentially sophisticated state transfer schemes,
the default mechanism implemented in Maestro offers a simple interface and is ad-
equate for many applications. We will discuss the implementation of state transfer
in Maestro and available interfaces in Section 2.4.

2.3.2 Sending Messages

In addition to send () and cast () downcalls of Maestro _GroupMember, the
Maestro_C1Sv class provides methods for server-casting (sending messages to server
members only) and subcasting (sending messages to subsets of group members),
called scast() and 1send () correspondingly.

The options to message downcalls (cast(), send(), scast(), and 1lsend())
specify the state-transfer safety level of messages, which can be of three types:
generic, safe, and state-transfer. The safety types have the following semantics:
generic messages are delayed during protected and atomic state transfers; safe
messages are delayed during atomic state transfers; finally, state-transfer messages
are not delayed in state transfers of all types.

Another option, used with the 1send () downcall, specifies the destination list
for the message to be sent. Using 1send (), a message can be sent to an arbitrary
subset of objects in the group, either servers or clients. Similarly, by using desti-
nation list option with a servercast, the message can be sent to all servers and the
specified clients.

When messages are delivered at the destinations, Maestro notifies the applica-
tion via corresponding callback methods, namely ReceiveCast (), ReceiveSend (),
ReceiveScast(), and ReceiveLsend() respectively matching cast(), send(),
scast (), and 1send () downcalls. The message callbacks are defined in
Maestro_C1Sv as no-op functions which can be overloaded in subclasses of the
Maestro_C1Sv class so as to implement the required application functionality.

2.3.3 Membership Monitoring

As with the Maestro GroupMember class, Maestro reports membership changes
to group client/server objects with the AcceptedView() callback. However, in
addition to the information provided to Maestro_GroupMember objects,
AcceptedView()’s parameters also specify the lists of new and departed client
and server members in the group view and the members doing state transfer, the
member’s state, and other group status information.

2.4 State Transfer

When a new server object joins the group or, more generally, when several group
components merge together, Maestro initiates the state transfer protocol to bring

17

the state of server members in the less advanced component up-to-date. The group
communication system underneath (Horus or Ensemble) determines the direction of
state transfer (which members need to receive the state and which members will be
transferring the state) and provides that information to Maestro. We will discuss
an implementation (in Horus) of group protocols for state-machine replication,
including policies for merging group components and determining direction of state
transfer, in Chapter 4. Maestro, in turn, is responsible for the mechanism of state
transfer (the state transfer protocol itself), which can be implemented in several
ways. In Isis [Bir96], for example, one of the old group members (usually the
coordinator) sends the state to new members. This is called the push approach.
In case the coordinator fails during state transfer, the new coordinator has to
restart the protocol from scratch, since it doesn’t know what portion of the state
has already been transferred to the new member. This scheme can be optimized
with a protocol where the new server is responsible for requesting the state from
more up-to-date members and notifying the coordinator when state transfer has
completed (the pull approach [Bir96]).

With either push or pull mechanisms used in a state transfer protocol, there is
a number of options for structuring the protocol itself, including the behavior of
the application during state transfer and the contents of the state. As discussed
in [Bir96], the contents and structure of the state is usually application-specific,
and the size of the state can vary from rather small to very large. The availability
requirements on the application can be high or moderate. The rate of updates
to the state can be very low, or they can happen quite frequently. Finally, the
state may or may not be reconstructible in real-time. It is obvious that it is not
possible to devise a single protocol that would optimally or at least adequately
solve the state transfer problem for all combinations of system parameters listed
above. This consideration has motivated the state-transfer approach of Maestro,
which does not impose any rigid mechanisms based on ungrounded assumptions
concerning the properties and requirements of the application, but instead provides
a general protocol framework within which various state transfer schemes can be
implemented.

2.4.1 Protocol Framework

The framework for state transfer protocols is implemented in Maestro with the
Maestro_C1Sv class. Maestro_C1lSv defines so called state transfer views, which
are transient views in which some of the group members are in the process of
doing state transfer. Maestro determines when state transfer needs to be started
and keeps track of its completion by all participating members. The applica-
tion is informed of the state transfer status with AcceptedView () callbacks. The
Maestro_C1Sv class does not specify how the state should be transferred, however
it provides a programming model, with several safety levels of state transfer and

18

" initially,
- merge-in

R —
. asa]
. client ¢

Coordinator

state | | A s installsa
_ transfer : . State Transfer

view

7 Notify v installs a
~ coordinator - o normal
when done P Al T

with state [— R

Figure 2.6: State Transfer Protocol in Maestro

ability to control safety on a per-message basis, as discussed above. The only pro-
tocol requirement on the application is to notify Maestro when individual group
server objects complete updating their state and are ready to be included in the
list of normal members. The state-transfer completion notification is done with
the xferDone () downcall.

The normal sequence of stages for a server object merging into a group is there-
fore the following. Initially the server joins with the client status, which simply
means it does not have an up-to-date copy of the group state. Then the new mem-
ber automatically notifies the group coordinator that it wants to become a server,
at which point a state transfer view is installed. In that view, the new member is
included in the list of state-transferring servers (see Figure 2.6). State-transferring
servers receive the same messages as normal server members. In particular, they re-
ceive all servercasts sent in the group. However, depending on the specific protocol,
state-transferring servers may or may not be responsible for processing application
requests. Finally, when a new server completes its state transfer, it notifies the
coordinator by calling the xferDone () function, at which point a new view is in-
stalled. In that view, the new member is listed among normal server members in
the group, thus completing the merge-in protocol.

19

Observe that Figure 2.6 does not show how the state is transferred to the
merging-in server. As we mentioned before, Maestro C1Sv does not impose a
mechanism for transferring state, neither the pull nor the push approach. The
actual implementation of state transferring mechanisms is left up to higher levels
in the Maestro class hierarchy.

In the example below we show how a simple state transfer policy can be imple-
mented over the Maestro C1Sv class. A joining member requests the state from
the oldest up-to-date server object in the group. If the selected server crashes, the
state request is automatically resubmitted to another up-to-date server:

class MyServer: Maestro ClSv {
public:
MyServer (Maestro C1Sv_Options &ops): Maestro_ClSv(ops) {
xferStatus = OFF;

}

// Set the replicated state to a new value:
void setState(Maestro String &s) {
Maestro Message msg;
msg << s;
// Multicast the update to all servers.
scast (msg) ;

}

protected:
// Received a set-state message: update the local state.
void clSv_ReceiveScast_Callback(
Maestro EndpID &origin,
Maestro Message &msg)

{
¥

msg >> state;

// A new view has been installed.

void clSv_AcceptedView_Callback(
Maestro_ClSv_ViewData &viewData,
Maestro Message &viewMsg)

// (Re)start state zfer if necessary:
// Request state from the oldest up-to-date server.
if (viewData.startXfer) {
xferStatus = ON;
xferServer = viewData.servers[0];
Maestro Message reqMsg;
askState(xferServer, reqMsg);

20

cout << ‘‘Requesting state from ’’ << xferServer << endl;

}

// Terminate state transfer if necessary.
if ((xferStatus == ON) &&
(viewData.state != MAESTRO_CLSV_STATE_SERVER_XFER))

cout << ‘‘State transfer terminated’’ << endl;
xferStatus = OFF;

}

// If this member is waiting for state from a server that has

// just crashed, resubmit the state request to another server.

if ((xferStatus == ON) &&
(viewData.state == MAESTRO_CLSV_STATE_SERVER XFER) &&
(!'viewData.servers.contains(xferServer)))

xferServer = viewData.servers[0];

Maestro Message reqMsg;

askState(xferServer, reqMsg);

cout << ‘‘Resubmitting state request to ’’
<< xferServer << endl;

}

// Received a state request. Reply with the current state.
void askState_Callback(

Maestro EndpID &origin,

Maestro Message &reqMsg)

Maestro Message stateMsg;

stateMsg << state;

sendState(origin, stateMsg);

cout << ‘‘Received state request from ’’ << origin << endl;

}

// Received a state message: Update the local state;
// Notify Maestro that state transfer has been completed.
void rcvState_Callback(

Maestro EndpID &origin,

Maestro Message &stateMsg)

// Use the state message only if it is expected.
if (xferStatus == ON) {
cout << ‘‘Received state message from ’’ << origin << endl;

21

assert(origin == xferServer) ;

stateMsg >> state;

cout << ‘‘My state is: ’’ << state << endl;
xferStatus = OFF;

xferDone();

}

Maestro_String state;
Maestro_Endpoint xferServer;
enum {OFF, ON} xferStatus;

In the next section we will discuss how a simple pull-style state transfer mecha-
nism with a higher-level interface is implemented in Maestro with the Maestro_CSX
class (a subclass of Maestro_C1Sv).

The state transfer protocol of the Maestro_C1Sv class is fault-tolerant, so that,
in particular, if old servers fail or the group partitions before completion of state
transfer, the state transfer will be restarted as necessary in the new view. It may
also happen that a state transfer will have to be canceled and restarted if a group
component undergoing state transfer merges together with another component.
In general, when two group components merge, server members in one of them
(the one with less updated state) will temporarily lose their server status and
be included in the view as client. In this case Maestro will automatically start
state transfer from more advanced servers so as to bring all server members up
to date. When state transfer completes (as indicated by xferDone() downcalls
invoked by all state-recipient members), Maestro will reinstall the view with all
server members now assigned the normal status.

The Maestro_C1lSv class defines a generic interface for doing state transfer via
normal group transport channels. The exported methods include public downcalls
askState() and sendState() for requesting and sending (portions of) the state
respectively, with matching protected callbacks askState () and rcvState (). The
askState () downcall specifies the group member from which the state is requested.
Another argument is a request message identifying the portion of the state to be
sent. After a state-receiving server object invokes the askState() downcall, the
server from which the state is being requested eventually receives the request mes-
sage via the askState () callback invoked by Maestro. The server is expected to
eventually reply to the state-requesting member with a sendState() downcall.
The sendState() method specifies the state message and the group member to
which it is to be sent. After an invocation of the sendState () downcall, the desti-
nation member will eventually receive the state message through the rcvState ()
callback invoked by Maestro. At that point it can extract the state from the
specified message and merge it with its local state.

22

Two group
components
merge : _ Stai
. together ate
I L view
sendState
P l:;;.‘!"'l 4_/ After state
Components getState | 1 merge is
merge « | . done, a
.............. their state normal
sendState view is
xferDone—— [——— p——» . installed

Figure 2.7: A State Merge protocol: When two group components merge together,
they exchange their states using getState()/sendState() downcalls of Maestro

While an application can use the provided downcalls (askState() and
sendState()) to perform state transfer via the standard group transport, it is also
feasible (and recommended in [Bir96] for a certain type of applications) to use an
out-of-band channel so as not to interfere with the normal ongoing communication
in the group.

It is important to note that Maestro_ C1lSv does not impose any rules on the
contents of request messages and state messages and does not stipulate how state-
receiving group members should choose up-to-date servers from which to receive
the state. The state transfer framework provided by Maestro_C1Sv can be used to
implement different state transferring policies and schemes and, in particular, can
be used to perform not only state transfer from a more update group component
to a less updated one but, more generally, state merge, for applications which allow
progress in multiple concurrent group components and need to somehow reconcile
their state during merges (Figure 2.7). However, the required semantics of state
transfers and merges and optimal protocol tradeoffs depend heavily on the nature
and properties of the application and therefore are not implemented at the generic
level of the Maestro _C1Sv class.

23

New member
merges in
as a client

State transfer
view is
installed

The group
partitions
before state
transfer
completes

The group
remerges;
state transfer

is restarted | /
After state /

transfer

I xferDone
completes,]

the view is —)
. reinstalled w

Figure 2.8: State transfer protocol: Under certain failure scenarios, state transfer
may be canceled and restarted later

getState

2.4.2 A Pull-Style Protocol

In this section we discuss a simple push-style state transfer protocol implemented in
Maestro with the Maestro_CSX class. The protocol is appropriate for applications
with a sufficiently small state which can be transferred with one or several messages,
and where it is acceptable for the application not to perform any state updates until
completion of state transfer. For applications with a large or frequently-changing
state, or those with extremely high availability requirements, more sophisticated
state transferring schemes would need to be advised. However, it appears that an
important class of system management, membership service, and replicated control
applications do fall under the small-state category and their state does not change
too frequently. In particular, a fraction-of-a-second unavailability period due to
state transfer may be quite acceptable in those systems.

According to the state transfer protocol implemented in the Maestro C1Sv class,
initially a new server member joins the group with the client status. Then the
becomeServer request is automatically sent to the coordinator and a
state transfer view is installed, in which the new member is listed as a

~ merge-in Coordinator
. asaclient - installs a
State
becomeServer Transfer
Request
state ;
members__f_,.
Notify “Coordinator”
coordinator installs a
when done normal
. with state \
Lo VieWw
. transfer .

Figure 2.9: A Pull-Style implementation of State Transfer Protocol

state-transferring server. At that point the Maestro C1Sv class notifies the
application (with a corresponding flag set in the AcceptedView() callback) that
state transfer needs to be restarted. It may happen, however, that state transfer
will need to be canceled before it completes, in which case it may be restarted
again later. For example, the joining server member may partition away from
up-to-date servers before it obtains the state from them and then merge back
(see Figure 2.8). It may also happen that old servers will all crash before state
transfer completes. The application written directly over the Maestro C1Sv class
would need to correctly handle all those scenarios and reset its state/restart state
transfer when necessary. The protocol involved adds substantial complexity and
is certainly not at the “application” level of abstraction. The Maestro CSX class,
defined as a subclass of Maestro_C1Sv, takes care of all special cases, including
cancellation /restart of state transfer, and presents a convenient high-level interface
to the application.

The pull-style state transfer scheme implemented in the Maestro CSX class is
illustrated in Figure 2.9. With the implementation of Maestro CSX, each instance
of state transfer is treated as a transaction and is assigned a unique state transfer
ID. All state transfer messages are sent in the context of a particular state transfer

25

transaction. When a state transfer transaction is canceled or restarted, the appli-
cation is notified with a corresponding callback, which in particular specifies the
state transfer ID. This transaction-style approach turns out to be especially con-
venient in the normal situation when state transfer is performed asynchronously
in a separate thread. It may happen, in particular, that an old state transfer
thread will not yet be aware of cancellation of its transaction, while another state
transfer thread may have been already created concurrently and performing the
new state transfer transaction. However, since each state transfer is identified by a
unique ID, the application can always distinguish between different state transfer
transactions, even if they overlap in time due to asynchronous threading.

The state transfer interface exported by the Maestro_CSX class is as follows. The
application is notified of a new state transfer transaction with the stateTransfer ()
callback. The stateTransfer () method is invoked in a separate thread, so that
it can perform blocking or long-duration operations without blocking other Mae-
stro callbacks. The xferID argument of the stateTransfer () function identifies
the state transfer transaction being started 3. The joining member can request
the state from the oldest up-to-date server with the getState() downcall. The
server will receive the state request with the askState() callback and can send
the requested portion of the state to the joining member with the sendState ()
downcall. When the member receives the state message, the getState () function
returns with the normal status, with the stateMsg parameter containing the re-
ceived message. The joining member can invoke getState () multiple times if the
group state is too large to fit in a single message and needs to be transferred in
several portions. Each time, the state portion being requested can be specified with
the requestMsg parameter 4. When state transfer completes, the joining member
notifies Maestro with the xferDone () downcall. At that point a new view is in-
stalled, in which the joining member is listed among normal (up-to-date) group
servers. It is essential, however, that getState(), askState(), sendState(), and
xferDone () methods all explicitly specify the ID of the state transfer transaction
being performed, so that all state messages are sent in the specific context of that
transaction. In case state transfer is aborted, the application is notified by the
getState () function returning with the state-transfer-terminated status.

An example of the Grid application with replicated state doing state transfer
is shown below. The group state is represented by a 10x10 integer matrix (the
grid). Two operations, set(x,y,val) (set the value of cell (x,y) to val) and

3In the current implementation, xferID is an opaque type used to match state requests with
state reply messages and identify completed or canceled state transfer transactions. Assuming
that at most one state transfer transaction can be started in any group view, xferID’s can be
implemented as matching view ID’s.

4In order to prevent corruption of the state in scenarios when state transfer is terminated
prematurely, state requests are linearly ordered, and the application is not allowed to request a
new portion of the state until it receives a reply to the preceding state request. In other words,
the getState () downcall is not reentrant.

26

get(x,y) (get the value of cell (x,y)) are supported. The grid application is
implemented with the Grid class defined as a subclass of Maestro CSX. The get ()
operation simply returns the value of the cell (x,y) in the local replica of the grid.
To perform the update operation (set()), a totally ordered multicast message is
sent to the group. When a grid replica receives the message, it performs the local
update.

