
Building, testing and distributing common software for the

LHC experiments

Javier Cervantes Villanueva1, Gerardo Ganis1,∗, Dmitri Konstantinov2, Grigorii Latyshev2,

Pere Mato Vila1, Patricia Mendez Lorenzo1,∗∗, Rafal Pacholek3, and Ivan Razumov2

1CERN, Switzerland
2NRC Kurchatov Institute - IHEP, Protvino, Russia
3AGH University of Science and Technology, Poland

Abstract. Building, testing and deploying of coherent large software stacks is

very challenging, in particular when they consist of the diverse set of packages

required by the LHC experiments, the CERN Beams Department and data anal-

ysis services such as SWAN. These software stacks include several packages

(Grid middleware, Monte Carlo generators, Machine Learning tools, Python

modules) all available for a large number of compilers, operating systems and

hardware architectures.

To address this challenge, we developed an infrastructure around a tool called

lcgcmake. Dedicated modules are responsible for building the packages, con-

trolling the dependencies in a reliable and scalable way. The distribution re-

lies on a robust and automatic system, responsible for building and testing the

packages, installing them on CernVM-FS and packaging the binaries in RPMs

and tarballs. This system is orchestrated through Jenkins on build machines

provided by the CERN Openstack facility. The results are published through

user-friendly web pages.

In this paper we will present an overview of these infrastructure tools and poli-

cies. We also discuss the role of this effort within the HEP Software Founda-

tion (HSF). Finally we will discuss the evolution of the infrastructure towards

container (Docker) technologies and the future directions and challenges of the

project.

1 Introduction

Modern physics experiments require complex software stacks to build the experiment spe-

cific applications. Stability and reproducibility usually imply a conservative approach in the

choice of the main components; however, the constant need to integrate new developments

and versions to improve performances and usability makes the provision of coherent large

software stacks a dynamic and challenging task. In this paper we present and discuss the way

the CERN EP-SFT [1] group has addressed this task for the needs of ATLAS [2], LHCb [3],

SWAN [4], FCC [5] and the CERN Beams Department [6].

The paper is organized as follows. In the rest of this section we will introduce some

key concept and related terminology. In the next section we discuss the lcgcmake tool,

∗e-mail: gerardo.ganis@cern.ch (corresponding author)
∗∗e-mail: patricia.mendez@cern.ch (presenter)

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018



based on CMake [7] and used to build the required packages. We then describe how this

tool is integrated in a build and deployment infrastructure based on Jenkins [8], and the way

information about the package content of a given release version is provided. Finally we

mention the current and future consolidation and development work.

1.1 The LCG stacks

Figure 1 gives a schematic overview of the various components of the software stack of an

experiment.

Figure 1. Overview of the various components of an experiment software stack.

The experiment applications determine the package content of the entire stack. Some of

these packages may be available in the official distribution repositories of the given operating

system (OS); these represent the system prerequisites and in the figure these are the two

blocks at the bottom 1. The provision of the LCG stacks, which stand between the experiments

applications and the system provided components, is the subject of this paper.

The LCG stack is made of packages. A package can be of three types:

• contrib: these are utility packages upgrading the equivalent packages provided by the

system; typical examples are compilers or, for some systems, CMake;

• projects: these are packages developed in CERN EP-SFT or related CERN IT projects;

examples are ROOT [10], Geant4 [11], COOL/CORAL [12];

• externals: this category comprises all the remaining packages. Three sub-categories are

singled-out, mostly for historical reasons:

– gridexternals: these sub-category includes packages providing functionality related

to the Grid;

1In the case of the LCG stacks, the system pre-requisites are provided by a meta package called HEPOSLibs [9]

which will not be discussed any further.

2

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018



– pyexternals: these sub-category contains purely Python external packages;

– generators: these sub-category contains physics generators; the particularity is that

more versions of the same generator can be part of stack; support for multi-version will

be discussed later on.

The system currently manages about 400 packages; these packages are mostly written

in C++ and Python, though there are still C and Fortran packages, in particular among the

generators.

