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ABSTRACT 
 
Message Authentication Codes (MAC) are used to ensure 
the integrity of digital content is not compromised and to 
authenticate the sender. A MAC can be constructed by 
using a message digest and a shared secret value. Two 
different digital contents should have a low probability of 
having the same message digest. This is called a 
collision. Also, when a message digest is used to create a 
MAC, it should be difficult for an adversary to create a 
collision. A rough calculation demonstrates that a 
collision could be found for a 128-bit message digest in 
approximately six hours with a parallel collision attack 
using a special-purpose machine. A composite message 
digest is constructed out of existing functions to decrease 
the probability of collision. Also, the MAC based on the 
composite message digest is constructed so that it is 
difficult for an adversary to create a collision. 
 
Keywords: Authentication, Message authentication 
codes, and message digest. 
 

1. INTRODUCTION 
 
Message authentication permits two or more parties to 
verify that the received digital content is genuine [1].  
Assuring the authenticity of digital content is important 
for electronic communication such as e-mail, e-
commerce, and a paperless environment. A Message 
Authentication Code (MAC), sometimes called a 
cryptographic checksum, is a function of the digital 
content and a secret value shared between the sender and 
the receiver. The MAC generates an authentication token 
that is sent with the digital content [1][2]. The token 
permits the receiver to verify that the sender sent the 
digital content and that the digital content has not been 
modified. Different digital content that generates the 
same token is called a collision. It should be 
computationally infeasible to generate a collision.  
Therefore, the size of the token should be large enough 
to prevent an adversary from using a general attack such 
as the Birthday attack to create a collision [1]. 

The composite message digest and 
corresponding MAC described in this paper is a basic 
component of a complete system for implementing a 
paperless environment in which all digital content is 
authenticated [3]. The message digest is used to create a 

MAC, but the focus is on the message digest ensuring the 
integrity of the digital content. The authentication aspect 
of the MAC will be discussed in a future paper. The 
composite message digest is constructed by 
concatenating multiple existing algorithms so that the 
probability that two different digital contents have the 
same message digest is low. Two common algorithms not 
typically used for generating message digests, CRC and 
Adler, are tested. A composite message digest is 
successfully constructed using CRC algorithms. It is 
difficult for an adversary to create a collision when using 
this message digest.    
 Van Oorschot and Wiener presented a method 
for performing a parallel collision attack in [4]. In 1994, 
they proposed an algorithm and a custom machine that 
cost $10 million that could break MD5 in 24 days.  
Today this machine would cost $14 million. Table 1 
presents the mean number of steps that would be 
necessary to find a collision and the approximate amount 
of time to find one for different size message digests 
using the method in [4] for years 2003 and 2024. As in 
[4], it is assumed that 350,000 special purpose 
processors could be built. The number of steps 
performed each second by each of these processors was 
changed to values that represent technology in 2003 by 
using Moore’s Law that states that processor speed 
doubles every 18 months.  Therefore, the processor 
speed was set to 3x109 steps per second for year 2003 
and scaled accordingly for year 2024. It is assumed that 
the complexity of the algorithm that can find a collision 
is 
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where k is the number of bits in the token and p is the 
number of processors [4].  

Table 1 Mean Time to find a Collision 

# bits E[steps] Year 2003 Year 2024 
128 6.6x1013 6 hours 1 second 
160 4.3x1018 46 hours 1 day 
192 2.8x1023 3.0x106 years 180 years 
256 1.2x1033 1.3x1016 years 7.9x1011 years 
320 5.2x1042 5.5x1025 years 3.4x1021 years 

  
 Table 1 demonstrates that an off-line special-
purpose machine could find a collision for 128-bit hash 
function like MD5 in six hours in 2003 and in one 



 

 

second in 2024. A collision for 160-bit hash function like 
SHA-1 could be found in one day by year 2024. A goal 
in this paper is to construct a message digest and 
corresponding MAC that can sustain such an attack over 
a 20-year period. 
 

