
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 7 Issue 2 February 2018, Page No. 23557-23566

Index Copernicus Value (2015): 58.10, 76.25 (2016) DOI: 10.18535/ijecs/v7i2.07

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566. Page 23557

Building Software Component Architecture Directly from User

Requirements

Badamasi Imam Ya’u
1
 and Muhammed Nura Yusuf

2

Mathematical Sciences Department, Abubakar Tafawa Balewa University, Nigeria.

Abstract:

Building software architectures from a set of requirements has been an area of research where programmers,

architects and software engineers spend a lot of time using their expertise in resolving peculiar problems of

mapping requirements to architectures. Some of these problems are directly associated with the ambiguity,

incompleteness and inconsistency of requirements which draw a wide gap between the informal and formal

specification of these requirements. The main objective here is to reconcile the mismatch in-between these

domains by providing a systematic mapping technique. This paper presents a tool from which requirements

are read from user in natural language or file and generated into words whereby the user makes some

selections and maps the selected words directly to components architecture. Based on the design of this tool,

human heuristic is used in the selection of the words. Unlike components, connectors are set as static. Partial

architecture of requirements is drawn incrementally until complete system architecture is constructed.

Keywords: Component-based, Requirements Mapping, Architecture, Natural Language

1. Introduction

Component-based development is a branch of

software engineering, which aims towards

systematic way of reusing pre-built software

components or sub-systems in a cost effective

manner for building larger systems incrementally

[1, 2]. Reusability of software units is very

important especially in developing complex

software systems [3, 4]. Unlike in the past when

software systems were being developed from

scratch through long processes of writing codes,

the introduction and wide acceptance of

component-based software development make a

lot of activities in industries very easy and making

productions very fast. The contribution of

component-based development does not lie only

on the reusability of the software units, but also

plays a vital role of reducing software products

time to markets, giving opportunities for system’s

upgrade and offering cost effective software

development.

One of the challenges in of software development

has been a mapping process between the two

domains of software development, that is, the

problem and the solution domains. This may be

related to the wide gap between the requirements

specification and the software architectures. Many

approaches have been tried to make reconciliation

in bridging the gap in between these two domains

to achieve an effective and straightforward

mapping [5]. However, there is still a clear gap to

automate the process completely.

This paper presents and describes a tool that takes

requirements presented in natural language as

input and enables incremental construction

(drawing) of these requirements to partial

architecture. The tool reads requirements from file

or directly from user, splits the words contained in

the requirements and generates component

automatically from these words according to

selection made by a user. The mapping (in this

case, the generation of components) and drawing

processes require human intervention in which

heuristics and guidelines are used. The paper

adopts a component-based model [6-9] that

possesses properties of encapsulation and

compositionality; using exogenous connectors

from all levels of compositions. As such, the

selection of the words completely depends on the

key semantics of the adopted component model

which are “computation and control”. The

rationale here is to build a partial architecture from

requirements using direct and systematic mapping.

The architecture is built incrementally until it is

http://www.ijecs.in/

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23558

complete and satisfactorily for the set of the

requirements.

2. Mapping of Requirements to Architectures

In general, software development process

constitutes a collaborative effort between

requirement engineering and architectural design

activities. To understand the relationship between

requirements and architectures, we need to define

what a mapping is all about.

According to web dictionary [10], mapping is

defined as “function: (mathematics) a

mathematical relation such that each element of a

given set (the domain of the function) is associated

with an element of another set (the range of the

function)”. From this definition, mapping of

requirements to software architectures can be seen

as the concrete relationship that transforms the

elements of the requirement domain to an

architecture view point of the requirements.

2.1 Related Approaches

The Researchers have been looking for an efficient

and cost-effective ways of mapping requirements

to appropriate architectures that perhaps

accomplish the software development process. As

a result, a lot of activities have been done right

from traditional mapping approach, which is

considered inadequate [11] due to its limited

technique of mapping requirements directly to

architectures. Hitherto, many approaches claim

improvement in mapping requirements

successfully to architectures. The following are

some of the approaches.