In the overloaded stateTransfer Callback() method, a joining server re-
quests the up-to-date grid from an old server with the getState () downcall. The
server from which the state is asked writes the local copy of the grid into a state
message and sends it to the joining member, as implemented in the overloaded
askState_Callback(). If the state is transferred successfully, the joining member
extracts the grid from the state message and applies it to the local state:

// Maestro State Transfer Example: The Grid Application.
#include ‘‘Maestro.h’’
// Define a subclass of Maestro_CSX.
class Grid: public Maestro.CSX {
public:
Grid(Maestro CSX Options &ops): Maestro CSX(ops) {
initialized = O;
// Initialize the grid.
grid = new int[100];
memset (grid, 0, sizeof (int)*100);
// Join the specified grid application group.
join(Q);
}
~Grid() { delete [1 grid; }
protected:
// Overload exported protected callbacks of Maestro_CSX:
// Received a multicast message.
void csx_ReceiveCast_Callback(Maestro EndpID &origin,
Maestro Message &msg) {
int x, y, val;
// Unmarshal the (z,y,val) parameters and update the grid.
msg >> x >> y >> val;
cout << ‘‘Setting grid[’’ << x << 9,7 <Ky << ‘] to 7
cout << val << endl;
mutex.lock();
grid[x*10+y] = val;
mutex.unlock();
}
// Installed a new view.
void csx_AcceptedView _Callback(Maestro CSX_ViewData &viewData,
Maestro Message &msg) {
cout << ‘‘Current members in the grid group:’’ << endl;

27

cout << viewData.members;
// If this is the first view, start the input processing thread.
if (!initialized) {
initialized = 1;
Maestro_Thread: :create(processInput, (void*) this);
}
}
// Starting state transfer.
void stateTransfer_Callback(Maestro XferID &xferID) {
Maestro Message requestMsg, stateMsg;
Maestro XferStatus xferStatus;
// Request the state from an up-to-date server replica.
getState(xferID, requestMsg, stateMsg, xferStatus);

if (xferStatus == MAESTRO_XFER_TERMINATED) {
cout << ‘‘State Transfer terminated’’ << endl;
}

else {
mutex.lock();
// Eztract the grid from stateMsg.
stateMsg.read(grid, sizeof (int)*100);
mutex.unlock();
xferDone (xferID);
}
}
// Received a state request. Send the grid back.
void askState_Callback(Maestro EndpID &origin,
Maestro XferID &xferID,
Maestro Message &requestMsg) {
Maestro Message stateMsg;
mutex.lock();
stateMsg.write(grid, sizeof (int)*100);
mutex.unlock();
sendState(origin, xferID, stateMsg);
}
private:
// Input processing thread: read commands from standard input and
// multicast updates to the group via the specified Grid object.
static void processInput(void *arg) {
Grid *gr = (Gridx) arg;
char buf[128];
int x, y, val;
// In the loop: Read next command from stdin;
// perform “get” requests based on local state;
// multicast “set” requests to the grid group.
while (1) {

28

cin >> buf;
if (strcmp(buf, ‘‘get’’) == 0) {
// “get” request: print out the current value at gridfz,y].
cin >> x >> y;
gr->mutex.lock();
cout << ‘‘The value of grid[’’;
cout << x << ‘4.0 <y << 4] ig 7
cout << gr->grid[x*10+y] << endl;
gr->mutex.unlock();
}
else if (strcmp(buf, ‘‘set’’) == 0) {
// “set” request: marshal (z,y,val) parameters into a message
// and multicast it to the group.
cin >> x >> y >> val;
Maestro Message msg;
msg << val << y << x;
gr->cast (msg) ;
}
else {
cout << buf << ‘‘: unknown request type’’ << endl;
}

}
int initialized;
Maestro_Lock mutex;
b
void main(int argc, char *argv[]) {
// Setup configuration options:
Maestro_CSX_Options ops;
ops.groupName = ‘‘Grid’’;
ops.transports = ‘‘UDP’’;
// Join the grid group as a server; request atomic state transfer.
ops.mbrshipType = MAESTRO_SERVER;
ops.xferType = MAESTRO_ATOMIC XFER;
ops.argv = argv;
// Specify required group properties:
// Membership, failure detection, total ordering etc.
ops.properties = ‘‘Gmp:Sync:Heal:Switch:Frag:Suspect:Flow:Total’’;

// Create a Grid object.

Grid *grid = new Grid(ops);
// Block the main thread forever.
Maestro_Semaphore sema;
sema.dec();

Chapter 3

Object Interoperability Tools

3.1 Introduction

The distributed systems community has shown considerable interest in integrating
interoperable object-oriented technologies, such as CORBA [OMG97] and DCOM [Mic9§],
with technologies for building secure, reliable distributed systems [Bir96, MMSNO97,
NMMS97b,NMMS97a, VBI7, MFSW95, Hay97, Mafo5a, Mafosb]. Maestro interop-
erability tools provide such integration mechanisms, which can be used to glue to-
gether object-oriented distributed applications with reliable group communication
systems (such as Horus or Ensemble [vyRBM96,Hay97]) while maintaining appli-
cation component interoperability through the use of a standard communication
protocol (IIOP [OMGO7]).

The Maestro tools can be used directly to implement reliable interoperable
objects in distributed applications, or they can be integrated within higher-level
distributed object technologies such as CORBA Object Request Brokers. The
ORB implements an infrastructure gluing together a client application accessing
an object with the object implementation. The object can reside within the client’s
process, or on the client’s machine, or within the domain of the client’s LAN, or
anywhere on Internet. Regardless of an object’s location, the ORB is responsible
for locating the object, delivering client requests to it, performing requested opera-
tions, and returning results to clients, all of this seamlessly from the perspective of
application. The high-level CORBA ORB architecture is shown in Figure 3.1. The
client application doesn’t access the object directly but instead invokes methods
on the client stub, which marshals request parameters into a message and passes
it to the ORB core. The ORB delivers the request message to the object imple-
mentation’s process, where it is dispatched through the object adaptor. Before the
requested operation is performed upon the object, the object skeleton unmarshals
parameters from the request message and converts the request into a method invo-
cation. Upon completion of the operation, the Skeleton marshals return parameters
into a reply message and passes it to the ORB, which sends the message back to

29

30

Object
Implementation
j kel
Client Object Skeleton
Application ¢ T
Object Adapter
Client Stub

|t il
s core W ORB Core

Figure 3.1: CORBA ORB Architecture

the client process. When the ORB at the client side receives the reply message, it
hands it to the client stub, which unmarshals return parameters from the message
and passes them to the client application.

An Object Request Broker includes both a transport layer and a request man-
ager which dispatches incoming requests to corresponding object adapters. The
functionality of a typical request manager in a CORBA implementation is quite
simple (look up the target object and, if found, pass the request to its object
adapter). Therefore in the standard CORBA architecture request managers are
not treated as a separate abstraction layer, and the notion of a request manager is
not a part of the common CORBA terminology.

In our work, the request manager takes on an enlarged role. Maestro can
support multiple request managers with more sophisticated message-dispatching
mechanisms and policies, which can be used to provide reliability /high availability
of ITOP-based services (see Figure 3.2). The mechanisms implemented by those re-
quest managers are orthogonal to the functionality provided by the transport layer
(which in Maestro is essentially an IIOP bridge). We will use terms request man-
ager and ORB interchangeably throughout this chapter when focusing on request
processing policies of ORBs rather than transport-layer issues.

31

Object 2 Object 3 Object 4

Request Request
Manager Manager
(ORB) 1 (ORB) 2
Client X\A / /‘
Application
l T Request Dispatcher

Client Stub l
oo I

/l/v IIOP Bridge
ORB Core

lIoP

Figure 3.2: Maestro Interoperability Architecture: Multiple Request Managers
(ORBs) can be supported over a shared IIOP bridge

Maestro includes a repository of ORBs supporting several execution styles and
request-processing policies. The ORBs are discussed in detail below and in follow-
ing sections. The toolkit respects an open architecture, whereby multiple ORBs
can be plugged into the shared IIOP bridge/dispatcher as long as they implement
a common interface specified by Maestro. Flexibility is one of the primary goals
of this architecture, so that a distributed system developer using Maestro can
select the request manager most closely matched to the requirements and commu-
nication pattern of the application. For example, the Replicated Updates ORB
implemented in Maestro uses Horus or Ensemble to provide high availability of
services by actively replicating server objects. Those systems, in turn can be cus-
tomized to use a distributed protocol optimized to the communication pattern or
“system” properties (such as failure detection, message ordering guarantees, se-
curity requirements, scalability etc.) desired for the application. Other request
managers might employ different techniques or replication paradigms, such as the
coordinator-cohort execution style [Bir96.

Maestro interoperability tools include an implementation of IIOP Bridge and a
framework for building customized Object Request Brokers [OMG97]. The ORBs

32

included with Maestro are a reliable Replicated Updates ORB (with object imple-
mentations actively replicated over a group communication system underneath),
and a Simple ORB with no reliability mechanisms provided. Both ORBs are dis-
cussed in detail in the following sections and can be used as a reference/example
when building custom ORBs or other tools over Maestro.

Although both client and server sides of the Maestro IIOP Bridge have been
implemented, Maestro is generally targeted at the server side of distributed applica-
tions, with an intention that clients can be built with any CORBA /IIOP-compliant
ORB, such as Iona’s Orbix 2.2 for C++ or OrbixWeb 3.0 for Java !, and seam-
lessly invoke objects implemented in Maestro. From this perspective, Maestro can
be used as the transport/communication layer of a reliable ORB, or it can be used
directly to program interoperable objects. In order to extend Maestro to a com-
plete ORB, it would be necessary to write a CORBA-interface layer over Maestro,
supply an IDL compiler, and provide standard CORBA services and tools. Mae-
stro itself provides an equivalent of CORBA’s Dynamic Skeleton Interface, where
parameter marshaling and request-to-object-method dispatching at the server side
are done manually (in other words, there is no pre-generated skeleton code).

Maestro is IIOP-compliant but not fully CORBA-compliant in the following
sense. CORBA specifications can be broadly divided in two parts, one dealing
with application-level interfaces and the other (the IIOP part) defining data rep-
resentation and message formats. The goal of Maestro has not been to follow the
CORBA standard with respect to required interfaces. Rather, Maestro focuses
on interoperability aspects of CORBA. Maestro itself offers the server developer
a simple, general, light-weight interface which is not CORBA-compliant (and also
not comprehensive). If necessary, a standard CORBA interface can be built on top
of Maestro. One reason not to use standard CORBA interfaces is because they
are unjustifiably bulky and complex yet not adequate, and adversely affect perfor-
mance. With respect to interoperability, on the other hand, Maestro implements
an [TOP Bridge compliant with the Version 1.0 of the IIOP protocol.

3.2 Related Work: Approaches and Tradeofts

Several research projects, including some ongoing ones, have focused on the use
of object-oriented paradigms to hide communication-level specifics of distributed
applications. This makes integration easier when different interchangeable sys-
tem layers must interact within an application. Interoperability is another ma-
jor concern, as distributed applications often run in heterogeneous environments,
with system components written in different languages and developed by differ-
ent vendors. Besides protocol interoperability, standardization of interfaces at the

!The data representation/message format standard in the IIOP protocol is language
independent.

33

Electra, Object Group

Provided properties Orbix+Isis Service Eternal Maestro
CORBA-interoperable + + + +
(via IIOP)
Based on CORBA- + + + -
compliant interfaces
Clients don’t need + + + +
to be modified
Clients don’t need — - - +
to be rebuilt
Solution is + + - +
OS-independent
Supports replicated - + + -
clients

Figure 3.3: CORBA Reliability Solutions

application level turns out to be important in reducing maintenance costs of dis-
tributed systems deployed over a long time span. In particular, large corporate
system developers are sometimes weary of depending upon proprietary interfaces
provided by commercial vendors’ tools and prefer to rely on industry standards.
This explains, to some extent, why CORBA [OMG97| specifications have been
concerned mostly with application-level interfaces, with protocol-level IIOP speci-
fications having been added relatively recently.

Adding reliability to CORBA ORBs has been an active area of research. We
believe the first CORBA-compliant reliable ORB was Electra [Maf95a, Maf95b].
It separated CORBA-specific abstractions (the ORB and the Basic Object Adap-
tor) from the communication substrate, which could be any group-communication
system exporting a common interface. Electra was initially based on Isis and sub-
sequently ported to run over the Horus [vRBM96] and Ensemble [Hay97] systems.
With the Isis-based implementation, Electra creates a group per replicated object.
Client objects join the group as Isis clients, and server objects (object implemen-
tations) join as Isis group members. In order to scale over a large number of
replicated objects, multiple object groups can be multiplexed over a small number
of core Isis groups [GR97,RGST96].

The Electra approach is attractive in providing high reliability /fault tolerance
guarantees to clients, in particular continuous availability of server objects with
fully transparent failover. However, all client processes have to link with Electra
libraries and depend on Electra daemons and services (e.g. the Electra daemon
and Naming Service). Dependency on Electra libraries and processes would not
normally be a problem for cluster-based distributed applications, however it would
make it difficult to deploy Electra over the Internet to transparently increase avail-

34

ability of services accessed by remote CORBA clients. In terms of interfaces, Elec-
tra has added certain proprietary extensions to object-adaptor interfaces in order
to provide functionality specific to group communication, namely methods for state
transfer and membership-change notifications [Bir96], which can be overloaded by
object implementations if necessary.

Two other reliable CORBA ORB implementations based on Isis are
RDO/C++ [Isi94] and Orbix+Isis [LM97,1194]. Similarly to Electra, they map
replicated objects to Isis groups, and provide group-communication-specific exten-
sions to CORBA interfaces. Both client and server sides of an application need
to link with ORB-specific libraries and depend on a number of daemon processes.
Despite being CORBA-compliant, these three ORBs (Electra, RDO/C++ and Or-
bix+Isis) require a number of proprietary extensions and hooks into the system,
in particular those imposing awareness of replication unto object implementations.
Such considerations throw a shadow of doubt on the “inter-ORB portability of
application code” argument behind CORBA standardization of application-level
programming interfaces.

A CORBA reliability solution based on interception of low-level system calls has
been implemented in the Eternal system [MMSN97, NMMS97b,NMMS97a]. At run
time, Eternal intercepts all read()/write() system calls made by the UNIX process,
including the calls made by the ORB to send and receive IIOP messages. The I[IOP
messages are recognized by their standard four-byte “magic” prefixes and are chan-
neled through the Totem group communication system [MMSA 196, MMSA95] to
transparently replicate the ORB. All other messages are let through untouched.
The Eternal approach is attractive because it can be used to add reliability to any
ITOP-compliant CORBA ORB, without any application-code portability problems
and related costs. Note that although replication is transparent to the ORB itself,
object implementations still need to be modified to implement state transfer func-
tionality. Also, like Electra, Eternal requires that both server and client sides of
the application link with the Eternal/Totem library.

The Object Group Service (OGS) approach [FGS98] extends CORBA with a
collection of reliability services which implement object multicast, failure detection,
and other object-group functionality. The advantage of OGS is that it is CORBA-
compliant and can be ported to any compatible ORB without modifications. OGS
requires that both clients and servers be either compiled with the OGS library or
use the OGS daemon process. However, the code of client applications does not
need to be modified unless the clients want to use some advanced features, in which
case they may need to make direct calls to OGS.

Eternal and OGS support replication of CORBA clients, so that replicated ob-
jects can act both as clients and as servers (at different times). This symmetric
approach is more general than that adopted in Electra, Orbix+Isis, and Maestro,
which assign fixed roles to objects as either clients or servers, and do not automat-
ically handle situations such as when a replicated object needs to update a repli-

35

cated name server. Naive implementations with cascading replicated invocations
of objects could result in substantial performance degradation and inconsistent
state. However, Maestro could handle cascading-replicated-invocations scenarios
by using an appropriate ORB “communication style”, for example one based on
the coordinator-cohort paradigm [Bir96]. In general, the Maestro approach per-
mits a great degree of customization: although designed to support transparency,
Maestro aware applications can tap into a rich collection of distributed computing
tools and services to implement load-balancing schemes or other options not nor-
mally available in systems that provide only a transparent form of replication-based
reliability.

There is an obvious tradeoff between degree of standardization of interfaces
and their flexibility, applicability, and expressibility. In particular, CORBA appli-
cation interfaces cannot naturally express nontrivial distributed-system semantics
beyond the simple RPC-style client /server paradigm, where a client obtains service
by sending a request message to one server object over a reliable connection and
blocks until the server sends a reply. There are no provisions in CORBA interfaces
as regards reliability and other “system properties”. As we have seen, in order to
provide fault-tolerance based on an active replication execution style, CORBA in-
terfaces need to be augmented with non-standard extensions encapsulating at least
state transfer and membership-change-notification functionality. Other program-
ming styles, such as group communication or publish/subscribe paradigms [Bir96],
can only be expressed in CORBA by resorting to alternative interfaces imple-
mented as CORBA services, which remain proprietary until formally standardized
by OMG.

Transparency is another concern. For instance, a CORBA client unaware of
group communication would have to be modified or at least recompiled in order to
take advantage of a standalone group communication service, which may not be
feasible for Internet-based applications where the set of clients accessing a publicly
advertised service can be changing in time and not known in advance.

Because of the insufficiency of CORBA interfaces, some vendors already offer
server-side products which are compliant with the CORBA standard at the pro-
tocol /message format/data representation level (IIOP/GIOP), but provide propri-
etary extensions or alternatives to CORBA interfaces at the server side [Vit9§].
The BBN QuO project [ZBS97] is exploring another dimension of the interfaces
issue, with a focus on augmenting “functional” CORBA interfaces (based on IDL)
with orthogonal interfaces that describe system-level properties (specifically those
concerning quality-of-service and reliability) using a System Definition Language.

While standardization of inflexible heavy-weight interfaces at the application
level is problematic, CORBA interfaces are in fact understandardized at the “bot-
tom” level, in particular as regards request injection/dispatching
functionality [Wan97]. Consequently, ORB components provided by different ven-
dors (such as ITIOP bridges or object adaptors) are generally not interchangeable.

36

For example, the IIOP bridge of VisiBroker [Vis97] cannot be used with Or-
bix [ION98] so as to receive IIOP requests and inject them into the ORB. Because
of incompatibility of proprietary ORB architectures, it is hard or impossible to re-
place individual components of ORBs, in particular those responsible for injection
of incoming IIOP messages and dispatching of client requests. By contrast, the
interfaces of internal layers in Maestro interoperability tools (such as those of the
[TIOP bridge) are open and fully documented, so that a developer can either build
applications starting from the high-level classes, or “fork oft” a custom-defined
class hierarchy from any layer in Maestro.