2. BACKGROUND 
 
There are two methods of providing authentication [1].  
First, digital content authentication can be provided by 
using a hash function in combination with encryption. A 
hash function maps a string of arbitrary length into a 
fixed-length string [5]. The output of a hash function is 
called a hash value, checksum, fingerprint, or message 
digest. The message digest is then encrypted by either 
using symmetric or asymmetric encryption to create a 
token. The digital content and encrypted message digest 
are then sent to the receiver. The receiver decrypts the 
message digest and compares it with the message digest 
that it independently calculates from the digital content 
to verify that the digital content is authentic. 

The second method, which is the focus of this 
paper, is to use a Message Authentication Code (MAC), 
which is a function of the digital content to be 
authenticated and a secret shared value shared by the two 
communicating parties to create an authentication token 
[1]. By incorporating a secret value in the MAC, an 
adversary is prevented from modifying the digital content 
without detection. There are several reasons to use a 
MAC instead of the encryption method for authentication 
[5]. First, encryption software is slow. Authentication can 
be implemented with or without secrecy with a MAC. A 
second reason to use a MAC is that patents cover many 
encryption algorithms. Finally, encryption algorithms are 
subject to U.S. export control, which hinders their use for 
international business. 

In this paper, existing functions and data 
transformations are used to construct a larger message 
digest and corresponding MAC. The cyclic redundancy 
check (CRC) [6] and Adler [7] functions are used. Both 
algorithms require an initial vector (IV), so the IV is the 
shared secret value.  Also, compression is used to 
transform the original digital content into another string 
and the functions are applied to the transformed digital 
content. Optimization is disabled in the compression 
routines such that the size of the digital content that 
cannot be compressed will increase. The individual 
tokens of the functions are concatenated together to 
create the larger token.   

Not counting the length qualifiers, the length of 
the complete authentication token consisted of six 32-bit 
values for a total of 192 bits. The big MAC with a static 
IV is applied to 64 million randomly generated files to 
measure the number of collisions. No collision was found 
for all 192 bits, but collisions were found for the 
individual 32-bit functions. The number of collisions for 

the individual functions is compared with the theoretical 
number of collisions as predicted by the Birthday 
paradox. The CRC function performs as predicted, but 
the Adler function performs poorly as a hash function 
generating approximately seven times as many collisions 
as predicted by the Birthday paradox. Therefore, the 
Adler function was first replaced with a CRC function 
with the same generator polynomial and a different initial 
vector. A successful attack easily created a collision. 
Then the Adler function was replaced with a CRC 
function that used a different generator polynomial than 
the other CRC function and it performed as predicted by 
the theory.  
 
2.1. Hash functions 
Two common hash functions are MD5 and SHA-1. The 
MD5 hash function takes an arbitrary length of digital 
content and produces a 128-bit message digest [8]. The 
secure hash algorithm (SHA) was developed by the 
National Institute of Standards and Technology (NIST) 
and is published in FIPS 180-2 in August 2002. The 
standard describes SHA-1, SHA-256, SHA-384, and 
SHA-512, which have message digests of 160, 256, 384, 
and 512 bits, respectively [9]. 
 
2.2. Message authentication codes 

2.2.1 Universal hashing: Universal hashing can 
be used to generate a MAC.  In universal hashing, 
instead of one hash function being used, a hash function 
is chosen randomly from a set of functions that have 
specific properties [10]. If the hash function is chosen 
randomly each time, then the average performance of the 
hashing operation is good for any distribution of input 
digital content. This helps average out the performance 
of hashing over several input digital contents with 
different distributions. Using universal hashing, a MAC 
can be constructed that is unbreakable with certainty p 
[10]. 

There are two methods described in [10]. First, 
each time digital content is sent, the sender and receiver 
exchange a secret value that identifies which hash 
function to use to authenticate this digital content. The 
sender creates the token using the secret hash function 
and sends it and the digital content to the receiver. The 
receiver uses the same hash function to create a token 
and compares it with the received token to authenticate 
the digital content.  

The second method presented in [10] is to 
number each digital content with a number b that has the 
same bit length as the token. Now there are two secret 
values to be exchanged, the hash function and the digital 
content number.  The first is the particular hash function f 
being used and the second is the number of the digital 
content b.  The number b must only be used once with a 
particular function so it is also considered to be a one-
time pad. The token t is constructed by applying the hash 



 

 

function f to the digital content m, f (m) and then XORing 
the message digest with the number b.  Therefore, the 
token is bmft ⊕= )( , where ⊕  is the exclusive-or 
operation. This permits the sender to be able to use the 
same hash function as long as the number b is changed 
every time. 