A. Behaviour Tree: Behaviour tree is defined by

Dromey in [12] as “a formal, tree-like graphical

form that represents behaviour of individual or

networks of entities which realize or change states,

respond- to/ cause events, and interact by

exchanging information and/ or passing control”.

The technique entails a straightforward translation

of the requirements represented in natural

language in a systematic sentence-to-sentence,

phrase-to-phrase or word-to-word style. The

mapping and incremental addition of requirements

in this approach are related to the context of this

paper. Figure 1 shows the component-state, a rule-

kind for the design of the architecture that strictly

depends on the expression found in a set of

requirements. Because of these rules, the

translation clearly exposes all actors and

components involved, the interactions between

them, constraints that control the behaviour and

events and conditions that trigger change of state

initially realized. The nature of the translation

makes the relationship between the informal and

formal specification so strong, flexible, clear,

direct and hence traceable especially in the case of

redundancy control, missing and update of

requirements [13, 14]. In the translation process,

individual functional requirements that are

recognized as fragments of behaviour are

represented in a form of tree i.e. the words in the

natural language that show the behaviour,

condition, constraints, state are extracted and put

in a tree-like form with some links indicating the

flow of the activities.

B. Feature Oriented Mapping: Feature oriented

mapping is a software system development

approach that claims mapping of requirements

directly to architectures. This is a move towards

improving the limitations of traditional, structured

and objected oriented approaches in mapping

requirements directly to software architectures. It

is related to this paper in the sense that, the

mapping process between the two domains

(problem and solution) is natural and direct. A

feature in this respect is defined as “a higher-level

of abstraction of a set of relevant detailed software

requirements, and is perceivable by users (or

customers)” [11]. The goal of feature-oriented

mapping is to carry out a direct and natural

mapping between feature model and architecture

model by establishing a concrete mapping

relationship between the requirements and

software architectures. In this attempt, significant

roles of functional and non-functional features are

observed and handled separately. As a result, the

mapping process entails two phases: feature

oriented requirements modelling and feature

oriented architectural modelling. This is depicted

in figure 2 [11].

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23559

Figure 1: Behaviour tree notation, key elements from [15]

Figure 2: Mapping feature model to architecture model [11]

3. Methodology

3.1 Selection of Words for Conceptual

Components

It is expedient to know how words are selected and

mapped from a table for the generation of

conceptual components. In this regard, the

components are called conceptual components

because they are not found in any repository. Rather,

the components are derived directly from the words

in the requirements. To get these components right,

the following guidelines should be followed:

 Identification of parts of speech that express

computations. In this paper two key semantics are

considered: computation and control, which are

associated directly with components and connectors

respectively. Computation expresses a functionality

a component renders in terms of actions such as data

storage, verification, execution, calculation etc.

Glaringly, in the context of parts of speech, verbs,

nouns and phrases express actions performed in

sentences [16]. Since we are dealing with sets of

requirements written in natural language, we now go

through each requirement scrupulously and select

some of these words or phrases that express unique

actions that give a manifest picture of those

requirements. Here, the user should use heuristic to

identify the right candidates so that even if another

user is to use the same set of requirements, virtually,

the same result is obtained. Some of these

candidates that express computation from a sentence

include:

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23560

a. Verbs. It is obvious that verbs always express

actions. Some examples of these are: press, click,

go, close, open, drag, drop, insert, print, display,

delete, and calculate, among others.

b. Nouns. Although nouns are names of anything,

some of them clearly express actions. E.g.

authentication, movement, illumination, indicator,

generation, sound, withdrawal, to mention a little.

c. Phrase. Some combination of words such as: saving

accounts, next floor, get balance, add to, switch off,

push button, dispense cash, increase speed, slow

down, apply now, enter password, and the rest.

 Select or skip words. When such words with

computation are identified, the user selects them and

adds more information such as caption and

description for generation of the conceptual

components when drawing the architecture. When

reading the requirements, some of the words are not

used because they do not clearly show any

computation or control, therefore the user is required

to skip them and go with the right ones.