The Maestro interoperability tools differ from systems such as Electra, Eternal,
or OGS by not requiring any modifications or proprietary library/daemon depen-
dencies at the client side. This feature makes the Maestro approach suitable for
Internet /Web-based distributed CORBA applications, such as online trading sys-
tems. Applications of this type are usually based on HTTP (using HTML forms)
or, more recently, on Java applets running at the client side and communicating
with servers via proprietary protocols. In both cases the clients are restricted to
using fixed Web-browser-based visual interfaces implemented by service providers.

Switching from HTTP or proprietary protocols to IIOP would substantially
increase flexibility in using internet services from clients’ perspective and, in par-
ticular, would unbundle the functionality of those services from their client-side
interfaces. However, the internet /web-based applications live in an “open world”,
where sets of clients accessing services are dynamic, geographically dispersed, and
not known in advance. This makes it infeasible to require any code modifications
or library/daemon dependencies at the client side in order to take advantage of
increased quality of service (such as higher availability).

On the other hand, whereas heterogeneity of system environment and server im-
plementations are common in this setting, making the use of interoperable commu-
nication protocols crucial, it is not obvious that compliance to CORBA interfaces
will be of utmost concern to service providers. The vast amount of non-CORBA
legacy systems which may need to be connected to the Internet, the added com-
plexity and performance cost of standard CORBA interfaces, and the lack of porta-
bility of application code even between CORBA-compliant ORBs, are just several
reasons which may potentially render IIOP-interoperability much more important
than complete CORBA compatibility. These considerations have motivated the
Maestro’s focus on interoperability and complete client transparency rather than
conformity with CORBA interfaces and server transparency.

The properties provided by available CORBA-reliability solutions are summa-
rized in Figure 3.3.

37

3.3 Maestro IIOP Bridge and ORB
Framework

Maestro implements an IIOP bridge with a framework for constructing custom
ORBs over it. Although both server and client functionality of the IIOP bridge
have been implemented, Maestro is mostly targeted towards the server side.

3.3.1 IIOP Bridge: Server Side

The server functionality of an IIOP bridge is implemented in Maestro with the
Maestro_II0P Server class. An instance of an IIOP bridge is identified by the
hostname of the machine it is running on, and the port on which it listens to
incoming [TOP messages. The port to be used can be specified in the constructor.
For example,

Maestro_II0OP_Server server(9876);

creates an IIOP server object bound to port 9876. The port argument is
optional: If omitted, the ITOP server will use the value specified in the
MAESTRO_IIOP_PORT environment variable.

The Maestro II0P Server class exports two public downcall methods corre-
sponding to two types of messages that can be sent by IIOP servers (requestReply
and locateReply), and four protected callback methods corresponding to the
four types of IIOP messages that can be received (request, locateRequest,
cancelRequest, and messageError)

class Maestro_IIOP Server {
public:

Maestro_Status requestReply(
Maestro_CORBA_ULong request_id,
Maestro_GIOP ReplyStatusType reply_status,
Maestro_CORBA_Message &reply_body,
Maestro_IIOP_ConnId cid);

Maestro_Status locateReply(
Maestro_CORBA_ULong request_id,
Maestro_GIOP_ LocateStatusType locate_status,
Maestro_II0OP_ConnId cid);

protected:

void request_Callback(
Maestro_CORBA_ULong request_id,
Maestro_CORBA_Boolean response_expected,
Maestro_CORBA_OctetSequence &object _key,

38

cancelRequest

locateReques requestReply

locateReply

lIOP

Figure 3.4: Maestro IIOP Bridge: The Server-Side Interface

Maestro_CORBA_String &operation,
Maestro_GIOP Principal &requesting principal,
Maestro_CORBA_Message &msg,
Maestro_IIOP_Connld cid) {}

void locateRequest_Callback(
Maestro_CORBA_ULong request_id,
Maestro_CORBA_OctetSequence &object key,
Maestro_IIOP Connld cid) {}

void cancelRequest_Callback(
Maestro_CORBA_ULong request_id,
Maestro_IIOP Connld cid) {}
void messageError_Callback(Maestro IIOP Connld cid) {}

The default implementation of ITOP callbacks is no-op. An application will
typically define a subclass of Maestro II0P _Server which will overload the (vir-

39

tual) protected callback methods so as to implement required functionality (see
Figure 3.4).

An TTOP connection can be closed (for example, in response to a messageError
callback) with a call to closeConnection(cid), which is another public method
of Maestro II0P Server.

There are several options for dispatching incoming IIOP messages via
Maestro_II0P _Server’s callbacks. A new thread can be allocated for each callback,
or the callback functions can be invoked directly by the IIOP bridge’s dispatcher
thread. Maestro can support both options. However, by default, IIOP callbacks
are invoked directly and therefore must not block. In particular, if blocking during
processing of requests is possible, the callback functions (overloaded by the appli-
cation) must pass incoming requests to dedicated processing threads, and return
without blocking.

3.3.2 IIOP Bridge: Client Side

The client side of an IIOP bridge is implemented with the Maestro II0OP Client
class. Similarly to Maestro II0P Server, this class exports public downcall meth-
ods corresponding to three types of messages sent by IIOP clients (request,
locateRequest, and cancelRequest) and protected callback methods match-
ing the four types of IIOP messages that can be received (reply, locateReply,
closeConnection, and messageError).

3.3.3 Object Keys

The ITOP protocol uses object keys to identify objects targeted by different types
of messages. Maestro implements object keys with the Maestro ORB_ObjectKey
class. Maestro ORB_ObjectKey supports key initialization from predefined strings
and octet sequences, for example:

// Create an object key containing the string “my_key”.
Maestro_CORBA_String str(‘‘my key’’);
Maestro_ORB_ObjectKey key(str);

Maestro_ORB_ObjectKey can also be used to generate new globally unique ob-
ject keys. In particular, the keys assigned to objects accessed through Maestro-
based ORBs should be generated with Maestro_ ORB_ObjectKey, for example:

Maestro_ORB_ObjectKey key;// Create an uninitialized object key.
key.init (¢ ‘Grid’’);// Initialize as a new globally unique object key.

The keys generated with Maestro ORB_ObjectKey::init() are assigned ran-
dom 32-bit hash values. The hash value of an object key can be retrieved with the
hash () method:

40

Maestro_CORBA Long hash value = key.hash();

Finally, Maestro provides a utility called newkey which can be used to generate
new globally unique object keys in the string format, for example (to create a new
object key for the Grid application):

taurus% newkey Grid
MAE:074b8d6ea791947c34da7cbd0007dbaeef : Grid

3.3.4 Building ORBs over the Maestro IIOP Bridge

In this section we discuss base interfaces which can be used to build custom ORBs
over the Maestro ITOP Bridge. We then describe in more detail the implementation
of a simple Maestro ORB. Throughout this section we will be concerned exclusively
with the server side; the client side can be implemented with any available CORBA-
compliant ORB, such as Orbix.

Base Interfaces

Maestro implements the server-side IIOP functionality with the
Maestro_II0P Server class, as discussed in Section 3.3.1. Maestro II0P Server
defines methods corresponding to both outgoing and incoming ITOP messages. The
former are defined as public downcalls, and the latter are protected callback meth-
ods with no-op bodies. We want to stress that the essential IIOP-bridge functional-
ity is implemented with the downcalls, and the callback methods are provided only
as hooks for the application. Although an ORB can be implemented by overloading
the callbacks directly, it is more convenient (and allows for greater flexibility) to
separate IIOP downcalls and callbacks into two different interfaces. This is done in
Maestro with the Maestro ORB_IIOPDispatcher and Maestro ORB Base classes.
Maestro ORB_II0OPDispatcher is a subclass of Maestro II0P Server. It de-
fines public downcall methods corresponding to outgoing IIOP messages, namely
requestReply and locateReply:

Maestro_Status requestReply(
Maestro_ORB_RequestId &reqld,
Maestro_GIOP ReplyStatusType reply_status,
Maestro_CORBA Message &reply_body) ;

Maestro_Status locateReply(
Maestro_ORB_RequestId &reqld,
Maestro_GIOP LocateStatusType locate_status) ;

The Maestro ORB_Base class defines public callback methods corresponding to
incoming messages of types request, locateRequest, and cancelRequest 2,

2See section 3.3.1 for more details

41

void request_Callback(
Maestro_ ORB_RequestId &reqld,
Maestro_ORB_ObjectKey &objKey,
Maestro_CORBA_Boolean response_expected,
Maestro_CORBA_String &operation,
Maestro_GIOP Principal &requesting principal,
Maestro_CORBA Message &msg) {}

void locateRequest_Callback(
Maestro_ORB_RequestId &reqld,
Maestro_ORB_ObjectKey &objKey) {}

void cancelRequest_Callback(Maestro ORB RequestId &reqId) {}

Besides the IIOP downcalls, the Maestro ORB_II0OPDispatcher class provides
two other public methods, bind() and unbind(). These can be used to at-
tach/detach (object key, ORB) pairs to/from an IIOP Dispatcher:

Maestro_Status bind(Maestro_ORB_ObjectKey &objKey, Maestro_ORB_Base *orb);
Maestro_Status unbind(Maestro_ORB_ObjectKey &objKey) ;

An (object key, ORB) mapping specifies the ORB assigned to handle requests
targeted for the object with the given key. When an IIOP message is received,
the Dispatcher looks up the ORB based on the object key included in the message
header and, if a mapping exists, invokes the corresponding callback method on the
ORB. It is up to the ORB to process the request and, if necessary, send a reply
to the client (via IIOP Dispatcher’s public downcall methods). If an (object key,
ORB) mapping for the key specified in an incoming IIOP message is not found,
the Dispatcher will send a reply message with an exception status to the client.

In order to build a custom Object Request Broker over the Maestro IIOP
Bridge, all that is needed is to define a subclass of Maestro ORB Base and overload
the three IIOP callback methods (request_Callback, locateRequest_Callback,
and cancelRequest_Callback) so as to implement the required request-processing
functionality. We show an example in the next section.

Example: A Simple ORB

In this section we look at the implementation of a simple Object Request Broker
called Simple ORB.

Objects accessed through the Simple ORB must be implemented as subclasses
of the
Maestro_SimpleORBObjectAdaptor abstract base class.
Maestro_SimpleORBObjectAdaptor declares the following generic update () oper-
ation, which must be overloaded by all object implementations:

42

Maestro_GIOP ReplyStatusType update(
Maestro_CORBA_String &operation,
Maestro_CORBA Message &request,
Maestro_CORBA Message &reply);

The operation argument in the update () function is the name of the requested
operation, as specified in the ITOP request message. The request parameter is
the body of the IIOP request message, containing the marshaled-in in and inout
parameters of the operation. When a call to the update () function returns, the
reply parameter should contain the body of the ITOP reply message, containing
the marshaled-in return value and inout/out parameters of the operation.

The encoding of parameters in IIOP request /reply messages is specified in the
CORBA standard 3. Namely, the request body includes all in and inout parame-
ters in the order in which they are specified in the operation’s IDL definition, from
left to right. If the value of reply status is
MAESTRO_GIOP_REPLY STATUS NO_EXCEPTION, the reply body includes the opera-
tion’s return value (if any) followed by all inout and out parameters in the order
in which they appear in the operation’s IDL definition, from left to right. If the
value of reply status is
MAESTRO_GIOP REPLY STATUS USER_EXCEPTION or
MAESTRO_GIOP_REPLY STATUS SYSTEM EXCEPTION, then the reply body contains the
marshaled exception structure. Refer to the CORBA specification for more details.

The Maestro GIOP ReplyStatusType type specifies the range of valid return
values:

typedef enum {
MAESTRO_GIOP_REPLY_STATUS_NO_EXCEPTION,
MAESTRO_GIOP_REPLY_STATUS_USER_EXCEPTION,
MAESTRO_GIOP_REPLY_STATUS_SYSTEM_EXCEPTION,
MAESTRO_GIOP_REPLY_STATUS_LOCATION_FORWARD
} Maestro_GIOP ReplyStatusType;

An object may implement an IDL interface with multiple functions, in which
case it will be necessary to marshal /unmarshal parameters and do the processing
individually for all supported operations 2.

The Simple ORB itself is implemented with the Maestro ES_SimpleORB class.
Maestro ES_SimpleORB defines public methods bind() and unbind() which can
be used by objects/object adaptors to attach/detach themselves to/from the ORB.
After all objects have been initialized and attached to the ORB, the ORB can be
activated with the activate() method. The deactivate() method can be used

to disable the ORB at any time °.

3CORBA 2.0 Specification, pp. 12-18/19.
4See Section 3.5.1 for an example of an object/object adaptor implementation.
®See Section 3.5.2 for an example of object/ORB initialization code.

43

As a subclass of Maestro ORB Base, Maestro ES_SimpleORB implements two

[TIOP callback functions, request_Callback() and locateRequest_Callback. These
functions are invoked by the IIOP bridge/dispatcher to pass the incoming I[IOP
requests to the ORB. The implementation of request_Callback() and
locateRequest_Callback methods defines the request-processing functionality of
an ORB. For example, the Simple ORB implements request_Callback() as fol-
lows:

// request_Callback: Process an incoming IIOP request message.
// This method is invoked by the IIOP Bridge (Dispatcher).
void Maestro_ES_SimpleORB: :request_Callback(

) A

Maestro_ORB_RequestId &reqld,
Maestro_ORB_ObjectKey &objKey,
Maestro_CORBA_Boolean response_expected,
Maestro_CORBA_String &operation,

Maestro_GIOP Principal &requesting principal,
Maestro_CORBA Message &reqBody

mutex.lock();

// Return an exception if the ORB is not activated.
if (lactive) {
mutex.unlock();
if (!response_expected) {
return;
}

Maestro_CORBA_String excname(‘‘SystemException’’);
Maestro_CORBA_Exception exc(
exc_name,
MAESTRO_CORBA_EXCEPTION_CODE_INV_OBJREF,
MAESTRO_CORBA_COMPLETION_STATUS_NO) ;
Maestro_CORBA_Message reply;
reply << exc;
// Use IIOP Dispatcher’s requestReply downcall to send the IIOP reply.
dispatcher->requestReply(
reqld,
MAESTRO_GIOP_REPLY_STATUS_SYSTEM_EXCEPTION,
reply);
return;

}

// Lookup the target object (object adaptor) based on the key.
Maestro_SimpleORBObjectAdaptor *obj = lookup(objKey) ;

// Return an exception if the object is not currently bound to the ORB.

44

if (obj == NULL) {
mutex.unlock();
if (!response_expected) {
return;
}

Maestro_CORBA_String excname(‘‘SystemException’’);

Maestro_CORBA_Exception exc(
exc_name,
MAESTRO_CORBA_EXCEPTION_CODE_INV_OBJREF,
MAESTRO_CORBA_COMPLETION_STATUS_NO) ;

Maestro_CORBA_Message reply;

reply << exc;

dispatcher->requestReply(
reqld,
MAESTRO_GIOP_REPLY_STATUS_SYSTEM_EXCEPTION,
reply);

return;

}

// Invoke object’s update() method directly.
// Upon return, replyBody should contain the body of the IIOP reply message.
Maestro_CORBA_Message replyBody;
Maestro_GIOP ReplyStatusType status =
obj->update(operation, reqBody, replyBody);

// Use IIOP Dispatcher’s requestReply downcall to send the IIOP reply.
if (response_expected) {

dispatcher->requestReply(reqld, status, replyBody);
}

mutex.unlock();

3.4 Reliable Maestro ORB (Replicated
Updates)

Maestro tools include a reliable Object Request Broker called Replicated Updates
ORB. The ORB provides higher availability of server objects by actively replicating
them over several processes. In the following sections we will discuss the interfaces
of the Replicated Updates ORB and important implementation details.

It is important to stress that Replicated Updates is not a fully CORBA-
compliant ORB. In particular, it does not implement standard CORBA inter-
faces and services, however it does support object interoperability via IIOP. A full
CORBA ORB, complete with CORBA interfaces, services and an IDL compiler,

45

can be built on top of Replicated Updates, using Maestro as a middle layer.

3.4.1 ORB Interfaces

The Replicated Updates ORB is implemented with the
Maestro ES ReplicatedUpdates class. Objects accessed through the ORB must
be implemented as subclasses of the Maestro RUObjectAdaptor class, which is
defined with the following callback methods:

class Maestro RUObjectAdaptor {
public:

Maestro_GIOP ReplyStatusType update(
Maestro_CORBA_String &operation,
Maestro_CORBA Message &request,
Maestro_CORBA Message &reply) = O0;

void pushState(Maestro CORBA Message &msg) {}
void getState(Maestro CORBA Message &msg) {}

s

The update () method is a generic IIOP callback, which is invoked by the ORB
when the object receives a request message from a CORBA/IIOP client. Objects
must overload the update () method to implement their request-processing func-
tionality. As with the Simple ORB (Section 3.3.4), the operation parameter iden-
tifies the name of the IDL function to be invoked on the object, and request con-
tains the marshaled in and inout parameters. When a call to update () returns,
the reply argument should contain the marshaled return value and inout/out
parameters of the invoked operation. See Section 3.3.4 for details.

The pushState callback should be overloaded to marshal the object’s applica-
tion state into the msg argument. Similarly, in the getState callback, the object
should retrieve the application state contained in the msg argument and update its
local state accordingly. The pushState and getState callbacks are invoked by the
Replicated Updates ORB during state transfer to bring the state of new instances
of an object up to date with the states of previously created object replicas, or to
reconcile the states of replicas remerging together after a network partition.