1.2 Type of builds: releases and nightlies

To provide reproducibility, exact control of the content of a given stack is required. To achieve

that, a major version number and a tag is assigned to the set of package, version which

constitutes an LCG stack. A tagged LCG stack is called a release. At the time of writing, the

major version is 94 and the corresponding tag is LCG_94.

A particularity of the LCG stacks is that the change in the global major number is driven

by new releases of the ROOT package, one of the project packages on which almost all the

experiment applications depend on; as an example, LCG_94 is based on ROOT v6-14/04.

In order to test future releases, two development builds are provided, which differ by the

ROOT version included. For historical reasons, these are called dev3 and dev4 and have the

following composition:

• dev3: head of ROOT master; latest versions of validated packages;

• dev4: head of patches branch of latest ROOT tagged release, e.g. v6-14-00-patches;

latest versions of validated packages.

The development builds dev3 and dev4 are provided on daily basis and called nightlies (they

are built during nights); the builds are kept for seven days.

1.2.1 Python 3 builds

The release tag is also used to indicate a particular specialisation of a build. The notable

example is the case of builds with Python 3, the artefacts of which cannot be mixed with

those of the default build for which Python 2 is used. Python 3 builds are flagged with the

suffix python3 - e.g. LCG_94python3; de facto, these are considered as a different platform

(see Sect. 1.4).

1.3 The life-cycle of a new package

A new package is initially built on a local node to determine the relevant configuration and

build options. A first integration build, flagged experimental is then attempted and, if suc-

cessful, the package is included in the development builds, to appear in the nightlies. The

new package will then be included in the next release.

1.4 Platform concept

In order to keep up the needs of the experiments in terms of OS, architecture, compiler, debug,

instruction sets, etc. the concept of platform is introduced. The platform identifies a given

build configuration following the scheme [13]

Architecture-OS-Compiler-BuildType

3

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018



where the different components carry the following meaning:

• Architecture indicates the computer architecture for which the build is made. Most of

the builds are done for x86_64 or extension of that, e.g. x86_64+avx2+fma . Support for

arm64 is still experimental and part of the future work. 32-bit architectures are not required

anymore and not built by default;

• OS denotes the operating system. The reference OSs are the Linux flavours proposed by

CERN, which, at the time of writing, are Scientific Linux CERN 6 (slc6) and CERN

CentOS 7 (centos7). Ubuntu builds are provided for single users, not necessarily from

the customer experiments; these builds provide a test of the entire procedure on newer

distributions and to anticipate problems;

• Compiler brings information about the compiler name and its version. The choices in terms

of compilers are driven by the experiment’s needs. The set of compilers in use could be

split into two different categories: production-ready compilers such as GCC 6.2 and GCC

7 2, and more recent versions or compilers under testing such as GCC 8 or Clang 6.0.0 .

The term native refers to the compiler coming with the system and it is only used when

it is modern enough, as usually on the latest Ubuntu OSs;

• BuildType denotes whether the build is a debug build, an optimized build, and any other

special setting. Debug (dbg) and optimized (opt) are treated as separate builds. Debug

build are produced for all packages, though this may not be strictly required and will be

reviewed in the future.

Table 1 shows the combinations currently managed. Not all the combinations are built;

for example, the LCG_94 release has been provided for 14 combinations for each Python

flavour; the development builds contain a similar number of combinations, focusing more on

combinations which need validation and testing, such as those involving recent compilers.

Table 1. Platform combinations: choice currently supported. In parenthesis those more experimental

not used for releases. The list of platforms actually available for a given release or nightly build are

provided by the LCGInfo web site at http://lcginfo.cern.ch

.

Architecture OS Compiler Build Type

x86_64 slc6 native opt

x86_64+avx2+fma centos7 gcc62 dbg

(arm64) ubuntu16 gcc7

ubuntu18 gcc8

(mac) clang60

1.5 Deployment and packaging

One of the relevant aspects relates to the way the additional binaries are provided. The main

distribution vector for the LCG stacks is CernVM-FS [14], a read-only, cache-aggressive

network file system optimized for software distribution and widely used at LHC. The project

manages two CernVM-FS repositories for this purpose:

/cvmfs/sft.cern.ch contrib packages, releases, views

/cvmfs/sft-nightlies.cern.ch nighlies development builds

2The meaning of the major number in GCC releases changed with version 7: the minor did become the major, so

that it is not necessary anymore to specify the minor when specifying the GCC version.