3.2 Selection of Composition Connectors

Having two or more components, it is necessary to

find a connector that joins these components to form

composite components. The connectors that

accomplish this task are called composition

connectors. These connectors come with different

functionalities with respect to the nature of control

flow between components. For this component

model viewpoint, these connectors are termed

exogenous connectors [17], which popularly

include: selector connector, for branching between

components; pipe connector, for forwarding data

required in another component; sequencer

connector, for making a serial execution among the

components. Since exogenous connectors

encapsulate control in this model, and the tool does

not make automatic text analysis about which word

from the requirement should act as connector when

building the partial architecture, human talent is also

used here to decide the type of the connector that

best suits for the compositions. To be able to

compose the architecture well, the following

guidelines should be used:

 Identification of control flow: Before any decision

is made with regarding to the choice of

connectors, the user should critically observe how

the components he intends to connect interrelate

with each other in the requirements. In other

words, he should identify the lexical flow that

binds the expression of the components according

to the requirement statement. To make the

identification of the control flow easier, the

following parts of speech are taken in to

consideration:

a. Preposition. This is part of speech that connects a

noun to another word in a sentence. Some of these

include: to, at, after, on, before, etc.

b. Conjunction. This is the type of part of speech that

joins clauses or sentences or words. E.g. and, but,

when, or, etc.

 Connector tree node: Unlike the component tree

node that is generated directly from the selected

words, the connector tree node is generated anytime

the application is run. The tree node provides two

more connectors namely: guard connector, for

filtering data movement from one component to

another; and loop connector, for making an iterative

execution. Depending upon set of requirements, the

user should heuristically choose any of the connector

from the tree node based on the identified control

flow found in the requirements expression.

Since the nature of the control flow always varies,

preposition and conjunction significantly help the

user in identifying the interrelationship between

conceptual components according to their

appearance in the requirements.

3.3. Composition of partial Architecture

Assuming all components required for drawing the

architecture are mapped into the component tree

panel of the application, it is now time to compose

the partial architecture in an incremental fashion in

the drawing panel provided. The user follows the

following steps to draw the component based partial

architecture:

 Drag and drop. To be able to draw anything in

the drawing panel, the user should drag and drop

components in the drawing panel.

 Original order of the requirements. Normally,

when building component architecture from set of

requirements, a sequential technique is used. A

sequential in the sense that, in bottom up design,

components composition begins from the root

upward. In this case, compositions absolutely

depend according to the original presentation of

requirements i.e. from requirements one to the last

unless otherwise some specifications are given.

Therefore, a user starts the composition with the

first requirement, followed by second and

continued till the last one is reached.

 Connection of the shapes. All component and

connector shapes in the drawing panel are joined

together by right click option from the mouse

button. The user connects two or more shapes by

selecting their names hence, connection is done

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23561

immediately. In the same way, the connection can

be removed when it is not needed.

 Deleting a Connector Node. At any level of the

drawing, any shape drawn in the panel can be

deleted as well as how components are added in

the components tree pane. However, connector

tree node is not erasable. This is due to the fact

that these connectors are designed to be static in

the code. If user attempts to delete a connector

node, a warning message is displayed, which

notifies the user that, a connector cannot be

deleted.

3.4 Complete Example

The following is a simple example that presents a

detailed step by step process of mapping

requirements to architecture. In this example,

complete system architecture for counting words

from a file is built incrementally from given set of

requirements. The requirements are enumerated

below:

R1. The system shall take a file name as an input.

R2. Each time a file is given, it must be validated. If

the file name is invalid, an error message will be

displayed.

R3. Once validated, the words in the file will be

formatted according to the type of input file.

R4. The formatted word will then be counted.

R5. The result of the calculation that contains the

number of words in the file will be displayed to the

user.

Starting always from the first requirement, the

phrase “take a file name” expresses a computation

and the noun “input” defines the nature of the

computation. From this expression, we need a

component in the architecture for reading a file

input. From R1, the word “input” is chosen to be the

conceptual component and adding to it a suitable

name, in this case “Input Reader”. For the R1, only

one component is required.

From R2, the phrase “must be validated” indicates

that something must occur after the commencement

of an event. For this reason, we require a component

unit for this phrase, say “File Validation”. To

generate this component, the word “validated” is

chosen from the sentence. From the phrase “each

time a file” at the beginning of R2, it is indicated

that the “File Validation” component always

requires an input from the “Input Reader”

component. In this situation, a pipe connector is

required for composing these components. The two

components along with the pipe connector are

composed as shown figure 3.