Instances of the Maestro RUObjectAdaptor class are initialized with the fol-
lowing constructor:

Maestro RUObjectAdaptor (Maestro RUObjectAdaptor Options &ops);
with the Maestro RUObjectAdaptor Options structure defined as follows:

struct Maestro RUObjectAdaptor Options {
Maestro_ORB_ObjectKey key;
Maestro ES_ReplicatedUpdates *orb;

}+s

46

The key identifies the object (this is the object key specified in IIOP mes-

sages); the orb parameter specifies the ORB through which the object should be
accessed (the object adaptor will automatically attach to the ORB).

The initialization options for the Replicated Updates ORB, and its public down-

calls including the constructor, are defined as follows:

struct Maestro ReplicatedUpdates Options {

}+s

// The IIOP Bridge/Dispatcher through which this ORB should be accessed.
Maestro_ ORB_IIOPDispatcher *dispatcher;

// Set if updates are allowed only in the primary (quorum) component.
int progressInPrimaryOnly;

// Number of replicas for objects accessed through this ORB.
// The value of nReplicas determines the quorum size (= majority of replicas).
int nReplicas;

// Set if state transfer is required.
// If stateTransfer flag is not set, the getState()
// and pushState() callbacks will not be invoked.

int stateTransfer;

// Set if total ordering of request invocations

// between object replicas is not required.

// This flag should be reset if all replicas must process
// all operations in the same order.

int requestsCommute;

// Set if compound IORs of all bound objects should be reinstalled
// in the etc directory after membership changes.
int reinstalllIOR;

// The Maestro_Etc object which should be used to install object IORs.
Maestro_Etc *etc;

// The name of the ORB group.
Maestro_String ORBName;

class Maestro ES ReplicatedUpdates {
public:

Maestro_ES ReplicatedUpdates (MaestroReplicatedUpdates Options &ops);

// Activate the ORB: Join the ORB group and
// start accepting IIOP requests to bound objects.

47

// No new objects will be allowed to bind while the ORB is active.
void activate();

// Deactivate the ORB: Stop accepting IIOP requests; leave the ORB group.
void deactivate();

// Bind an object to the ORB.

// Objects can only be bound while the ORB is not active.

// ’key’ identifies the object; ‘obj’ points to the object instance.

Maestro_Status bind(Maestro_ORB_ObjectKey &key,
Maestro RUObjectAdaptor *obj) ;

// Unbind an object from the ORB. Objects can only be unbound
// while the ORB is not active.
Maestro_Status unbind(Maestro ORB_ObjectKey &key) ;

// Unbind all objects from the ORB. Objects can only be unbound
// while the ORB is not active.
Maestro_Status unbindAl1(Q);

In a typical initialization sequence, objects will be initialized first and bound to
an ORB instance with the bind () method. After all objects have been bound, the
ORB will be enabled with a call to activate(). See Section 3.5.2 for an example.

3.4.2 A Look Inside

With the Replicated Updates ORB, multiple replicas of server objects can be
created at different processes and bound to local ORB instances, which join to-
gether to form a group over the Ensemble or Horus system. The processing of
incoming ITOP requests is performed as follows (see Figure 3.5). When a Maestro
ITIOP Bridge/Dispatcher receives a client’s request message (1), it invokes the cor-
responding callback method on the target object’s ORB to pass it the message.
The ORB then relays/multicasts the message to the entire ORB group (2,3). After
an ORB instance receives a relayed message (4), it dispatches the request to the
local target object attached to it (5). The replies (6) are suppressed at all ORBs
except the one which got the original IIOP request. This ORB sends the reply
message back to the client (7).

Observe that when requests are relayed with totally ordered multicasts, they
are delivered to all objects in the same order, so that all object replicas perform
the same sequence of operations (the active replication model [Bir96)).

The architecture of the Replicated Updates ORB scales well in the number of
objects residing within a process, since all objects bound to an ORB instance are

48

Object
implementation

sii AN T

ORB Object
(Request Manager) iplementation
duier n pisemiy

IOP bridge E'g;';'b'e ORB Object

(host1, porti1) P (F - quest Manager) nplementation
0 Member 1 P
. 5
Ay miat—
. Ensemble
1 1IOP bridge Group ORB

(host2, port2) I «equest Manager)

Mel;lber
A
- . 1IOP bridge E':;‘Z'L";'e
CI!ent. 4 (host3, port3) Member
Application ;
Client Stub
ORB Core

Figure 3.5: Maestro Replicated Updates ORB

multiplexed over a single Ensemble (or Horus) group. This effectively provides
light-weight group semantics for free. Maestro also implements inter-object con-
sistency guarantees on group joins/leaves and state transfer: All objects attached
to a Replicated Updates ORB join or leave the system and do state transfer in one
atomic step. In particular, a single state transfer protocol is run for all objects
bound to an instance of the ORB. States of all local object replicas are packed in
one message and sent in one step.

Whenever new ORB instances along with attached object replicas join or leave
the system (as mapped to membership changes in the corresponding ORB group),
the updated IOR’s for all bound replicated objects are installed in the etc di-
rectory or published elsewhere. The IOR’s generated by the Maestro Replicated
Updates ORB are compound: They contain IIOP profiles for all object replicas (see
Figure 3.6). The IOR’s are published in the standard CORBA format and can be
accessed from any CORBA-compliant ORBs. The client side of a CORBA appli-
cation can bind to any one of the object replicas included in the target object’s
compound IOR. See Section 3.4.3 for details.

49

-4
- a

Lapa object S
key = “lapa”
(key = “lapa’) ra

‘ ‘ Lapa object
(key = “lapa”)
ORB
(Request Manager) L 4
: -
A ot Lapa object
(Request Managel P !

IIOP bridge (key = “lapa”)
(host1, port1) % i ; :
1IOP bridge
(host2, port2) ORB

(Request Manager)
u
lIOP bridge
(host3, port3)

v
IOR: ! ‘

(<host1,port1,”’lapa”’>,<host2,port2,”’lapa’>,<host3,port3,”lapa”>

Figure 3.6: Compound Interoperable Object References in Maestro: An IOR may
contain multiple ITOP profiles pointing to different copies of the replicated object
residing at different processes

3.4.3 Client Perspective: Failover/Transparency Issues

The CORBA/IIOP standard specifies that if a client’s connection with the server
breaks abnormally, the client should treat the condition as an error and report
communication-failure exceptions for all pending requests on the connection 6. This
requirement limits possibilities for transparent failover in cases when an object is
implemented with several replicas and the replica to which the client is connected
happens to fail. Even without that limitation, the available commercial ORBs
(such as Orbix) simply do not expect object implementations to be replicated and
therefore do not have built-in mechanisms for server failover in cases of process
crashes or link failures. For example, even if Maestro advertises a replicated object
by publishing a compound IOR containing an IIOP profile for each object replica,
the client running on Orbix will always use only one profile in an IOR (the last
profile with Orbix 2.2) and ignore the rest. In case of a failure of an object replica,
the standard Orbix client will have to wait until Maestro reconfigures the object

SCORBA 2.0 Specifications, p. 12-25.

50

group and publishes the updated IOR, at which point the client can look up the new
IOR and reconnect to another object replica. Although there is no transparency of
failover here, the client still benefits from higher availability of the service, including
state consistency guarantees for object replicas provided by active replication.

As concerns transparency of failover, the quality of service provided to
CORBA /ITIOP clients obviously depends on clients’” awareness of object replication.
In order to fully exploit the potential of replication, the ORBs at the client side
will have to be capable of using multiple profiles in compound IORs so as to hide
server failures and reconnect to available object replicas transparently from the
application.

3.5 Building Object Adaptors and
Applications with Maestro

3.5.1 Implementing Objects/Object Adaptors

In this section we give an example of a simple IIOP-interoperable application built
directly over Maestro using the Replicated Updates ORB. The server object im-
plements the following CORBA IDL interface:

interface Grid {
readonly attribute short height;
readonly attribute short width;

void set(in short n, in short m, in long value);
long get(in short n, in short m);

+s

The client side of the Grid application can be implemented in any CORBA-
compliant ORB, e.g. Orbix (see Section 3.5.3 for Java and C++ examples).

The server object is implemented in Maestro as a subclass of the
Maestro RUObjectAdaptor class, which declares generic update and state-transfer
callback methods to be overloaded by the application. The update callback is
invoked by the ORB when an IIOP request from a client is received. Parameters
of the request are extracted from the message according to the specified operation
name. After performing the operation, the out/inout parameters and the return
value (if any) are marshaled into the reply message, which is then sent by the ORB
back to the client. The structure of the object implementation in the example below
is similar to the Dynamic Skeleton Interface approach of CORBA. The marshaling
and dispatching code can be written manually or, alternatively, generated with an
IDL compiler (not included with the current version of Maestro).

The Grid server objects are implemented as follows:

51

class Grid: public Maestro RUObjectAdaptor {
Grid(Maestro RUObjectAdaptor Options &ops):
Maestro RUObjectAdaptor (ops)
{

// Initialize the 10x10 grid (implemented as a 100-element array).
grid = new Maestro_CORBA Long[100];
memset (grid, 0, sizeof (Maestro CORBA Long) * 100);

// Operations supported by the Grid interface.
height = ‘‘_get_height’’;

width = ‘‘_get_width’’;

set = ‘‘set’’;

get = ‘‘get’’;

}

~Grid() { delete [] grid; }

// Generic request handler:

// Dispatch the request based on the operation name;

// Extract the parameters;

// Perform the operation;

// Setup the reply message.

Maestro_GIOP ReplyStatusType update(
Maestro_CORBA_String &operation,
Maestro_CORBA Message &request,
Maestro_CORBA Message &reply)

// Perform the “_get_height” operation.
if (operation == height) {
Maestro_CORBA_Short result = 10;
reply << result;
return MAESTRO_GIOP REPLY _STATUS NO_EXCEPTION;
}
// Perform the “get_width” operation.
else if (operation == width) {
Maestro_CORBA_Short result = 10;
reply << result;
return MAESTRO_GIOP REPLY STATUS NO_EXCEPTION;

}
// Perform the “set” operation.
else if (operation == set) {

Maestro_CORBA_Long value;
Maestro_CORBA_Short n, m;

// Unmarshal the in and inout parameters, from left to right.

52

request >> n >> m >> value;

// Update the grid.

grid[10*n + m] = value;

return MAESTRO_GIOP_REPLY_STATUS_NO_EXCEPTION,;
}
// Perform the “get” operation.
else if (operation == get) {

Maestro_CORBA_Long value;

Maestro_CORBA_Short n, m;

// Unmarshal the in and inout parameters, from left to right.
request >> n >> m;
value = grid[10*n + m];

// Marshal the return value and inout/out parameters into the reply.
reply << value;
return MAESTRO_GIOP_REPLY _STATUS_NO_EXCEPTION;
// Unsupported operation — return an exception.
else {
Maestro_CORBA_String excname(‘‘SystemException’’);
Maestro_CORBA_Exception exc(
exc_name,
MAESTRO_CORBA_EXCEPTION_CODE_BAD_OPERATION,
MAESTRO_CORBA_COMPLETION_STATUS_NO) ;
reply << exc;
return MAESTRO_GIOP_REPLY _STATUS_SYSTEM_EXCEPTION;

}

// Write object’s state (the grid) into the msg.

void pushState(Maestro CORBA Message &msg) {
msg.write(grid, sizeof (Maestro_CORBA Long) * 100);

}

// Read/update object’s state (the grid) from the msg.

void getState(Maestro CORBA Message &msg) {
msg.read(grid, sizeof (Maestro_CORBA_Long) * 100);

}

Maestro_CORBA_Long *grid;
Maestro_CORBA_String height, width, set, get;

s

Note that when using Maestro (at least, when using it in the manner of this ex-

53

ample), a server object does not need to be aware of reliability issues. For example,
specific replication policies of the ORB can be varied while keeping the server im-
plementation unchanged. The Replicated Updates ORB only requires that objects
implement state marshaling/unmarshaling routines (getState and pushState),
since the contents of the replicated state is in general application-dependent. All
other aspects of object replication, including object-group membership protocol,
message ordering, and state-transfer protocol, are transparent to object implemen-
tations.

3.5.2 System Configuration/Initialization

In this section we will discuss the initialization sequence for the server side of a
Maestro application using the Replicated Updates ORB. The Grid application will
serve as an example.

The main() function of the Grid server application initializes a Replicated
Updates ORB, creates a Grid object and binds it to the ORB, and finally activates
the ORB. If needed, multiple server objects could be bound to one ORB replica.
The initialization code at the server side is as follows:

// Server side of the Grid application.
main(int argc, char *argv[]) {
// Create an IIOP Dispatcher.
Maestro_IIOPDispatcher dispatcher;

// Setup ORB configuration options.

Maestro ReplicatedUpdates Options orb_ops;
orb_ops.dispatcher = &dispatcher;
orb_ops.progressInPrimaryOnly = TRUE;
orb_ops.nReplicas = 5;
orb_ops.stateTransfer = TRUE;
orb_ops.requestsCommute = FALSE;
orb_ops.reinstallIOR = TRUE;

orb_ops.etc = &Maestro DefaultEtc;
orb_ops.ORBName = ‘‘Grid’’;

// Create a Replicated Updates ORB.
Maestro_ES ReplicatedUpdates orb(orb_ops) ;

// Create a Grid object
// (it automatically binds to the specified ORB).
Maestro ReplicatedUpdates Options obj_ops;
Maestro_CORBA_String keyStr(

¢ ‘MAE:3£809d92a791947c346778da00069523b3:Grid’ ’) ;
Maestro_ORB_ObjectKey key(keyStr) ;

o4

obj_ops.key = key;
obj_ops.orb = &orb;
Grid obj(obj_ops);

// Activate the ORB.

orb.activate();

// Block the main thread.
Maestro_Semaphore sema;
sema.dec();

The Grid server developed in the above example is interoperable, via ITIOP,
with all CORBA-compliant client applications.

3.5.3 Setting Up the Client Side

The client side of an application which accesses objects running on Maestro via
ITIOP can be implemented with any CORBA /IIOP-compliant ORB, such as Orbix.
Since the data representation/message format specifications of IIOP are language-
independent, the ORB and the client-side application can be implemented in any
language for which CORBA type mapping is defined. In particular, we will show
two versions of a client applications written in Java and C++.

The client application is simple. First, it reads-in the IOR file for the server
object. The file should be created by the ORB at the server side. The Maestro
Simple ORB and Replicated Updates ORB use the following convention for IOR
file naming: The IOR for an object which implements interface Foo is placed in file
Foo.ior in the etc directory specified by the MAESTRO ETC environment variable.

After the client retrieves a stringified IOR, it converts the IOR into an object
reference and invokes remote operations on the object.

In the following example, it is assumed that the server object implements the
Grid IDL interface as defined in Section 3.5.1, and that the size of the grid is 10.

The client application can be built and executed with commercially available
ORBs such as OrbixWeb 3.0 (the Java version) or Orbix 2.2 (the C++ version).
The Java and C++ versions of the client code are shown below. The code is a
modified version of the Grid demo included with Orbix/OrbixWeb distribution.

Client code in Java:

// Modified file javaclientl.java from the grid demo of OrbixWeb 3.0.
package gridtest;

import java.io.x*;
import org.omg.CORBA.ORB;
import IE.Iona.OrbixWeb._CORBA;

55

public class javaclient {
public static void main(String args[]) {
if (args.length == 0) {
System.out.println(‘‘Usage: javaclient IOR-file-name’’);
System.exit (1) ;

}

// Initialize the ORB. Specify that IIOP protocol should be used for binding.

ORB orb = ORB.init();

_CORBA.Orbix.setConfigltem (¢‘IT BIND USING IIOP’’,
String.valueOf (true)) ;

// Read-in the IOR.

FileInputStream f;

byte buf[] = new byte[1024];

try {
f = new FileInputStream(args[0]);
f.read(buf);

}

catch (FileNotFoundException e) {
System.out.println(‘‘Could not open IOR file ’’ + args[0]);
System.exit (1) ;

}

catch (IOException e) {
System.out.println(‘‘Error reading IOR file ’’ + args[0]);
System.exit (1) ;

}

// Get the object reference and narrow to the Grid type.
String ior = new String(buf);
org.omg.CORBA.Object objRef = orb.string to_object(ior);

if (objRef == null) {
System.out.println(‘‘objRef is null’’);
System.exit (1) ;

}

grid p = gridHelper.narrow(objRef) ;

if (p == null) {
System.out.println(‘‘p is null’’);
System.exit (1) ;

}

// Get the height and width of the remote grid object.
short w, h;

56

try {
w = p.width();
h = p.height();

} catch (org.omg.CORBA.SystemException ex) {
System.out.println(‘ ‘FAIL: Exception during width,height’’);
System.out.println(ex.toString());
return;

}

if (w !'= 10 || h !'= 10) {

System.out.println(‘ ‘FAIL: width is ’’ + w +
€¢, height is ’’ + h);
return;

}

System.out.println(‘‘PASS: width is ’’ + w + ¢, height is ’’ + h);

// Set a value in the remote grid and check correctness.

int val = 0;

try {
p-set((short)2, (short)4, 123);
p-set((short)0, (short)0, 0);
val = p.get((short)2, (short)4);

} catch (org.omg.CORBA.SystemException ex) {
System.out.println(‘ ‘FAIL: Exception during set,get’’);
System.out.println(ex.toString());
System.out.println(‘‘Minor="’ + ex.minor);
System.exit (1) ;

}

if (val != 123) {

System.out.println(
‘‘FAIL: bad value returned after set,get ’’ + val);
return;

}

System.out.println(‘ ‘PASS: grid[2,4] is ’’ + val);

}

Client code in C++:

// Modified file iiopcli.cc from the grid_iiop demo of Orbiz 2.2.
#define USE_IIOP

#include ¢‘CORBA.h’°
#include ‘‘grid.hh’’
#include <sys/types.h>
#include <sys/time.h>

o7

#include <iostream.h>
#include <stdio.h>
#include <fstream.h>
#include <stdlib.h>
#include <unistd.h>

int main (int argc, char *argv[]) {
CORBA: :0Object ptr objPtr;
grid_ptr gridPtr;
if (arge < 2) {
cout << ‘‘Usage: client IOR-file-name’’);
exit(1);

}

// Read-in the IOR.

ifstream iorFile(argv[1]);

if (liorFile) {
cout << ‘‘client: Unable to open IOR file ’’ << iorFile << endl;
exit(1);

}

char refStr[500];

iorFile >> refStr;

// Get the object reference and narrow to the Grid type.
try {
objPtr = CORBA::0rbix.string to_object(refStr);
} catch (CORBA::SystemException& se) {
cerr << ‘‘Exception: ’’ << &se << endl;
exit(1);
}
if (CORBA::ismnil(objPtr)) {
cerr << ‘‘objPtr is null’’ << endl;
exit(1);
}
try {
gridPtr = grid:: narrow(objPtr);
} catch (CORBA::SystemException& se) {
cout << ‘‘exception trying to _narrow: ’’ << &se << endl;
}

if (CORBA::isnil(gridPtr)) {
cerr << ‘‘gridPtr is null’’ << endl;
exit(-1);

}

// Get the height and width of the remote grid object.