2.2.2 HMAC: Another construction to create a 
MAC is called the Hash-based Message Authentication 
Code (HMAC) [2]. It can use a hash function to provide 
a practical and efficient MAC. HMAC uses a hash 
function such as MD5 or SHA-1 that does not have an 
inherent key or secret value to create a MAC by setting 
the function’s initial vector (IV) to a secret value. HMAC 
is popular and has gained wide acceptance. It is used to 
implement authentication for Internet security protocols 
[9]. Part of the reason that HMAC is successful is that 
many countries restrict the import and export of software 
that use keyed hash functions [11]. They do not restrict 
keyless hash functions. Therefore, HMAC uses a keyless 
hash function to build a keyed hash function. NIST 
sanctions the use of HMAC when using the SHA-X 
series for authentication [12]. 

2.2.3. MAC based on CRC: Krawczyk 
presented two simple and efficient hash functions that 
can be used for a MAC [13]. One is based on Toeplitz 
hashing and the other is a cryptographic version of the 
cyclic redundancy code (CRC). Either method can be 
applied in two different ways. First, a hash function is 
chosen secretly from a family of universal hash functions 
for each separate digital content. Alternatively, the same 
hash function is used to send multiple digital contents, 
but the resulting message digest is encrypted with a one-
time pad to prevent an adversary from discovering which 
hash function was chosen. The second method usually 
requires generation of less random bits and the hash 
functions can be generated off-line. For practical reasons, 
the one-time pad can be implemented by secretly 
exchanging a seed to a pseudorandom number generator. 
 The cryptographic CRC or MAC presented in 
[13] is constructed by treating digital content m as a 
series of bits m(x). The secret value is an irreducible 
polynomial p(x) of degree k over Galois field, GF(2). 
Then the MAC using a CRC is defined as Eq. (2). 
 

( ) ( )( ) ( ) ( )xpxxmxmxpCRCMAC k mod, •=  (2) 
 
Note that multiplying the digital content by xk using 
modular arithmetic causes the binary representation of 
the digital content to be shifted k values to the left. This 
operation must be performed or the CRC can be easily 
broken [13]. Without performing the shift any of the 
lower k bits of the message can be modified and the 
corresponding position bit in the token can be modified. 
Note that this can be performed after encrypting the 
message digest with the one-time pad to successfully 
forge the digital content. This linear property was also 

used in [14] to modify packets in a wireless network so 
that the CRC would not detect tampering. 

The irreducible polynomial p(x) must be kept 
secret. As shown in [15], the CRC process can be worked 
backwards to find a consecutive sequence of bytes that 
will make the CRC message digest of different digital 
content be the same as the CRC message digest of the 
original digital content with the same length. 
 
2.3. Birthday attack 
In this paper, it is assumed that the MAC maps the digital 
content and the secret value into a fixed number of k bits 
[1]. A general attack commonly called the Birthday 
attack can be used against a hash function or a MAC [2]. 
It is based on the Birthday paradox from probability 
theory [1]. An adversary could generate N valid digital 
contents and N bad digital contents with the 
corresponding message digests or MACs depending upon 
whether a hash function or MAC is used. The probability 
that some bad digital content would generate the same 
message digest or MAC as one of the valid digital 
contents is approximately equal to 0.5 as N approaches 
2k/2. Therefore, the number of possible values 
represented by the k bits of the MAC must be sufficiently 
large so that the computation of 2k/2 variations of digital 
content is infeasible. 

When using the Birthday attack against a 
message digest an adversary can work off-line to find 
collisions because the hash function and the initial vector 
(IV) are known. This type of off-line attack can become 
feasible since the attack can be easily performed in 
parallel [2][4] as discussed in the Introduction. 

However, what if the sender or receiver wants to 
forge the MAC? They both have the secret value, so 
either could perform an off-line attack to find collisions 
for an extended amount of time and then claim the other 
one sent the new digital content. A goal is to construct 
the composite MAC so that it can withstand an attack 
over an extended amount of time. 