The second part of R2 is a conditional statement for

testing the validity of the file. Displaying error in

this regard expresses computation. Another

component therefore, for error message is required.

The word “displayed” is added and a name “Error

Massage” is given to the component. Since there is a

condition, the conjunction “if” specifies a selector

connector to branch between components.

R3 completes the conditional expression about the

validation process taking place in “File Validation”

component. When the condition is true, the

expression “will be formatted” suggests another

component unit to carry out some computations. The

word “formatted” is also selected from the sentence

with a caption “Format File”. Since the condition is

to go one of the two ways, the selector connector

initially identified is used to compose “Error

Message” and “Format File” components as

described in figure 4.

Requirement four is straighter forward. The verb

“counted” expresses computation and for this

reason, a component “Word Counter” is needed.

This verb is now chosen as conceptual component.

In R4, the expression “will then be” shows a

transition of data from one place to another. This

indicates a pipe connector is required for the partial

composition of the component “Word Counter” with

other composite components from R1, R2, and R3.

To achieve this composition, two more pipe

connectors at higher and lower levels are required

Figure 3: First composite component

Figure 4: Second composite component

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23562

respectively. This is because the levels of

composition of the components are now different

because of selector connector that branches down.

This is shown in figure 5.

Figure 5: Third composite component

Similarly, in R5, the phrase “will be displayed”

defines a computation. A component “Display

Result” is required. The verb “displayed” is chosen

as the conceptual component. Figure 6 shows the

final system architecture of world count problem.

4. Implementation

This section explains in detail how the application

in this paper is implemented. Much time was spent

in the process of coding to ensure the application

runs and works according to the aims of the paper.

One of these aims is the automatic analysis of text

from a set requirement in natural language which is

not achieved hitherto this implementation.

However, the application accepts and maps words

from the requirements into components shapes.

This allows user to draw component partial

architectures that will satisfy the set of

requirements. Since the selection of the words are

done manually by the user, a heuristic approach for

decision making upon which words to use as

conceptual components is used as described in the

previous section.

Figure 6: Final system architecture of word count

4.1 Description of the Tool

This paper entails two major parts: the mapping of

requirements and transformation of these

requirements into component-based architectures.

The requirements are the description and

specification of a system to be developed, which are

written informally in natural language form. In the

first part, requirements in English language are read

from user through keyboard or loaded from existing

file stored on disk or from any device connected to

the computer and thereafter, the entire words that

makeup of requirements are generated serially in a

tabular form. When the generation is done, options

are given in respect to which words to be selected

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23563

and mapped as conceptual components. The chosen

candidates are transformed and arranged into

component tree node automatically. Component

based partial architectures that represent and satisfy

the set of requirements read are drawn incrementally

in drawing panel of the application by employing a

drag and drop technique. To facilitate the

composition during the drawing, exogenous

connectors in connector tree node are used.

However, unlike components, these connectors are

set as static during the runtime.

Figure 7: Structure of the system

When the application is launched, the first screen

(screenshot 4.1) is displayed. From this, the user has

options to choose a file or edit menus. The file menu

provides more options such as new, for starting new

architecture drawing; open, for browsing and

opening saved work; save, for saving current work;

and exit, for closing the application. While the edit

menu offers three options: read requirements from

file, enter new requirements and delete. At the left

side of the screen, is a tree node panel that consists

of upper and lower panes for components and

connector respectively. The structure of the system

is illustrated in figure 7.

Let us assume there is no any saved architecture

design and would like to start by reading

requirements from one of the sources (say file). In

this case, edit menu and requirements from file

options are selected. A dialog box that shows all

folders stored in the system launching the

application and devices attached to it is displayed.

The same dialog box is displayed when user intends

to open saved file from the file menu option. When

this option is chosen, the tool reads all the

requirements word by word in the file at the same

time, leaving no any single token behind.