58

CORBA: :Short h, w;

try {
h = gridPtr->height();
w = gridPtr->width();

} catch (CORBA::SystemException &sysEx) {
cerr << ‘‘Unexpected system exception: ’’ << &sysEx << endl;

exit(1);

} catch(...) {
cerr << ‘‘Unexpected exception’’ << endl;
exit(1);

}

if (h != 10 || w !'= 10) {
cout << ‘‘FAIL: width is ’’ << w << ‘‘, height is ’’ << h << endl;
return;

}

cout << ‘‘PASS: width is ’’ << w << ‘‘, height is ’’ << h << endl;

// Set a value in the remote grid and check correctness.
CORBA: :Long val;
try {
gridPtr->set(2, 4, 123);
val = gridPtr->get(2, 4);
} catch (CORBA::SystemException &sysEx) {
cerr << ‘‘Unexpected system exception: ’° << &sysEx << endl;

exit(1);

} catch(...) {
cerr << ‘‘Unexpected exception’’ << endl;
exit(1);

}

if (val != 123) {
cout << ¢‘FAIL: bad value returned after set,get: ’’
<< val << endl;
return;

}

cout << ‘‘PASS: grid[2,4] is ’’ << val << endl;

return O;

3.6 Performance

We have measured performance numbers for synchronous remote method invoca-
tions with Orbix 2.2 and the Maestro Replicated Updates ORB running over Horus.

59

320 T T T

Maestro (1 replica)

Maestro (2 replicas)
Maestro (4 replicas)
Orbix 2.2

* + O x
* + O x

w
o
o

N

o]
&
3

Throughput (synchronous requests/sec)
N 3

I\
N
o

200 1 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Message size (bytes)

Figure 3.7: Performance of the Maestro Replicated Updates ORB (over Horus)
and Orbix 2.2

The same Orbix-based CORBA client was used to issue series of IIOP requests to
the server object built with either Orbix or Maestro. The test application was
based on the following IDL interface:

interface PerformanceTest {
attribute string value;

s

The PerformanceTest interface maps to two synchronous operations,
void _set_value(char*) and charx _get value(void), which respectively mod-
ify or retrieve the value of the string maintained by the object implementation.

The client side of the performance-test application was making a series of 1000
invocations of the _set_value operation on a remote object. We computed the
total number of requests completed per second, and took the average value after five
runs of the application. The tests were performed for strings of different lengths,
corresponding to application-level messages of sizes 4, 8, 16, 32, 64, 128, 256, 512,
and 1024 bytes. The client side of the application was the same (Orbix-based) for
all tests. The server side used either Orbix or Maestro. With Maestro-based tests,
we measured performance for different degrees of object replication (1, 2, 3, or 4

60

300 T T
+ + Orbix 2.2
o80L X X Maestro (1 replica) | |
s * * Maestro (4 replicas)

N
N
N

—_
[or]
o

—_
2]
o

Throughput (synchronous requests/sec)
N 5]

—_
N
o
T
|

100 1 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Message size (bytes)

Figure 3.8: Performance of the Maestro Replicated Updates ORB (over Ensemble)
and Orbix 2.2

replicas). We executed the tests on a cluster of sparcl0 machines running Solaris
2.5 or SunOS 4.1.3 and connected by a lightly loaded 10Mbps Ethernet. In all
tests, client and server processes were running on different machines, with at most
one server replica per machine.

The throughput results measured for the _set_value operation are shown in
Figure 3.7. Somewhat surprisingly, the Replicated Updates ORB outperforms Or-
bix even with four object replicas. We believe this is due to the combined effect of
lighter-weight interfaces of Maestro and a specific communication pattern of the
application, for which Horus was successfully optimized. As we mentioned earlier,
Maestro complies to the ITOP protocol but does not implement CORBA interfaces,
which are quite bulky and involve a lot of redundant function calls and data copy-
ing. With regard to the communication level, we observed that the Orbix client
always binds to the server object referenced by the last IIOP profile included within
a combined IOR. This means there is only one replica in the object group which
receives IIOP requests and relays them to other replicas via totally ordered mul-
ticasts. The Dynamic Sequencer total ordering layer, used in the Horus protocol
stack underneath Maestro, works best with precisely this one-sender communica-
tion pattern: The active sender becomes the sequencer and can multicast totally

61

ordered messages immediately, without any delays or additional communication
rounds [Bir96]. In particular, the latency of local message delivery is minimal
and depends mostly on internal processing costs within Horus layers. Also, the
combination of the Dynamic Sequencer protocol and one-sender communication
pattern scales extremely well. The measured performance of the test application
was almost the same with 2, 3, or 4 replicas”.

The elapsed time per request was in the range of 3.6-4.7 msec for Orbix and
3.5-4.7 msec for Maestro with three object replicas, for message sizes in the range
of 4-1024 bytes. For comparison, the cost of the bind operation in the CORBA-
compliant Electra Naming Service [Maf96] with replication degree 3 is 6.6 msec
when run over Horus and 14.2 msec over Isis.

Performance numbers for the Maestro Replicated Updates ORB running over
Ensemble are shown in Figure 3.8. We have measured a lower throughput with
Ensemble than with Horus, apparently because the total ordering protocol used
in Ensemble has not yet been optimized to minimize the latency of local delivery
of messages [Clad8]. However, the protocols scale quite well: The throughput
measured with four object replicas is almost the same as with one replica.

3.7 The Maestro Wizard

Maestro Wizard is a tool which aids in development of distributed object-oriented
applications by guiding the programmer through a series of design choices which
pertain to such dimensions as execution style, communication properties, quality of
service requirements, and object state of the application. The programmer is also
able to fill in the code for Maestro callback methods from within the wizard. Re-
member that callbacks are invoked when corresponding events are received by the
object, which included such events as multicast or point-to-point message delivery,
group membership changes, state requests, and others. The full set of callbacks
that can be filled-in by the developer to implement application-specific function-
ality varies depending on the Maestro class to be used with the application. The
choice of the specific class is made by Maestro Wizard based on the execution style
selected by the developer. Among possible options are CSCW (cooperative-work),
client/server, and publisher/subscriber execution styles.

Maestro Wizard allows the programmer to choose their consistency require-
ments for message delivery (available options include virtual synchrony, active
replication, etc.) and global safety (whether or not support for primary partitions
is required, and how the progress of non-primary partitions should be restricted).
Based on choices made by the developer, Maestro Wizard generates the template
code, which can be either compiled directly into the application, or be further mod-

"Figure 3.7 does not show the graph for Maestro performance with 3 replicas, which was very
close to that for 2 replicas.

62

ified by the developer as necessary. It is envisioned that for complex distributed
applications off-line editing will be necessary, after the first step in the develop-
ment process (generation of the template code with Maestro Wizard) has been
completed. However, the editing will mostly consist in connecting Maestro objects
to other components of the application, without need to do manual configuration
of Maestro itself.

The initial version of Maestro Wizard has been implemented with a simple text-
based interface. As a direction for future work we can envision a more sophisticated
GUI-based visual environment where a developer will be able to perform all aspects
of development work, including implementation of individual distributed objects
and their integration into the whole system, initialization and configuration of
system parameters, and high-level control over quality-of-service properties of the
application.

A transcript of a Maestro Wizard session is shown below. The programmer
can select the ORB-specific wizard (among those available in the Maestro Wizard
Repository) that best matches the execution style/request processing policy re-
quired for the application. In this example, the wizard for the Replicated Updates
ORB is selected. As we discussed before, the Replicated Updates ORB provides
reliability by actively replicating server objects. The wizard guides the developer
through a series of questions and generates server application stub and configura-
tion/initialization code according to the options selected:

$ wizard

Searching wizard repository in /home/alexey/iiop/WizardRepository/...
Wizard Repository:

1: Replicated Updates

2: Replicated Data

3: Simple

Available options:

s[elect] <#> -- select a wizard to use for the application
d[escribe] <#> -- describe a wizard

Please enter your choice: select 1

Please enter the name of the application: Grid

MAESTRO REPLICATED UPDATES ORB WIZARD

* The wizard will guide you through a series of
configuration choices for the Replicated Updates ORB.

* A skeleton for the application, including ORB initialization/
configuration code, will be generated and placed in the file Grid.C.

HOW SHOULD THE APPLICATION BEHAVE IN CASE NETWORK PARTITIONS OCCUR?
Available options:
1 - Allow progress in ALL partitions

63

2 - Allow progress in one partition only (the majority partition)
Please choose an option: 2

WITH HOW MANY REPLICAS DO YOU INTEND TO RUN THE APPLICATION?
Please enter the value: 3

WHEN A NEW REPLICA JOINS THE GROUP, OR WHEN SEVERAL PARTITIONS MERGE,
IS IT NECESSARY TO TRANSFER THE CURRENT STATE OF THE APPLICATION TO
THE NEW/LESS UPDATED REPLICAS?

Available options:

1 - Transfer state to less updated replicas

2 - No state transfer is needed

Please choose an option: 1

IS IT REQUIRED THAT ALL OBJECT REPLICAS RECEIVE ALL REQUESTS
IN THE SAME ORDER?

Available options:

1 - Al]l replicas must receive all requests in the same order
2 - It’s OK if replicas receive requests in a different order
Please choose an option: 1

COMPOUND IORS FOR REPLICATED OBJECTS CAN BE UPDATED AND REINSTALLED

IN THE ETC DIRECTORY (SPECIFIED WITH THE MAESTRO_ETC ENVIRONMENT VARIABLE)
WHENEVER THERE IS A CHANGE IN MEMBERSHIP IN THE ORB/0OBJECT GROUP.
Available options:

1 - Automatically reinstall IORs after membership changes

2 - Don’t (re)install IORs

Please choose an option: 1

The skeleton file Grid.C has been generated.

Based on the options selected in the Maestro Wizard session above, the wiz-
ard generates a skeleton file called Grid.C. The file includes ORB initializa-
tion/configuration code and a definition of the Grid class with generic update ()
and state transfer methods (pushState () and getState()) which have to be over-
loaded by the developer so as to implement the application’s functionality. An
example of a server implementation for the Grid interface based on the wizard-
generated skeleton code is shown in Section 3.5. The code of the generated file
Grid.C is shown below:

// Grid.C: Skeleton file for the Grid application.

// Generated by the Maestro Replicated Updates ORB Wizard
#include ¢ ‘Maestro_CORBA.h’’

#include ¢ ‘Maestro_GIOP.h’’

#include ‘‘Maestro ORB.h’’

64

#include °‘Maestro_ES ReplicatedUpdates.h’’

// Skeleton for Grid object implementation.
class Grid: public Maestro RUObjectAdaptor {
public:
Grid(Maestro RUObjectAdaptor Options &ops):
Maestro RUObjectAdaptor(ops) { /* fill in... */}

Maestro_GIOP ReplyStatusType update(
Maestro_CORBA_String &operation,
Maestro_CORBA Message &request,

Maestro_CORBA Message &reply) { /* fill in... */}

virtual void pushState(Maestro_ CORBA Message &msg) { /* fill in...
virtual void getState(Maestro CORBA Message &msg) { /* fill in...

}s
// Skeleton of the application.
main(int argc, char *argv[]) {
// Create an ORB dispatcher.
Maestro_ ORB_IIOPDispatcher dispatcher;

// Create an ORB.

Maestro ReplicatedUpdates Options orb_ops;
orb_ops.dispatcher = &dispatcher;
orb_ops.progressInPrimaryOnly = TRUE;
orb_ops.nReplicas = 5;
orb_ops.stateTransfer = TRUE;
orb_ops.requestsCommute = FALSE;
orb_ops.reinstallIOR = TRUE;

orb_ops.etc = &Maestro DefaultEtc;
orb_ops.ORBName = ‘‘Grid’’;

Maestro_ES ReplicatedUpdates orb(orb_ops) ;

// Create an object (it automatically binds to the specified ORB).

Maestro RUObjectAdaptor Options obj_ops;
Maestro_CORBA_String keyStr(

¢ ‘MAE:3£809d92a791947c346778da00069523b3

Maestro_ORB_ObjectKey key(keyStr) ;
obj_ops.key = key;

obj_ops.orb = &orb;

Grid obj(obj_ops);

// Activate the ORB.

orb.activate();

:Grid’’);

// Block the main thread.
Maestro_Semaphore sema;
sema.dec();

65

Chapter 4

Protocol Support: Implementing
State Machine Replication

4.1 Introduction

The Maestro group tools and interoperability tools discussed in previous chap-
ters can be used as building blocks for developing distributed applications and
gluing different pieces together. Maestro group tools, however, rely on the group
communication system underneath to provide necessary system membership and
message delivery properties within a coherent programming model. In this chap-
ter we will discuss one such model, called state machine replication [Sch86], which
plays the role of a fundamental building block in design of reliable/highly avail-
able distributed applications with strong consistency requirements on membership
and communication. In the following sections we will describe an implementation
of replicated state machines within the quorum-based wvirtual synchrony [Bir96]
protocol framework, which happens to be the only technology that provides both
high availability and global consistency properties [Bir96] (observe that transactions
offer the latter but not the former property).

To put virtual-synchrony-based state machine replication in the proper context,
it is useful to compare and contrast it with classic distributed-commit protocols,
which play a similar role of fundamental building blocks in the field of distributed
transaction systems. The most widely used protocol there is the Two Phase Com-
mit [Bir96]. The protocol proceeds in two phases. In the first phase, the coordinator
of the transaction solicits votes (“OK to commit?”) from participating members
and waits for their replies. In the second phase, the coordinator multicasts a “com-
mit” or an “abort” message, according to the votes received in the first phase. The
protocol guarantees that all participating members which come to a decision (abort
or commit) will make the same decision, thus providing global consistency. How-
ever, the two-phase commit is not fault-tolerant and may block even if a single
failure, such as the coordinator’s crash, occurs during the execution of the protocol

66

N
W\
VA

\A
o S
§\> <
ok g ok

% ok not okg

)

B

Ned |

commit

abort §

¥ ¥

Figure 4.1: The Two-Phase Commit Protocol blocks when the coordinator crashes

(see Figure 4.1).

The Three Phase Commit Protocol [Ske85] was designed to provide higher avail-
ability and, in particular, to tolerate crash failures during execution of the protocol.
However, despite the increased performance cost due to the added “prepare-to-
commit” phase, the Three Phase Commit protocol assumes an idealized fail-stop
failure model [Sch84] (where participants fail by crashing and failure detection is
immediate and perfectly accurate) and may block in a real setting due to network
partitions or inaccurate failure detection (see Figure 4.2).

Because of its limitations (in particular, lacking fail-stop, Three Phase Commit
is no better than Two Phase Commit) and prohibitive performance costs, the Three
Phase Commit protocol is rarely used in practice. On the other hand, the Two
Phase Commit, being the most widely used protocol for distributed transactions,
poses serious availability problems which may be unacceptable for an important
class of distributed control /system management applications, which may require
some form of globally consistent behavior but do not tolerate blocking of the whole
system due to individual failures or network partitions. This kind of application is
best targeted by the virtual synchrony/state machine replication paradigm which,
as we mentioned before, provides both high availability and global consistency and,

68

OK to commit?

ok —
ok
Prepare
to commit

£ commit #\+¢

Prepare
to commit

Figure 4.2: The Three-Phase Commit Protocol blocks when the network partitions

incidentally, offers a significantly better performance than the Two Phase Commit
Protocol. In the following sections we will describe the state machine replication
model in detail and present its virtual-synchrony-based implementation for the
most general setting, namely a partitionable network environment with inaccurate
failure detection, with excellent performance characteristics.

4.2 Background and Related Work

The replicated state machine model proposed in [Sch86] defines consistent be-
havior of a collection of distributed objects. With this model, the objects run
identical state machines and perform the same sequence of operations, thus pro-
ducing the same sequence of outputs and transitioning through the same sequence
of states. To the outside observer, the behavior of the system as a whole is indistin-
guishable from that of a single highly available/reliable object (Figure 4.3). State
machine replication is generally considered to be the most elementary paradigm
for reliability through object replication and is therefore one of the fundamental
low-level building blocks which can be used in development of complex distributed

69

[D o)
¥ =D »
<= I
T 2

Figure 4.3: State Machine Replication: The group behaves as one reliable
highly-available object

systems with strong global consistency and high availability requirements.