4

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018



The main reason to have two different repositories is the different life cycles of the in-

formation included: the main repository /cvmfs/sft.cern.ch contains reference informa-

tion; the other repository contains information being recycled and garbage collected after one

week. To give a common view to all the deliverables, releases and development builds, sym-

links to the relevant nightlies directories are created under the main repository, so that it is

possible, de facto, to work only with the main repository.

Views

To simplify the setup of a given set of packages, either a release or a nightly, as well as run-

time lookups, the concept of view has been introduced. A view is a path that contains all what

is required to run the chosen release or nightly as a large global meta-package, with a Linux-

system-like organisation of the packages and files provided by a release or nightly. For the

LCG stacks, views are created on CernVM-FS under /cvmfs/sft.cern.ch/lcg/views for

each release and nightly build sym-linking the relevant files, for example under the common

bin, lib, etc, include directories. To use a view, the user only needs to source the relevant

setup.{sh, csh} file. For example:

lxplus7 $ source /cvmfs/sft.cern.ch/lcg/views/LCG_94/x86_64-centos7-gcc7-dbg/setup.sh

lxplus7 $ gcc -v

...

gcc version 7.3.0 (GCC)

lxplus7 $ which root

/cvmfs/sft.cern.ch/lcg/views/LCG_94/x86_64-centos7-gcc7-dbg/bin/root

1.5.1 Packaging

To better address the needs of the customers, the releases are also provided in packaged form

as RPMs or binary tarballs. Recently the possibility to pack the full content of a release in

Docker containers has been introduced. All these artifacts are available from the EOS storage

system [15], which, as described later, is an essential component of the build and continuous

integration infrastructure.

RPMs. RPM format is provided for the convenience of the experiments, in particular

ATLAS and LHCb, for which the LCG stack is an extension of the distribution. The RPM

repository is available through the web interface of the EOS system. The path to the RPM

repository is

https://lcgpackages.web.cern.ch/lcgpackages/rpms .

Binary tarballs. Binary tarballs are the initial format used for the installation of CernVM-

FS; they are available for both releases and nightly builds. The path to the tarball area is

https://lcgpackages.web.cern.ch/lcgpackages/tarFiles .

Containers, The packaging via Docker containers has been introduced with LCG_93 and

it is still in experimental phase. It addresses the use cases where CernVM-FS is not pro-

vided/installed on the system, therefore software package have to be alternatively provided.

The resulting containers images, which therefore include all the binaries of the release, are

quite big, approximately 20 GB 3. Ready-to-use containers can be found at

https://lcgpackages.web.cern.ch/lcgpackages/docker .

3To reduce the size of the generated containers to the essential, the system can include only a pre-defined subset

of required packages.

5

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018



1.6 Release content information

Detailed descriptions of the releases and development builds are available on GitLab. The

exact content of a release or a development build, in terms of packages and available plat-

forms, is provided by the LCGInfo web site at http://lcginfo.cern.ch. This site also

allows to compare the content of two releases and determine the exact details about what

has changed. Figure 2 shows a snapshot of the configuration differences page for releases

LCG_94 and LCG_93c.

Figure 2. LCGInfo: comparison between LCG 94 and 93c content.

2 LCGCmake

The lcgcmake tool is based on CMake [7], a set of tools increasingly used to control the

software compilation process using simple platform and compiler independent configuration

files.

The main components of lcgcmake are:

• LCGPackage_Add

A wrapper of the ExternalProject_Add function customized for LCG packages which sup-

ports: pure binary package installations, incremental builds and a central release area to

avoid building already existing projects;

• The toolchains defining the detailed content of a given release, i.e. a list of package name

and versions. These are CMake files listing the packages project, externals, generators

being included in the release.

2.1 The lcgcmake GitLab repository

The lcgcmake infrastructure is available on CERN GitLab service

https://gitlab.cern.ch/sft/lcgcmake

and it is organized as a high-level CMake project. Each of the main package categories above-

mentioned has its own directory. The rest of common tools, modules and scripts are defined

under the cmake directory as well as the CMake files with the toolchain definitions.