Screenshot 4.1: First screen of the application

Screenshot 4.2: A table generating strings of requirements

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23564

In a situation where the requirements are to be

read directly from user via keyboard, enter new

requirements option in the edit menu is selected

and thereafter input dialog box is popped up.

Unlike reading requirements from a file, in this

option, a user can enter one or more requirements

at time in the text box, and by clicking OK, any

character that is typed, is displayed serially in a

table as shown in screenshot 4.2. The same table

generates words when requirements are read from

file. With the aid of drag and drop, components

and connectors are manipulated in the drawing

panel until complete system architecture is built.

Screenshot 4.3 shows the complete system

architecture for the word count example

illustrated in subsection 3.4. These online tutorials

[18-20] were found helpful during

implementation of this tool, in particular on the

features that make every shape movable from one

point to another.

The tool presented in this paper is not designed

and implemented for a specific problem. The tool

is generic and can be used to read more

requirements of arbitrary size from variety of

problems and hence construct their respective

system architectures.

Screenshot 4.3: Final system architecture of word count example

5. Discussion and Conclusion

One of the most important and non-trivial areas

of software engineering is component-based

development which entails finding solution for

mapping requirements to software architectures.

Because of the ambiguity, inconsistency and

incompleteness of requirements presented by

stakeholders, transformation between these

domains becomes a labor-intensive activity.

However, many researchers come up with

different approaches that address this issue.

In this paper, a tool for constructing component-

based architectures was implemented. The

purpose is to map user requirements presented in

natural language directly to component-based

architecture which satisfies these requirements.

The tool reads requirements either directly from

user or from a file, splits each requirement into

words and automatically generates components

from a selection made by a user. Although the

mapping of the words to components is

automatic, human heuristic is used throughout for

decision making regarding which word of the

requirements will be selected. The tool offers an

incremental composition as the construction of

the architecture is done manually one at a time

based on the original order of the requirements.

From the literature survey, we found that some

approaches that claim design solutions from

requirements to architectures were proposed.

Feature oriented mapping is chosen as related

mapping approach in the sense that, requirements

are organized in feature model from which

architectures are derived using a direct and

natural mapping. One of the aims of this paper is

to offer this kind of mapping. Furthermore, the

approach offers iterative and incremental

activities during the development. Mapping

process is done manually based on the features

identified and refined from the requirements.

However, this approach deviates from this paper,

because it not developed on the background of a

component-based model.

Behavior tree in the other hand is more closely

related to this paper. The primary task of the

paper is to construct component-based

architecture incrementally from a set of

requirements using a direct mapping that

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23565

eventually satisfies these requirements. Behavior

tree approach does this but, clearly in different

way. Though it performs well in incremental

composition, it however falls short in systematic

definition of component development concept.

This is due to the fact that, the development of

the system is capitalized on the view of the

constructed tree i.e. design behavior tree (DBT).

In this approach, systems are developed from

scratch to the end. The approach is cumbersome

to use in a very large and complex systems and

this militates against its adaptability. Some of the

major things that incur problems to the usability

of behavior tree are the nature of its semiformal

notation and lack of tool support. Because of the

prevailing nature of the notation, the semantic of

behavior tree is not that precise. For instance, to

have a component view of the design, individual

components are papered out; ignoring all other

component-states.

Despite the similarities mentioned earlier in the

related approaches, this paper implements a tool

that offers a technique of mapping requirements

to partial architecture in a quite different way.

One distinguishing feature is the way

requirements are read, split into words and

transformed into components. This enables user

to systematically drag, drop and draw partial

architecture incrementally according to the

original requirements order.

6. Future Work

This paper is a step towards mapping

requirements to components-based software

architecture. However, the tool presented and

implemented in this paper is currently limited to

generation of components automatically from a

selection of words made by user, while

connectors are generated as static in the runtime.

Any other activity is done manually using human

heuristic. In future, a text analyzer will be

designed and added to the tool. This will make

the application more scalable and robust

especially when dealing with large number of

requirements.

Acknowledgment

This work is sponsored by Tertiary Education

Trust Fund (TETFund) of Nigeria. We would also

like to thank the Department of Mathematical

Sciences, Faculty of Science and Abubakar

Tafawa Balewa University Bauchi for the support

and promotion of research activities.