The first software-based implementation of state machine replication in an asyn-
chronous distributed environment was provided in the Isis system [BJ87b], which
has pioneered the virtual synchrony model within which both high availability and
global consistency of replicated objects could be achieved. The achievement of
the virtual synchrony paradigm has been in integration of system membership and
communication within a single formal model and, in particular, in considering all
communication within a membership context. Isis uses totally ordered multicasts to
guarantee that all objects in the system (the object group) receive messages (oper-
ation requests) in the same order, so that all objects perform the same sequence
of operations. However, in order to be able to make progress while guaranteeing
global consistency, Isis requires a quorum of group members, which is computed
dynamically as a majority of the last membership configuration (the group view)
of the system. In case of a network partition or a “virtual” logical partition due
to inaccurate failure detection, the system may irreversibly lose the quorum and
force a global restart, even if the partitioned objects could eventually have merged
back together. Our solution, presented in this chapter, uses a different method for

70

computing quorum and can tolerate group partitions [FV97]. In particular, even
if the quorum is lost, it will be automatically restored when a majority of group
members can again communicate and form a view, at which point the system will
be able to continue to make progress.

Several implementations of global total ordering (a communication-level equiv-
alent of state machine replication) that can tolerate network partitions have been
proposed in [Ami95,ADMSM94,Kei94, MMSA93]. These solutions require all mes-
sages to be logged on stable storage, which adds a substantial performance over-
head. In contrast, our implementation only requires logging of a single bit, which is
performed by every process only once at initialization. A tradeoff of our approach
is that the state of a member is lost in a crash failure and can only be recovered
by means of state transfer from surviving members. If a majority of processes in
the group crash simultaneously, the protocol will block.

Differently from our protocol, the implementation in [Kei94] can sustain any
number of simultaneous crashes, assuming that failed processes are eventually
restarted (this is equivalent to the “no-crashes” assumption). Also, the proto-
cols in [Kei94] can make progress even if a majority view can never be formed
due to perpetual partitioning of the network, which makes that approach suit-
able for WAN environments with very low quality of communication. However,
the cost of message logging and extra communication rounds make the solution
of [Kei94] impractical for applications with demanding performance requirements.
Those applications will usually be deployed in environments with higher quality
of communication links, where a majority of processes can reasonably be expected
to be almost always connected. Our protocols are best suited for use in such
high-performance systems, running over partitionable yet high-quality networks.

The protocols described in this chapter have been implemented within the Ho-
rus group communication system [vRBMO96]. However, their properties and im-
plementation are quite generic and can be easily ported to other systems, such as
Ensemble [Hay97].

In summary, the trademarks of our implementation of state machine replica-
tion are tolerance of network partitions (the system will be available whenever a
majority of group objects can merge together) and high performance (no message
logging is required; messages can often be delivered within one phase). We will
describe the details of our approach in the following sections.

4.3 System Model and Protocol Support in
Horus
In this section we will describe a layered implementation of state machine repli-

cation based on the Horus group communication system [vRBM96]. The architec-
ture of Horus supports multiple protocol stacks, where the high-level group seman-

71

mlnrm;mmm?mlnfli Application
e o

Globally Safe

Protocol layer .
Delivery

i LI i

Primary Views
A
ud e

Total Ordering

LUl L e

Protocol layer Partitionable
Membership

Service
Figure 4.4: Layered protocol architecture of Horus

A N N\ \ N

tics provided to the application is built as a composite function of properties of
individual protocol layers included in a particular stack. Each layer implements a
different mini-protocol and thus differ semantically. However, all layers implement
the same common group interface and thus are compatible syntactically and can be
composed together in various ways like Lego blocks (Figure 4.4). The application
is represented by a Maestro_GroupMember object (or an object of a subclass of
Maestro_GroupMember), which is mapped to the top layer in a protocol stack.

Our implementation of replicated state machines in Horus uses available pro-
tocol layers responsible for partitionable group membership, total ordering of mes-
sages, and other properties, as building blocks with which the high-level state
machine replication semantics is obtained. In the reminder of this section we will
discuss the properties of those provided layers and see how they are used by our
primary views and globally safe delivery layers to implement replicated state ma-
chines.

It is important to remember that state machine replication is an application-
level rather then communication-level property. Our implementation therefore ad-
dresses not merely group properties of several additional protocol layers but their
integration, including and together with application-level abstractions and tools,

72

such as the state transfer tool implemented in Maestro. Thus, the cooperation of
the application with underlying group protocols is important and necessary in order
to ensure that the high-level replicated state machine semantics will be maintained
throughout an execution.

Throughout the following discussion, we assume an asynchronous distributed
system prone to process crashes, link failures, and network partitions. The system
consists of a group of application processes, each running a deterministic state ma-
chine [Sch86], and communicating by sending multicast messages to each other.
Messages are sent via cast() downcalls in Maestro and delivered via invocation
of corresponding callback methods at destination objects. An application object’s
state machine is specified by a set of its internal configurations, or states, and a set
of transitions between states. During a transition, an object may deterministically
perform a set of actions (produce outputs). Each group object runs the same state
machine and starts in the same initial state. The contents of the state and rules
for state transitions and actions/outputs are purely application-specific. However,
it is essential that the state changes only as a result of delivering multicast mes-
sages (via cast() callbacks), and those changes/actions be deterministic. It is a
responsibility of the application object to guarantee that those restrictions will be
enforced throughout the execution. Then the following assertion will be true: Any
two group objects which have seen the same sequence of cast () callbacks will be in
the same state.

4.3.1 Partitionable Group Membership Service

Horus provides a collection of protocol layers which implement a partitionable
group membership service [FvR95b,MAMSA94,BDGS95]. Within the partitionable
membership model of Horus, each group object has a view of the group (list of
“accessible” members) at any time. A view is typically installed in two phases.
In the first phase, a group member proposes a view by sending a view message
to the list of object included in the view. In the second phase, when a member
object receives a view message, it may either accept it, i.e. commit to the new
view locally, or to reject the proposed view. A group object may need to reject a
proposed view in order to preserve view consistency properties, as discussed below.

The protocol used in Horus to install new views proceeds normally in two phases
(see Figure 4.6). In the first phase, a group member called the coordinatorinstalls a
flush view, which is a subset of the last regular view installed at group members. If
a member object accepts a flush, it must eventually reply with a flush_ok message.
When the coordinator receives flush_ok replies from all members included in the
last flush, it proposes a new regular view (the second phase). If additional group
members become unavailable during execution of the view change protocol, more
than one flush phase may be necessary before the protocol completes.

The flushes are not visible at the application level. However, the application

73

p q

O D

< ~> © time
%

S —
X‘/% :
D/ > O
< I

Figure 4.5: Partitionable group membership service in Horus: Multiple concurrent
views can be installed simultaneously

(a subclass of the Maestro_GroupMember class) is notified of regular view changes
with an invocation of the AcceptedView callback by Maestro.

When a new group member object is created, it initially installs a singleton view
of the group and later on merges with other views as they discover each other and
can communicate. If network partitions occur during an execution, group views can
split into several new components, which will perhaps merge back together when
they can communicate again. It is thus inherent in the partitionable membership
model that multiple concurrent views of the same group can simultaneously exist
in the system (Figure 4.5). Since failure detection is realistically assumed to be
unreliable [CT93] and it is often not possible to distinguish crash failures from
link failures or network partitions (which all manifest themselves as performance
failures), a group component cannot automatically determine whether it is the
only active view in the system or whether other group members are currently
operational but just happen to be partitioned away. It is important, however,
that at most one group component in the system is allowed to make progress, since
executions of group objects in disconnected components can diverge, thus violating
the replicated state machine semantics.

74

%\ flush
—
flush m‘

flush ok | —]
/ flush_ok

FW»

<] v [

Figure 4.6: The View Change Protocol in Horus

While the partitionable group membership service of Horus does not provide
mechanisms for achieving globally consistent system behavior, it implements proto-
col properties which can be used in higher layers to build state machine replication
within a view and to select a primary view to represent execution of the group as
a whole. The following properties of the partitionable group membership service
in Horus are particularly important:

Validity: If a group member proposes or accepts a regular view or a flush, it is
included in it.

Causality: Regular views and flushes are installed in the causal order with respect
to view and flush messages.

Consistent Ordering: If two group members both accept any two views (regular
or flush), they accept them in the same order.

Agreement on Successors: Any two regular views consecutively accepted by a
group member are consecutive at any other group member which accepts
both of them.

75

P q r s
< W
[
m

flush_ok
view
1 v >

Figure 4.7: View Atomic Message Delivery: Group members included in two con-
secutive views deliver the same set of messages between the view changes

Agreement on Flushes: All processes included in two consecutive regular views

must have accepted the same sequence of flushes between those views .

4.3.2 Atomic Message Delivery Within a View

The Agreement on Successors property guarantees that the notion of consecutive
views is well defined and, in particular, does not depend on the choice of a particular
group member for which the two views are consecutive. Relying on Agreement on
Successors, the following property is also well defined and is implemented in Horus
with several protocol layers above the partitionable membership service?:

View Atomic Message Delivery: Any two group members which are included
in two consecutive regular views V7 and V5 deliver the same set of messages

'For example, in the scenario shown in Figure 4.5, group members p, ¢ and r are included
in consecutive regular views W and V and therefore must have accepted the same sequence of
flushes between W and V' (namely, F’ and F").

2In the context of implementing state machine replication we always assume that all messages
are multicast to the entire current view of the sender.

76

after accepting V7 and before accepting V5.

The View Atomic Message Delivery property is implemented in Horus by de-
laying the installation of a new view until all multicast messages sent in the context
of the old view are known to have been delivered by all group members included
in both views. For example, in the scenario shown in Figure 4.7, group members
s and r crash before their multicasts m and m’ are received by all members in the
view. Therefore, before a new view (V) is installed, the member p which received
unstable messages has to relay them to the group members (namely, ¢) which did
not receive them. When all surviving group members (i.e. the members included
in the last flush) know that all messages they are aware of have become stable
among them, the flush can complete and a new view (V') can finally be installed.

4.3.3 State Machine Replication Within a View

The View Atomic Message Delivery property guarantees that all members in a view
agree on the set of messages they deliver in the context of that view. Now suppose
that all group objects accept the view in the same state and agree not only on the
set of delivered messages but also on their ordering, so that all members deliver
the same sequence of messages in the view. It follows then that the replicated state
machine semantics holds for the execution of the group within that view.

The agreement on sequence of messages delivered within a view is provided
with one of the total ordering layers available in Horus. Those protocols usually
fall into one of the two categories, the sequencer-based protocols and token-based
protocols [FvR95a,Bir96]. With sequencer-based protocols, multicast messages are
first sent point-to-point to a special member (the sequencer) which orders the
messages and relays them to all members in the view. With token-based protocols,
the members are allowed to multicast to the group only when they have a token,
which rotates between the group members, thus naturally establishing a causality-
induced ordering (Figure 4.8).

Total ordering protocols impose an additional delay for message transmission,
namely between an invocation of the cast() downcall by the application and re-
ception of the token by the group member (in case of a token-based protocol) or
the ordering of the message by the sequencer (in case of a sequencer-based proto-
col). It is possible that during that waiting interval the group will split, so that the
sender will partition away from the member currently holding the token or from
the sequencer. When this situation occurs, each partition can deterministically
order the remaining “suffix” of messages that were waiting for the token or for the
sequencer’s ordering at the time of the view split. This ordering will preserve repli-
cated state machine semantics within the new views, however, executions between
the views will obviously diverge, thus violating global consistency (Figure 4.9).
It is therefore necessary for state machine replication purposes to strengthen the
semantics of total ordering layers to require that when a view splits, at most one

7

©
o]
-
(2]

m ﬁﬁ\» mi

A token based
protocol: token (2)

[token (3)™]

PR
m4 m4</m47

m4

©
Ke]
-
2]

m ﬁ%\» m1

mi1
m2_ _ _
¢ M2--
A sequencer m2 ﬁnﬁt’mz\» m2
based protocol: m3 _Lo—--="1
M-
R ———
e
mé |-
PRI S
———
e g™

Figure 4.8: Total ordering protocols available in Horus

partition (the primary view) will actually deliver the “suffix” messages. The other
partitions will report the aborted “suffix” messages to the application (a Maestro
group member object) with an abortCast() callback. The handling of aborted
messages is up to the application. Thus, we require the total ordering layer to
provide the following property:

Strong Prefix: For any two group members in a view, the sequence of messages
delivered in the context of that view by one of the members is a prefix of
the sequence of messages delivered in that view by the other member, or vice
versa.

In the next section we will describe our implementation of primary views which,
together with the Strong Prefiz property, guarantees that replicated state machine
semantics is maintained not only within an individual view but on the global basis,
despite possible link failures and partitions of the group.

78

©
Ne]
=
2]

ﬁi\» 1
m1 m1 m1
I
m2le— |
m2 4/mzﬁ m2

\
m5 4 " Illm6 4 i,

J v DB v I'™>

Figure 4.9: Execution of member objects may diverge when the view partitions
into several components

4.4 Globally Consistent State Machine
Replication

In this section we describe our implementation of globally consistent state machine
replication with the primary views and globally safe delivery layers. The primary
views protocol guarantees that at most one view in the group will be marked as
primary at any time, and that whenever a majority of group members can merge
together and form a stable view, this view will eventually become primary. We
will also show that if group objects deliver multicast messages (and thus modify
their application states) only when they are in a primary view, the execution of the
group, as represented by executions of individual members in primary views, is in-
deed equivalent to an execution of a single reliable highly available object. Finally,
we will discuss the role of state transfer in the state machine replication protocol
and, in particular, the integration of protocol layers, state transfer mechanisms of
Maestro, and the application.

79

p q r
V (primary)
mi [mi| % m1
cast cast
callback callback
(m1) { (m1)
e [T N
cast cast
callback callback
(m2) (m2) s t
IR
<V’ (non—primarD V” (non-primary
v e R
<] U (non-primary) >
state transfer > R —
(by Maestro) getState| getState
callback callback
(m1, m2) (m1, m2)
S W (primary) —
» m3
m3 i\sms\p
m3
cast cast cast cast
callback callback callback callback

(m3) (m3) | [(m3) (m3)
T ey T

Figure 4.10: When views merge, the state of the more advanced view is transferred
to members of the other view. When a primary view is installed, all included
members are always in the same state

4.4.1 State Version Numbers

The primary views layer maintains state version numbers for all group members
during their execution. A state version number is a pair of two integer values, the
primary view sequence number and the message sequence number.

The primary view sequence number identifies the last primary view the object
has been a member of. The message sequence number is the number of multicast
messages the object has received in the context of the last primary view. The pri-
mary views layer guarantees that each primary view is assigned a unique sequence
number and the ordering of sequence numbers agrees with the causal ordering of
the views. The details of the protocol, in particular the assignment of sequence
numbers, are discussed below.

The primary views layer ensures that the lexicographic ordering of state version
numbers agrees with the degree of advancement of group members: The objects
with higher state version numbers are more advanced (“up-to-date”) in the ex-
ecution of the group. In particular, since group members are allowed to send
messages only when they are in primary views, which are uniquely identified by

80

p q r S

ﬁon-primary v (PPSD

primary flush -]

S F(PPSN=23) | . B
primary view C
e
_-———"7", —————— T [Tl TS -
< Pgimary:U (primary view seqno = 3) >
\)_ _____ e I Tl
l/ 1
N primary flush
\,‘ /7
T P (PPSN=3)

! /7 primary view

Primary W (primary view seqno = 4)

Figure 4.11: When any two different primary views are proposed, they are always
assigned different sequence numbers

their sequence numbers, and messages are delivered by all view members in the
same order (the Strong Prefiz Property), it follows that any two group objects with
identical state version numbers are in the same state, as long as they were in the
same state when they accepted the last primary view. Below we will show how the
primary views layer guarantees that group members are indeed in the same state
when they install a primary view, so that the following State Consistency property
is maintained throughout the execution of a group:

State Consistency: Any two group objects with identical state version numbers
are in the same state.

4.4.2 Installation of Primary Views

The primary views protocol is illustrated in Figure 4.10. A view is installed as
primary only if (1) it includes a quorum (a majority of group members) and (2)
all members are in the same state. In order to guarantee the second property, the
primary views layer initiates state transfer whenever two views with different states
(as represented by their state version numbers) merge together. For example, in

81

the scenario shown in Figure 4.10, when views V/ and V" merge together, the new
view U is installed as a non-primary view, even though it does include a majority
of group members. After U is installed, the application (Maestro) is notified that
state transfer is required. The primary views layer specifies the direction of state
transfer and the set up-to-date of group members (p and ¢ in this case) from which
the state can be requested. The application is responsible for performing state
transfer and notifying the primary views layer when the transfer is completed?. At
this point the states of all members in the view (p, ¢, s, and t) are assumed to be
identical, so the view is safely reinstalled as primary W. Once in a primary view,
group members can multicast new messages (e.g. m3).

In order to implement the State Consistency property, the primary views layer
must ensure that whenever primary views are proposed, they are assigned unique
sequence numbers in such a way that the ordering of sequence numbers agrees
with the linear ordering of primary views induced by the causal ordering of view
messages. Otherwise, if group members were allowed to propose different primary
views with identical sequence numbers, the execution of group objects, as reflected
in their state version numbers, might diverge, thus violating consistency of the
global group state.