6

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018



The tool can be run as a normal CMake project, with usual cmake, make, make install

sequence to configure, build and install the chosen release on the local system. Alternatively,

a high level interface is available through the script lcgcmake, providing a more user-friendly

interface to the whole infrastructure 4.

3 The continuous build and integration infrastructure

To automate the whole process a Jenkins automation server is used [8]. In addition to the key

tool, described above, the key elements of this system are:

Build nodes. The EP-SFT Jenkins infrastructure, which is used for all the group projects,

including ROOT, Geant4 and CernVM, manages approximately 500 cores. The bulk of the

build nodes are virtual machines hosted by the CERN Openstack instance, with CERN sup-

ported linux distributions flavours - currently Scientific Linux CERN 6 (slc6) and CERN

CentOS 7 (centos7), the latest long-term supported Ubuntu versions (currently 16.04 and

18.04) and the supported Fedora versions (currently 27, 28 and 29). A set of Mac nodes

running the supported versions of Mac Os X are also managed by Jenkins. For the purpose

of the LCG stacks, the Mac and Fedora nodes are not used on regular basis.

A set of centos7 nodes is reserved for running the build jobs inside docker containers.

Pre-configured Docker containers are available through the GitLab container registry for the

required flavours. Despite being rather recent, the implementation of this functionality is

continuously improved and is mature enough to be used for the development builds.

EOS shared area. The EOS project used to provide the packaged releases is also used

as a shared area between the build nodes. The tarballs with the sources are stored in there

and the results of the builds are saved by the jobs into a dedicated path and picked up by the

subsequent jobs to finalise the required objective.

Scripts. The bash and Python scripts used by Jenkins to control the required workflows

are taken from a dedicated GitLab repository, https://gitlab.cern.ch/sft/lcgjenkins .

Dashboard. The dashboard [16], based on CDash [17], allows to monitor the results of the

builds and to retrieve detailed information about the failures. The Jenkins jobs are instructed

to send the information to CDash as last step before closing.

4 Summary and Future work

In this paper we have described the main aspects of the system developed and used by CERN

EP-SFT to provide software stacks to a diverse community of physicist. The system is the

result of many years of pragmatic development and has reached a good level of maturity and

robustness, satisfying the needs of the customers: ATLAS, LCHb, SWAN, Beams and FCC.

A build infrastructure such as the one described in this paper requires continuous main-

tenance and research of ways for improvement. Current effort includes: improve validation

and integration testing of the builds in environments as close as possible to the ones used by

the experiments; keep the list of packages up-to-date; consolidate the docker setup with the

goal of fully replacing the VMs; investigate the use of S3 as common shared area; reduce the

publication time to CernVM-FS. And of course follow up any relevant development which

could come from the HEP Software Foundation.

References

[1] CERN EP-SFT, SoFTware Development for Experiments, http://ep-dep-sft.web.cern.ch/

4The project welcome page on GitLab provides all details and options available.

7

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018



[2] The ATLAS experiment, https://atlas.cern/

[3] The LHCb experiment, http://lhcb.web.cern.ch/lhcb/

[4] The SWAN Service, https://swan.web.cern.ch

[5] Future Circular Collider Studies, https://fcc.web.cern.ch

[6] CERN Beams Department, https://beams.web.cern.ch/

[7] Kitware, Inc., CMake, https://cmake.org/

[8] The Jenkins System, https://jenkins.io

[9] A Valassi, HEPOSLibs, https://gitlab.cern.ch/linuxsupport/rpms/HEP_OSlibs

[10] The ROOT Data Analysis Framework, https://root.cern

[11] The Geant4 Simulation Kit, https://geant4.web.cern.ch/

[12] The Persistency Framework, https://twiki.cern.ch/twiki/bin/view/Persistency

[13] B Hegner, HSF Platform Naming Conventions - A Proposal, HSF-TN-2018-01

[14] The CernVM File System, http://cernvm.cern.ch/portal/filesystem

[15] The EOS system, http://eos.cern.ch/

[16] See LCGSoft at http://cdash.cern.ch

[17] Kitware, Inc., CDash, https://www.cdash.org/

8

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020

CHEP 2018