In this paper, 64 million random files are 
generated and different variants of the composite 
message digest are applied to look for collisions. Since 
the message digest is a composite of smaller functions, 
the number of theoretical collisions is compared with the 
actual number of collisions for the individual functions. 
Let m be the number of files.  Let k be the number of bits 
in the token. For m random files, the probability of 
finding a collision given a particular token is equal to Eq. 
(3).  

[ ]
1

2
121|

−






 −−=
m

k

k
tokencollsionP        (3) 

This quantity can be approximated by using the 
inequality in Eq. (4). 
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which results in 
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Then, the theoretical mean number of collisions 
E[collisions] for m random files and a token that has k 
bits is approximately equal to Eq. (6).  

 

[ ] 


















 −−−≈ k

mmcollsionE
2

1exp1           (6) 

2.4. Building a big MAC 
One way to create a larger MAC that reduces the 
probability of collision is to apply a MAC to digital 
content with two or more independent keys [16]. For 
example, a MAC with a token that has k bits has a 
probability of collision using the Birthday paradox of 
1/2k/2. If the MAC is applied with two independent keys 
and the token consists of the two tokens concatenated, 
then the probability of collision decreases to 1/2k [16].  
Another way to reduce the probability of collision is to 
apply multiple members of the universal hash-function 
family to the digital content and concatenate the results 
[17]. In this case, the secret values are which members of 
the universal hash function that were used. 
 

3. PROPOSED BIG MAC 
 
The proposed big MAC consists of six 32-bit hashes and 
two 64-bit length qualifiers and is shown in Figure 1. The 
length qualifiers will be ignored. The first two 
components of the MAC are named uncompressed CRC-
32 and uncompressed Adler-32 because they are applied 
to the uncompressed digital content. The second two 
components are named compressed CRC-32 and 
compressed Adler-32 because they are applied to a 
compressed version of the digital content. The digital 
content is compressed using LZSS [18], and then the 
CRC-32 and Adler-32 are computed. Optimization is 
eliminated in the compression routines so the file size 
grows for digital content that cannot be compressed. The 
next two components are a combination of two hash 
functions. The first is a CRC-32 of CRC-32 blocks. The 
CRC-32 is used on blocks of 4 bytes to create multiple 
tokens, which are concatenated and then the second 
CRC-32 hash function is applied to these tokens. The 
next component is a CRC-32 of Adler-32 blocks, where 
the blocks are 4 bytes. A CRC-32 hash function is 
applied to the concatenated tokens calculated with Adler-
32. The last two components are the length and 
compressed length qualifiers, where the length is the 
digital content length in bytes and the compressed length 
is the length of the digital content compressed with LZSS 
in bytes.  
 

 
Figure 1 Proposed Big MAC 

 
 

4. TESTS 
 
4.1. Simple MAC forgery when using CRC 
The method used in [13] to forge a MAC was verified on 
several files. Several files were changed by one bit in the 
least significant four bytes because the proposed MAC is 
composed of 32-bit CRC and Adler functions. Then the 
token was changed in the same position as the modified 
file to successfully forge the CRC component of the 
MAC. 

Krawczyk proposes a simple fix to prevent the 
simple forgery that is described above [13]. Appending k 
zeros to the end of the message, where k is the length in 
bits of the CRC message digest, will randomize the bit 
needed to change so that is it harder to forge. The same 
test files used to verify the method of changing one bit to 
forge a file were used to test the method described in 
[13] of adding k zeros. Four bytes of zeros were added to 
the files and the MAC was applied again. As expected, 
the CRC function could not be easily forged.  

 
4.2. Distribution of collisions 
Next, three tests were performed to see what affect 
adding the zeros would have on the distributions of the 
component tokens. First, 64 million random 1-KB files 
were created and their corresponding tokens. Next, the 
same files were used, except the last 4 bytes were 
changed to zeros. Then, 4 bytes of zeros were appended 
to the 1-KB files and the MAC was applied. The results 
are shown in Figure 2.   
 



 

 

 
Figure 2 Distributions of Collisions on the big MAC 

The mean number of collisions for a 32-bit hash is 
946,604 for 64 million random files. Since this big MAC 
is composed of multiple 32-bit functions, collisions do 
occur for the individual functions. Notice that the 
uncompressed Adler-32 and compressed Adler-32 have 
about seven times as many collisions as the other 
components of the MAC. 
 