The protocol for installation of primary views and assignment of primary view
sequence numbers is illustrated in Figure 4.11. In addition to state version num-
bers, group members maintain so called potential primary sequence numbers (PPSN),
which are used to assign sequence numbers to new primary views. Initially the
value of the PPSN of a group object is set to 0. Whenever two views merge, the
members in the new view adopt the higher value of the PPSN’s of the merging
views. Finally, when all members in a non-primary majority view complete state
transfer and converge to the same state, the view is reinstalled as primary as fol-
lows. First, the coordinator performs a primary flush, which includes a majority of
group members. Observe that primary flushes accepted by all included members
(these are called completed flushes) can be assigned a natural linear ordering: The
order of two completed primary flushes is the order in which they were accepted by
a member that installed both of them?. When a group member accepts a primary
flush, it increases the value of its PPSN by one. If more than one flush needs to
be performed before the view change protocol can finalize, each following primary
flush will increase the PPSN of an accepting member by one. When the flush
protocol completes and the new primary view is proposed, it is assigned the pri-
mary view sequence number equal to the current PPSN value of the coordinator,
increased by one.

For example, in Figure 4.11, the PPSN of members in the non-primary view

3See Chapter 2 for details of the state transfer protocol in Maestro and provided interfaces.

4By the Consistent Ordering property of the partitionable membership service underneath,
this ordering is well defined, i.e. it does not depend on the choice of a member that accepts the
two flushes.

82

V is 1. Therefore, when p flushes the view, the PPSN assigned to the flush F’
is 2. When the flush completes (i.e. all group members included in F’ respond
with flush_ok messages), p proposes the new primary view U and assigns sequence
number 3 to it. In the scenario shown in Figure 4.11, the group happens to partition
right at the point when p proposes U, so that p is the only group member which
ever accepts this view. After the other group members included in U (namely, g,
r, and s) detect that p is unavailable, the new coordinator, s, starts a new primary
flush, F”, so as to install a new primary view without p. By the Agreement on
Flushes property implemented by the underlying partitionable group membership
service of Horus, it is guaranteed that since s was included in U, it must have
accepted the flush F’ installed by p before proposing U. Thus, the current PPSN
at s when it flushes the view is equal to 2, so that the flush F” sets the PPSN
value of accepting members to 3. When the flush completes and s proposes a new
primary view W, its sequence number is set to the current PPSN value of s plus
one, that is 4, thus guaranteeing that primary views U and W are indeed proposed
with different sequence numbers. Observe that the following points of the protocol
are essential: (1) all members in the view initially have the same PPSN value;
(2) primary flushes include a quorum (a majority of group members); and (3) the
Agreement on Flushes property holds.
In summary, the primary views layer provides the following properties:

Validity: A group member proposes a primary view only when the view includes a
majority of group members and all members are currently in the same state.

Linear Ordering: All proposed primary views are assigned unique sequence num-
bers. The ordering of primary views, based on their sequence numbers, agrees
with the causal linear ordering of their respective completed primary flushes.

Progress: Whenever a majority of group members can merge together into a view
which remains stable for sufficiently long time, the view will be eventually
reinstalled as primary.

4.4.3 Globally Safe Delivery and State Transfer

The primary views layer allows messages to be delivered immediately once they
are totally ordered within the primary view. This results in a good performance,
as it normally takes only one or two one-way transmissions for a message to be
ordered and received at all destinations, depending on the total ordering protocol in
use and application’s communication pattern. However, this “optimistic” message
delivery protocol must cope with a situation when a multicast is sent in a primary
view and is totally ordered right before the sender partitions away, so that the
message is never received by a majority of group members. In this case the progress
of members which do deliver the message will diverge from the execution of the

m1 k/"/ﬁ% m1

cast
callback (m1)

‘"’X\\\
2 X7
m m2 Xt

cast “
callback (m2) ,

4 . — [
@n-prTaD ‘,< V” (primary) >
l/ \—_/
e e & ms

cast
callback (m1)

m3
cast
callback (m3)
—
<\ W (nonj-primary) >
~| state

getState transfer
ot o

Figure 4.12: If objects deliver messages which are not safe (i.e. not acknowledged
by a majority), their state may need to be corrected (or rolled back) later

group as a whole as represented by history of messages delivered by a majority of
group members. When the diverged objects merge back into a primary view, they
may need to roll back the effect of delivering the eventually-canceled messages.

An example of a scenario where optimistic message delivery is followed by a
state rollback is shown in Figure 4.12. The message m1 sent in the primary view
V' is eventually received by a majority of group members and will therefore never
be rolled back. However, the multicast m2 is sent by member p and is totally
ordered (with a token or by the sequencer) just before p and ¢ partition away
from the other group members, so that p and ¢ are the only objects which deliver
m2 to the application with a cast() callback. The other group members are
able to form a new primary view, V", in which they deliver another message, m3,
thereby diverging from the execution of p and ¢. When views V/ and V" merge
back together into the view W, the more advanced state of V", as represented by
message history (m1,m3), is transferred to members p and ¢ to overwrite the effect
of applying m2 to their state with the effect of delivering m3.

The “optimistic” message delivery semantics with a possibility of rollback may
be quite appropriate for some type of applications and has an advantage of faster

84

p q r S t
(V (primary) %
-
m1 4—/'//7
et m
cast
cast
callback (m1) . callback (m1)
S
~BX 7
m2 I s
— S, L [
@mn-prima D\< V" (prifary) >
S~ " T

m3 ﬁ%mS

< W (non-primary)

abortCast

cast
callback (m3)

1 state
callback transfer
(m2) (m1, m3)
getState
callback
(m1, m3) I i

Figure 4.13: With the globally safe delivery layer, messages are only delivered when
they become safe. If an unsafe message is rolled back, the application is notified
with an abortCast () callback

message delivery (no need to wait for stability information). However, sometimes
the effects of delivering a message cannot be meaningfully reversed, especially
when they include externally observable actions triggered by the message. The
applications in which state rollback is undesirable or simply not acceptable can
run over the globally safe delivery layer [Ami95], which delays delivery of messages
until they become acknowledged by a majority of group members and thus are
guaranteed to never have to be rolled back in any partitioning/remerging scenario.
If a message is never received by a majority and eventually needs to be rolled back,
the application is notified with the abortCast() callback and simply removes
it from its list of pending unsafe messages. An example of such a situation is
illustrated in Figure 4.13.

The scenario shown in Figure 4.13 is identical with that of Figure 4.12, except
that the globally safe delivery layer is now in use, stacked over the primary views
layer in the application’s protocol stack. The multicast m1 is eventually acknowl-
edged and consequently delivered by all group members. However, the message m2
is never received by a majority of members since the sender p partitions away before

85

p q r
V (primary)
mi e mi| % mi
ack (m1) 4—"'56‘;'(;711) LA
ack (m1) |g------"""""1"""- >X
cast cast
callback callback
(m1) (m1)
m2 44\‘)(
ack (m2) (4= Ty s t
[
< Vv (non-primarD V” (non-primary
et Rttt 4
<] U (non-primary) I
— " » B
application (Maestro) xfer getState getState
of safe messages (m1) callback callback
| (mn) (m1)
internal xfer | —— >
of unsafe messages (m2)
ack (M2) |qeoocmocmmmmd-mmm-=-czzzzzzzzz===s=mmmoooeen
(M2) 4 ack (m2) [«---"" | TThack(m2)
ack (M2) \q -----------f------="=7"~777IIIII2IZ%%2 e
cast cast " ack (m2) ack (m2) cast cast
callback callback callback callback
(m2) (m2)

(m2) | | (m2)
S N T M

Figure 4.14: Integration of the primary views layer, globally safe delivery layer,
and the state transfer protocol of Maestro

the multicast stabilizes. Therefore, although the objects p and ¢ have received m?2,
they will never deliver it. At some point m2 becomes overwritten by a diverging
execution in the primary view V" (namely, by the multicast m3). When views V'
and V" merge together and the up-to-date state is transferred to group objects p
and ¢, they notify the application with abortCast() callbacks that the message
m2 has been aborted and will never be delivered. It is up to the application to
determine an appropriate policy for handling aborted messages.

As discussed before, the primary views layer notifies the application when two
views with different state version numbers merge together and state transfer is
required (Figure 4.10). With the globally safe delivery layer, the state transfer
protocol is more complicated as it proceeds at two levels. The application (Maestro)
performs state transfer for the execution history represented by the sequence of safe
message delivered to group objects in the more updated view. In addition to the
application-level state transfer, the globally safe delivery layer performs an internal
transfer of unsafe messages, hidden from the application, to the less advanced view.
As a result of the internal state transfer, some of the unsafe messages received by
group members in the previous primary view may now become safe and be delivered

86

to the application. When both Maestro-level and internal state transfer complete,
all members in the view are in the same state. At this point, if the view includes
a majority of group members, it is safely reinstalled as primary.

An example of a view merging scenario illustrating the integration of the pri-
mary views layer, the globally safe delivery layer, and the state transfer protocol
of Maestro, is shown in Figure 4.14. After the multicast message m1 sent in the
primary view V' becomes acknowledged by a majority of group members, it is de-
livered to the application with the cast() callback. The other message sent in
V', m2, does not become majority-safe since one of the view members, r, crashes
before it receives m2. Observe that the total group size is five, so that a message
needs to be acknowledged by at least three members before it becomes safe and
can be delivered to the application. At some point view V'’ and V" merge together
into the view U. the globally safe delivery layer notifies Maestro that the appli-
cation state of the more advanced view (V') should be transferred to members in
the other view. After application-level state transfer completes, the globally safe
delivery layer transfers the unstable messages (m2 in our example), transparently
from the application, to members in the less advanced view. After the message
is acknowledged by group objects in U, it becomes majority-safe and is delivered
to the application with the cast() callback. This completes the state transfer
protocol, at which point the view U, as containing a majority of group members,
with all members being in the same state, is reinstalled as primary W.

In certain scenarios the transfer of the application-level state corresponding to
delivered safe messages and the internal transfer of unsafe messages will proceed
in the opposite directions. In the example shown in Figure 4.15, the message m1
is sent in the view V' and is mutually acknowledged by members r, s, and ¢, which
then safely deliver it to the application. However, the other two members of the
view, p and ¢, partition away before they can collect the minimum number of
acknowledgements in order to deliver m1 locally. Also, before p installs a new
(non-primary) view V', it multicasts and totally orders another message, m2, in
the context of the primary view V. Thus, both p and g receive m2 in V but do
not deliver it since m2 does not become majority-safe. At some point V' and V"
merge together into the view W. From perspective of the primary views layer,
the state of the view V'’ is more advanced than the state of V”, as represented by
the state version numbers of the two views. However, the globally safe delivery
layer correctly notifies Maestro that application-level state transfer should proceed
from V" to V', since from the application’s point of view, the members in V" have
delivered more messages than p and ¢ have done and therefore are more up-to-date.
Thus, Maestro transfers the state corresponding to m1 to the members p and g,
whereas the globally safe delivery layer transparently transfers m2 to the members
in V”. After an exchange of acknowledgements, m2 becomes safe and is delivered
to the application at all group member objects. This completes the state transfer,
and the non-primary view W is reinstalled as primary U.

87

L e X cast
X~
m2 §\§ s callback (m1)

. ’ | —
non-prima D*(V” (primary) >

[\ f2

W (non-grimary))

application
xfer (m1)

getState

callback
(m1)

| internal

xfer (m2)

cast

callback (m2) cast

callback (m2)

. L
< U(primary))

Figure 4.15: Maestro-level state transfer and internal transfer of unsafe messages
may proceed in opposite directions

4.4.4 Restarting Objects After Crashes

Since the probability of a crash failure of a process is never zero, a long-running
application must rely on some membership monitoring service to restart objects
after crashes. It is important to maintain the required degree of object replication
and prevent a majority of group objects from having failed simultaneously, which
would block the progress of the group forever. While a membership service could
be implemented at the tools level based on various object monitoring and reincar-
nation policies, it is a responsibility of the primary views layer to ensure that when
objects are restarted and join the group, their state is reinitialized carefully so as
to preserve the replicated state machine semantics of the application.

For performance reasons, our protocols do not require that messages be syn-
chronously logged on a stable storage before they can be sent or received. This is
in contrast to other approaches, such as [Kei94]. The tradeoff of this decision is
that when a process crashes, the state of the object(s) residing on it may be lost.
However, if an object is restarted with an initial state and is allowed to immedi-
ately rejoin the group, the global consistency of the application can be violated.

88

Primary V
(primary view segno = 1)

[

State version = (1,1)

state:{m1} _________ | _________|__.
s t
N
Non-primary Y\ (Non-prjmary V’ Non-primary X
seqno = 1)’ (seqno = 0) (seano =)
V
/§\
Primary U
(primary view seqfo = 1)
¥’-_/
| R\» m2
State version = (1,1) m2 m2
state: {m2} _________ |l -

Figure 4.16: If objects restarted after crashes still count when computing a quorum,
the state of the group may become inconsistent

An example of such “bad” scenario is shown in Figure 4.16. There, the object r
is included in the primary view V with sequence number 1, in which it receives
one multicast message, m1. At that point the state version number of r becomes
(1,1), with the state defined by the message history of {m1}. Suppose now that
r crashed, was eventually restarted in an initial state with state version number
(0,0), and merged with two other member objects s and t with the same state
version number (0,0), to form a majority view U. Since r, s, and ¢t would be in
the same state (0,0), the view U would be installed as primary, and it would be
assigned the sequence number 1 as if it were the first primary view ever installed
in the group. This would immediately violate the Linear Ordering property of pri-
mary views which the primary views layer must provide. Furthermore, if r received
a multicast message m2 in the context of view U, its state version number would
again become (1, 1), but now the state would be defined by the message history
of {m2}, different from {m1}. This would be a violation of the State Consistency
property, which is clearly not acceptable.

In order to maintain global consistency of the group in spite of object crashes/
reinitializations, the primary views layer uses reincarnation bits, which are logged

89

|

S t

— 1
< Non-primary V’ > Non-primary V” Non-primary X
: e~
—
:]
, b AA—

< Non-pririnary U >

state »

transfer (m)

-l Primeiry w >

Figure 4.17: When an object is reincarnated after a crash, it remains a zombie
(denoted by the dashed line) until it receives an up-to-date state and becomes a
member of a primary view

by member objects on stable storage during initialization. Before an object replica
is started for the first time, its reincarnation bit is set to 0. When an object
is (re)started, it atomically reads the old value of its reincarnation bit and sets
the new value to 1. If the old value was not 0, the object is assumed to be a
reincarnation of a previously failed replica, in which case it is assigned the zombie
status®. Zombie members do not count when a quorum is computed. Only after a
zombie object receives an up-to-date state of the group and is included in a primary
view, it will again become a normal member and will count when a group majority
is computed. For example, in the scenario shown in Figure 4.17, the object r is
restarted after a crash and merges together with two other group members, s and t,
as in the scenario of Figure 4.16. However, this time r is assigned the zombie status
and does not count when determining whether the new view Y includes a majority
of group members. Since Y only includes two normal members (out of five object

STt is a responsibility of the membership monitoring service to guarantee that at most one
incarnation of an object replica will be active at any time.

90

replicas in the group), it is installed as a non-primary view. However, after the
group members merge to form a majority view U and state transfer is completed,
the view is safely reinstalled as primary W, in which all members, including r,
have the normal status.

4.4.5 State Machine Replication Properties

We say that (M, Sp) is an execution history of object replica p if M, (the message
history of p) is the sequence of messages delivered by p and S}, (the state history of
p) is the sequence of states through which p has transitioned during its execution.
We assume that all messages in a message history and all states in a state history
are unique, i.e. they can appear at most once. As discussed before, all object
replicas run the same state machine, and state transitions happen only as a result
of a message delivery or a state transfer from another replicaS.

In integration with the membership and total ordering layers, the Maestro tools
(including the state transfer protocol), and the application, the primary views
layer and the globally safe delivery layer implement the state machine replication
semantics as follows.

For any fixed execution of the group, there is an object execution history
(Mg, Sg) such that the following properties hold:

Linearizability: If M, were the message history of an object replica p and p
never participated in a state transfer as a recipient, then the state history of
p would be Sg.

Completeness: For any object replica g, if (M, S;) is the execution history of ¢,
then M, is a subsequence of Mg and S; is a subsequence of Sg.

Validity: For any state s in S there is an object replica ¢ such that s is included

in Sy, and for any message m in Mg there is an object replica r such m is
included in M.

When the globally safe delivery layer is not included in the protocol stack, the
Completeness property is replaced with the following:

Majority Completeness: If state s is included in state histories of a majority
of group members, then s is included in Sg. If message m is included in
message histories of a majority of group members, then m is included in Mg.

The pair (Mg, Sg) is called the group ezecution history, with the following
meaning: The group emulates an execution of a single reliable highly available
object with execution history of (Mg, Sg). Observe, however, that it is possible
there will be no single object replica p in the group such that M, = Mg and
Sp = Sa.

In particular, due to state transfer, two object replicas with identical state histories may have
different message histories.

91

Round latency (msg size = 10 bytes)
0.07 ‘ ‘ ‘

— PVSYNGC

0.06/ |- - DYNSEQ:PVSYNC 1
TOKEN:PVSYNC

- - SAFE:DYNSEQ:PVSYNC

0.05f | % SAFE:TOKEN:PVSYNC]

c)

© 0.04 e

Latency (s

Group size

Figure 4.18: Average round latency for different group sizes

4.5 Performance

We have measured performance of our Horus-based implementation of repli-
cated state machine protocols with a cluster of Sparcl0 and Sparc20 machines
connected by a 10Mbps Ethernet. The tests were performed in rounds (using the
ring application of Horus), where in each round group members were synchro-
nized and every member sent a series of 10-byte multicast messages. A round
would complete when all transmitted messages became fully stable. Thus, the av-
erage duration of a round measured performance of the system under maximum
load, with everybody sending bursts of messages to everybody else.