References

[1] Sommerville, I., Software documentation.

Software engineering, p. 143-154, 2001

[2] B.I. Ya’u, "Component-Based: The Right

Candidate for Restructuring the Nature of

Software Development in Organizations",

International Journal of Engineering and

Computer Science,4(8): pp. 8, 2015

[3] B.I. Ya'u, A. Nordin, and N. Salleh,

"Investigation of Requirements Reuse

(RR) Challenges and Existing RR

Approaches", Advanced Science Letters,

2017

[4] B.I. Ya'u, A. Nordin, and N. Salleh,

"Software Requirements Patterns and

Meta model: A Strategy for Enhancing

Requirements Reuse (RR)", in IEEE

International Conference on Information

& Communication Technology for the

Muslim World (ICT4M 2016)

Conference, Jakarta Indonesia. 2016

[5] P. Grünbacher, A. Egyed, and N.

Medvidovic, "Reconciling software

requirements and architectures with

intermediate models", Software &

Systems Modeling, 3(3), pp. 235-253,

2004

[6] Z. Wang, and K.-K. Lau, "Software

Component Model with Encapsulation

and Compostionality", University of

Manchester, 2007

[7] K.-K. Lau, A. Nordin, T. Rana, and F.

Taweel "Constructing component-based

systems directly from requirements using

incremental composition", in 36th IEEE

EUROMICRO Conference on Software

Engineering and Advanced Applications

(SEAA), 2010

i. Nordin, "Constructing

Component-based Systems

Directly from

Requirements Using

Incremental Composition",

2013

[8] K.-K Lau, and F.M. Taweel, "Data

encapsulation in software components", in

International Symposium on Component-

Based Software Engineering, Springer,

2007

[9] WordNet. [cited 2016 25-02-16]; Available

from:http://wordnetweb.princeton.edu/per

l/webwn

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn

Badamasi Imam Ya’u, IJECS Volume 7 Issue 2 February 2018 Page No. 23557-23566 Page 23566

[10] Liu, and H. Mei, "Mapping Requirements to

Software Architecture by Feature-

Orientation", in STRAW, 2003

[11] G.Dromey, "Formalizing the transition from

requirements to design", 2006

[12] R.G Dromey, "Using behavior trees to model

the autonomous shuttle system", in 3rd

International Workshop on Scenarios and

State Machines: Models, Algorithms and

Tools,(SCESM04), IET, Edinburgh, 2004

[13] G. Dromey, "System Composition:

Constructive Support for the Analysis and

Design of Large Systems", 2005

[14] R.G Dromey, "From requirements to design:

Formalizing the key steps", in

Proceedings of IEEE First International

Conference on Software Engineering and

Formal Methods, 2003

[15] M. Saeki, H. Horai, and H. Enomoto,

"Software development process from

natural language specification", in IEEE

11th International Conference on

Software Engineering, 1989

[16] K.-K. Lau, P.V. Elizondo, and Z. Wang

"Exogenous connectors for software

components" in Software Engineering

International Symposium on Component-

Based, Springer, 2005

[17] DnD (Drag and Drop) JTree code. [cited

2011 11-11-11]; Available from:

http://www.java2s.com/Code/Java/SwingJ

FC/DnDdraganddropJTreecode.htm

[18] Resizable Component in Java Swing. [cited

2010 07-05-10]; Available from:

http://zetcode.com/tutorials/javaswingtuto

rial/resizablecomponent/

[19] Swing- An example of drag and drop in JTree

[locked. [cited 2010 13-05-10]; Available

from:

http://forums.sun.com/thread.jspa?threadI

D=296255&start=0

http://www.java2s.com/Code/Java/SwingJFC/DnDdraganddropJTreecode.htm
http://www.java2s.com/Code/Java/SwingJFC/DnDdraganddropJTreecode.htm
http://zetcode.com/tutorials/javaswingtutorial/resizablecomponent/
http://zetcode.com/tutorials/javaswingtutorial/resizablecomponent/
http://forums.sun.com/thread.jspa?threadID=296255&start=0
http://forums.sun.com/thread.jspa?threadID=296255&start=0