4.3. Adler replaced with CRC 
Next, the Adler-32 hash was replaced with CRC-32 since 
the Adler-32 hash function had about seven times as 
many collisions as predicted by the Birthday paradox. 
First, the 64-million-message test was performed using 
the same polynomial for both of the CRCs, but different 
initial vectors. In this test, the polynomial 0x04C11DB7 
is used for both CRC-32 hash functions. The initial 
vector for the first CRC-32 was set to 0xFFFFFFFF and 
the initial vector for the second CRC was set to 
0x55555555.  

The next test used different polynomials for the 
two CRC-32 functions, but the same initial vector. The 
polynomial for the first CRC-32 was set to 0x04C11DB7 
and the polynomial for the second CRC-32 was set to 
0xA288C559. The seed 0xFFFFFFFF was used for both 
CRC-32 hash functions. The results are shown in Figure 
3. 

The number of collisions for the individual 
functions is approximately the same for both of the tests. 
Also, the empirical data is approximately equal to the 
predicted number of collisions of 946,604. Thus, using a 
CRC function instead of the Adler-32 hash function 
provides a MAC with a more uniform distribution. As 
seen in Figure 3, the tokens on the compressed messages, 
CCRC and CCRC2, have more collisions than the tokens 
on the uncompressed messages because of the smaller 
data set. Notice that the blocked hash functions, BCRC 
and BCRC2, have slightly less collisions. This is because 
the input stream from the first application of the CRC 
causes the input to the second hash function to be more 
uniform. 

 
Figure 3 Distributions of collisions replacing Adler 

with CRC 
 
4.4. CRC attack on same CRC polynomials with 
different seeds 
The CRC attack described in [15] was performed on the 
files described in the previous section to change a byte 
and add four additional bytes to maintain the same token 
and message length. The attack was performed on the 
MAC that used the same CRC polynomial 0x04C11DB7 
with different seeds.   

Both polynomials were set to 0x04C11DB7 and 
the initial vectors were set to 0xFFFFFFFF and 
0x55555555, respectively. There were a total of 64 
million tokens generated. No full collisions were found.  
However, both the CRC that used an initial vector of 
0xFFFFFFFF and the CRC that used an initial vector of 
0x55555555 were compromised. In other words, a byte 
was changed in the file and four additional bytes were 
placed in the file that caused two functions of the 
composite MAC to be the same as the original message. 
So the same CRC polynomial with two different IVs does 
not provide a good big MAC. 

The reason that the attack on one of the CRC 
functions simultaneously works on the other CRC 
function can be explained by the cyclic nature of the 
CRC. With the same generator polynomial, a CRC 
generates a cycle of bit patterns depending upon the 
input file. The initial vector just picks a position in the 
cycle. Therefore, the CRC attack in [15] reverses both 
CRC sequences causing two different files to have the 
same pair of CRC tokens.  
 
4.5. CRC attack using different CRC 
polynomials with the same initial vector 
In the second test, the polynomial 0x04C11DB7 was 
used for CRC1 and Adler was replaced with the CRC2 
hash function using the polynomial 0xA288C559. The 
initial vector 0xFFFFFFFF was used for both CRCs and 
64 million tokens were generated. CRC1 was 
compromised by the CRC attack, but CRC2 was 
unaffected by the attack. The attack did not work because 
a different generator polynomial was used. Therefore, it 



 

 

is suggested that when building a composite MAC with 
CRC hash functions that different polynomials should be 
used. 
 

5. CONCLUSIONS 
 
In this paper, a larger message digest was constructed by 
concatenating the output of multiple CRC functions using 
different generator polynomials to decrease the 
probability of collision using a method similar to [13]. It 
also demonstrated that adding the same number of zeros 
as the CRC message digest prevents a simple forgery. 
Even though the larger composite message digest uses 
CRC functions, which are not typically used because of 
their lack of cryptographic strength, it performs well 
against a brute-force attack. Different functions, such as 
MD5 or SHA-1, could be used instead to create a larger 
message digest and corresponding MAC, if necessary. 
Finally, the technique of concatenating multiple functions 
to build the larger message digest can be used to 
construct a variable-size message digest depending upon 
the required strength.  
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