The effect of the primary views layer on performance has proved to be insignif-
icant, which was not a surprise since most of the work performed by this layer is
done during installation of new views and state transfer. During normal execu-
tion within a view, the primary views layer does not add any headers on messages
and has little overhead for event processing. We have found, however, that the
choice of a particular total ordering protocol [AMMS93, FvR95a, KTHB89] and
the use of message packing techniques [FvR95a] play a decisive role in setting the
system’s performance. Also, when the globally safe delivery layer is included in the
stack, the protocol it uses for fast propagation of stability information proves to
significantly influence the resulting performance.

92

x10* Throughput per group member (msg size = 10 bytes)
2 T T T T T
18k — PVSYNC |
- — DYNSEQ:PVSYNC
161 TOKEN:PVSYNC i
— - SAFE:DYNSEQ:PVSYNC
1.4 % SAFE:TOKEN:PVSYNC |

Throughput (mcasts/mbr/sec)

Group size

Figure 4.19: Average throughput per group member for different group sizes

Generally, the dynamic-sequencer total ordering protocol outperformed the
rotating-token protocol in protocol stacks providing optimistic message delivery
(without the globally safe delivery layer), in terms of both latency and through-
put. On the other hand, the rotating-token total ordering protocol provided better
latency and throughput than the dynamic-sequencer protocol when safe delivery
was enabled (i.e. the globally safe delivery layer was included in the protocol stack).

We have experimented with a number of protocols for fast propagation of mes-
sage stability information required by the globally safe delivery layer. Based on
performance measurements, we have found that the protocol based on piggyback-
ing the stability vector on a rotating token performed best, with respect to latency
as well as throughput, regardless of the total ordering protocol being used. How-
ever, when the rotating-token total ordering layer is included in the protocol stack,
the same token can be utilized for both total ordering of messages and for stability
propagation, thus increasing the efficiency of the protocols.

The numbers obtained in performance measurements are shown in Figures 4.18,
4.19, and 4.20. The protocol stack which provides partitionable group membership
with view-atomic message delivery (“partitionable virtual synchrony”) is denoted
as PVSYNC. The stacks which implement optimistic message delivery with primary
views, based on dynamic-sequencer or rotating-token total ordering protocols, are

93

x10* Aggregate throughput for the group (msg size = 10 bytes)
6 T T T T T
— PVSYNC
— — DYNSEQ:PVSYNC
Sr TOKEN:PVSYNC i

— - SAFE:DYNSEQ:PVSYNC
¥ SAFE:TOKEN:PVSYNC

N
T
|

\S]
T
I

Throughput (mcasts/sec)
w
>

Group size

Figure 4.20: Average throughput for the whole group for different group sizes

denoted as DYNSEQ:PVSYNC and TOKEN:PVSYNC respectively. Similarly, the two
variations of protocol stacks which implement globally safe message delivery (with
both the primary views layer and the globally safe delivery layer included) are
denoted as SAFE:DYNSEQ:PVSYNC and SAFE:TOKEN:PVSYNC, corresponding to the
total ordering protocols being used.

4.6 Discussion

We have described our implementation of state machine replication for distributed
objects, which can tolerate network partitions and will be able to make progress
whenever a majority of group members can form a stable view. Our solution is
based on an integration of the group protocols provided in Horus, the Maestro
tools, and the application. The protocol does not require message logging and
exhibits excellent performance characteristics. One of the reasons of good per-
formance is optimistic ordering of messages within a primary view, even when
globally safe delivery is enabled. With our protocol, messages are delivered with
fewer communication rounds than, for example, in the more conservative global to-
tal ordering protocol of [Kei94]. As a tradeoff, optimistically ordered messages may

94

need to be aborted in certain partitioning scenarios, which would never happen in
the solution of [Kei94]. We therefore target our protocols for high-performance
applications running in environments where real and virtual (logical) partitions
are possible but unlikely and where there is a meaningful way to handle aborted
multicast messages.

The primary views protocol used in our implementation requires a majority
of the entire group in order to get a quorum and install a view as primary. An
alternative approach, called dynamic voting, computes the quorum as a majority
of members in the immediately preceding primary view, rather than a majority of
the whole group [Bir96]. With a dynamic-voting-based quorum, it can be easier
to form a primary view, since a majority of the previous primary view may be
smaller than a majority of the entire group. On the other hand, with dynamic
voting, the primary view can become small enough (namely, to include only two
members) so that a single crash failure will block the group forever. It is possible
of course to require a certain minimum view size in order to install the view as
primary, however this solution eliminates the advantage of dynamic voting against
the group-majority-based protocol. Indeed, in order to tolerate n simultaneous
crash failures, a modified dynamic-voting-based protocol would install a view as
primary only if it contained a majority of the previous primary view and included
at least 2n + 1 members. With the group size of 2n + 1, the availability provided
by this protocol is in fact lower than the availability of the simple majority-based
protocol which, too, will tolerate n simultaneous crashes when the group size is
2n + 1. Increasing the size of the group will improve availability of the dynamic-
voting-based protocol but degrade its performance. Since the minimum group size
required by both protocols in order to tolerate n crashes is 2n + 1, it follows that
the majority-based protocol performs better.

The limitations of distributed commit protocols (the Two Phase Commit and
Three Phase Commit) discussed in the introduction to this chapter served as a
motivation for suggesting a partition-tolerant state machine replication paradigm
as an alternative. It is clear, however, that state machine replication is not simply
an improvement of previously developed distributed commit protocols, since it as-
sumes a somewhat different programming model. The protocols which implement
distributed transactions usually include the solicitation of votes from participating
members (“OK to commit?”) as the first phase. The solicitation of votes is nec-
essary since applications running at object replicas are often not deterministic, so
the coordinator of a transaction cannot assume a priori that all participants will be
able to commit just because it itself can do it. The state machine replication model
is different, however, since it assumes that all group members are running identical
deterministic programs. Consequently, for any message sent to the group, it will
always be the case that either all or none of the participating objects will be able
to perform the action triggered by the delivery of that message. This observation
lets us eliminate the solicitation-of-votes phase and consider each multicast as a

95

complete one-message transaction. The delivery of a message by a group member
(which is essentially performed with a one-phase protocol) is then equivalent to a
local commit action. A transaction of this type can still be aborted, however, if the
multicast is canceled in a certain group partitioning scenario, as discussed earlier.

In terms of availability, the state machine replication approach clearly outper-
forms distributed commit protocols, since a multicast may be blocked (without
either delivering or aborting) only when and while the sender is partitioned away
from a majority of group members. As long as a majority of group members can
communicate, they will be able to make progress. For comparison, recall that with
distributed commit protocols, the crash or partitioning-away of a single object
replica can block the entire group until the failed member is restarted or the link
failure is healed. These considerations make it clear that state machine replication
is a preferred paradigm for applications that require both global consistency and
high availability, expect high performance, and must tolerate object crashes and
network partitions. In practice, however, this solution is usually best applied not
directly to existing applications (which are often not deterministic) but to appli-
cation management/control infrastructures, which in many cases can indeed be
naturally modeled as replicated state machines. An example of a successful use of
state machine replication in such a setting is described in [FB96].

In conclusion, we want to put our implementation of partition-tolerant repli-
cated state machines in the perspective of the famous distributed-consensus-
impossibility result of [FLP85]. As shown in [FLP85], a protocol that implements
distributed consensus in an asynchronous system may not guarantee termination if
crash failures are possible. This limitation obviously applies to our protocols, which
guarantee progress in a globally consistent replicated state machine execution only
as long as a majority of group members can communicate with each other and form
a stable view. Observe that stability of views directly depends on accuracy of fail-
ure detection. In an asynchronous system, typical timeout-based failure detectors
are inherently inaccurate. However, the impossibility result of [FLP85] can be ren-
dered irrelevant by strengthening the system model [CT93]. This is indeed usually
done in practice, since even though group protocols themselves are asynchronous,
the failure detection (a mechanism orthogonal to protocols themselves) is often
based on specific timing assumptions and its accuracy is quite predictable. In par-
ticular, when network performance is within expected bounds (in terms of latency,
bandwidth, message loss rate etc.), group members are usually able to form stable
views and make progress. The accuracy of failure detection and progress guar-
antees can further be quantified probabilistically [SM87,MSS96]. From practical
perspective, probabilistic real-time performability guarantees on a group execution
are much more relevant than formal yet somewhat remote from reality consensus
impossibility results.

Bibliography

[ADMSM94] Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust

[Amio5]

[AMMS 193]

[BDGS95]

[Bir96)]

[BJ87a]

[BJSTD]

[Clagg]
[CT93]

and Efficient Replication Using Group Communication. Technical
Report CS94-20, Institute of Computer Science, the Hebrew Univer-
sity of Jerusalem, Jerusalem, Israel, 1994.

Y. Amir. Replication Using Group Communication Over a Parti-
tioned Network. Ph.D. dissertation, Institute of Computer Science,
the Hebrew University of Jerusalem, 1995.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D.A. Agarwal, and
P. Ciarfella. Fast Message Ordering and Membership Using a Logical
Token-Passing Ring. In Proc. of the 13th International Conference
on Distributed Computing Systems, pages 551-560, May 1993.

O. Babaoglu, R. Davoli, L. Giachini, and P. Sabattini. The Inherent
Cost of Strong-Partial View-Synchronous Communication. Technical
Report UBLCS-95-11, Department of Computer Science, University
of Bologna, April 1995.

K. P. Birman. Building Secure and Reliable Network Applications.
Manning Publishing Company and Prentice Hall, December 1996.

K. Birman and T. Joseph. Exploiting Virtual Synchrony in Dis-
tributed Systems. In Proc. of the 11th ACM Symp. on Operating
Systems Principles, pages 123-138, December 1987.

K. Birman and T. Joseph. Reliable Communication in the Presence
of Failures. ACM Transactions on Computer Systems, 5(1):47-76,
February 1987.

Tim Clark. Private communication, April 1998.

T. Chandra and S. Toueg. Unreliable Failure Detectors for Asyn-
chronous Systems. Journal of the ACM, 1993.

96

[FB96]

[FGS9g]

[FLP85]

[FV97]

[FvR95a)]

[FvRO5D)]

[GRO7]

[Hay97]

[1194]

[ION9g]

[15i92]

[1s194]

97

R. Friedman and K. Birman. Using Group Communication Technol-
ogy to Develop a Reliable and Scalable Distributed IN Coprocessor.
In Proc. of the TINA 96 Conference, pages 25-41, September 1996.

P. Felber, R. Guerraoui, and A. Schiper. The Implementation of
a CORBA Object Group Service. Theory and Practice of Object
Systems, Vol. 4(2) 1998.

M. Fischer, N. Lynch, and M. Patterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the ACM, 32(2):374—
382, April 1985.

R. Friedman and A. Vaysburd. Fast Replicated State Machines Over
Partitionable Networks. In Proc. of the IEEE 16th International
Symposium on Reliable Distributed Systems, October 1997.

R. Friedman and R. van Renesse. Packing Messages as a Tool for
Boosting the Performance of Total Ordering Protocols. Technical
Report TR95-1527, Department of Computer Science, Cornell Uni-
versity, July 1995. Submitted for publication.

R. Friedman and R. van Renesse. Strong and Weak Virtual Syn-
chrony in Horus. Technical Report TR95-1491, Department of Com-
puter Science, Cornell University, March 1995.

K. Guo and L. Rodrigues. Dynamic Light-Weight Groups. In 17th
IEEE International Conference on Distributed Computing Systems,
p.33-42, Baltimore, Maryland, May 1997.

Mark Hayden. The Ensemble System. Ph.D. dissertation, Depart-
ment of Computer Science, Cornell University, Forthcoming, Dec.
1997.

IONA and Isis. An Introduction to Orbix-+Isis. IONA Technologies
and Isis Distributed Systems, 1994.

IONA. Orbix. IONA Technologies,
http://www.iona.com/Products/Orbix/, 1998.

Isis. The Isis Distributed Tolkit Version 3.0, User Reference Manual.
Isis Distributed Systems, Inc., 1992.

Isis. Reliable Distributed Objects for C++. User’s Guide. Isis Dis-
tributed Systems, Inc., April 1994.

[Kei94]

[KTHBSY]

[LM97]

[Maf95a]

[Maf95b)

[Maf96]

[MAMSA94]

[IMFSW95]

[Mic98]

[MMSA93]

[MMSA*95]

98

I. Keidar. A Highly Available Paradigm for Consistent Object Repli-
cation. Master’s thesis, Institute of Computer Science, the Hebrew
University of Jerusalem, 1994.

F. Kaashoek, A. Tanenbaum, S. Hummel, and H. Bal. An Efficient
Reliable Broadcast Protocol. Operating Systems Review, 23(4):5-19,
October 1989.

S. Landis and S. Maffeis. Building Reliable Distributed Systems with
CORBA. In Theory and Practice of Object Systems, John Wiley and
Sons, 1997.

Silvano Maffeis. Adding Group Communication and Fault-Tolerance
to CORBA. In Proc. of the 1995 USENIX Conference on Object-
Oriented Technologies, Monterey, CA, June 1995.

Silvano Maffeis. Run-Time Support for Object-Oriented Distributed
Programming. Ph.D. dissertation, University of Zurich, Switzerland,
1995.

S. Maffeis. A Fault-Tolerant CORBA Name Server. In Proceedings of
the 15th IEEE Symposium on Reliable Distributed Systems, Niagara-
on-the-Lake, Canada, October 1996.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal.
Extended Virtual Synchrony. In Proc. of the 1/ International Con-
ference on distributed Computing Systems, June 1994.

C. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A
Tollkit for Building Fault-Tolerant Distributed Application in Large
Scale. Technical report, Department d’Informatique, Ecole Polytech-
nique Federale de Lausanne, July 1995.

Microsoft. Component Object Model. Microsoft Corporation,
http://www.microsoft.com/activex/, 1998.

L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Asynchronous
Fault-Tolerant Total Ordering Algorithm. SIAM Journal of Comput-
ing, 22(4):727-750, August 1993.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia,
C. A. Lingley-Papadopoulos, and T. P. Archambault. The Totem
System. In Proc. of the 25th Annual International Symposium on
Fault-Tolerant Computing, pages 61-66, Pasadena, CA, June 1995.

99

[MMSA*96] L. Moser, P. M. Melliar-Smith, D. Agarwal, R. Budhia, and

[MMSNO7]

[MSS96]

[NMMS97a]

[NMMS97h]

[OMGY7]

[RGS™96]

[Sch84]

[Sch86]

[Ske85]

[SM87]

C. Lingley-Papadopoulos. Totem: A Fault-Tolerant Multicast Group
Communication System. Communications of the ACM, 39(4):54-63,
April 1996.

L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. The Eternal
System. In Workshop on Dependable Distributed Object Systems,
OOPSLA’97, Atlanta, Georgia, October 1997.

L. Malhis, W. Sanders, and R. Schlichting. Numerical Performabil-
ity Evaluation of a Group Multicast Protocol. Distributed Systems
Engineering, Special Issue on Performance Modelling (ed. Peter G.
Harrison), vol. 8, no. 1, pp. 39-52, March 1996.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Exploiting
the Internet Inter-ORB Protocol Interface to Provide CORBA with
Fault Tolerance. In Third USENIX Conference on Object-Oriented
Technologies and Systems, Portland, Oregon, June 1997.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. The Intercep-
tion Approach to Reliable Distributed CORBA Objects. In Panel on
Reliable Distributed Objects, Third USENIX Conference on Object-
Oriented Technologies and Systems, Portland, Oregon, June 1997.

OMG. CORBA/IIOP 2.1 Specification. Object Management Group,
http://www.omg.org/corba/corbiiop.htm, 1997.

L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade,
P. Verisimo, and K. Birman. A Transparent Light-Weight Group
Service. In 15th IEEE Symposium on Reliable Distributed Systems,
p.130-139, Niagara-on-the-Lake, Canada, October 1996.

Fred B. Schneider. Byzantine Generals in Action: Implementing
Fail-Stop Processors. ACM Transactions on Computer Systems 2:2,
pp.145-154, May 1984.

Fred B. Schneider. The state machine approach: a tutorial. Tech-
nical Report TR 86-800, Department of Computer Science, Cornell
University, December 1986. Revised June 1987.

D. Skeen. Determining the Last Process to Fail. ACM Transactions
on Computer Systems, Vol. 3:1, pp.15-30, February 1985.

W. Sanders and J. Meyer. Performability Evaluation of Distributed
Systems Using Stochastic Activity Networks. In Proceedings of the

[VB97]

[Vis97]

[Vit9g]

[VRBMY6]

[Wan97]
[ZBS97]

100

International Workshop on Petri Nets and Performance Models, pp.
111-120, Madison, WI, August 1987.

A. Vaysburd and K. Birman. Building Reliable Adaptive Distributed
Objects with the Maestro Tools. In Workshop on Dependable Dis-
tributed Object Systems, OOPSLA’97, Atlanta, Georgia, October
1997.

Visigenic. VisiBroker. Visigenic Software,
http://www.visigenic.com/prod/, 1997.

Vitria. Vitria Velocity. Vitria Technology, Inc.,
http://www.vitria.com, 1998.

R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible Group
Communication System. Communications of the ACM, 39(4):76-83,
April 1996.

Yi-Min Wang. Private communication, November 1997.

J. Zinky, D. Bakken, and R. Schantz. Architectural Support for Qual-
ity of Service for CORBA Objects. Theory and Practice of Object
Systems, April 1997.

