

Building the Big Message Authentication Code

Dale R. THOMPSON, J. Brad MAXWELL, and James P. PARKERSON
Computer Science and Computer Engineering, University of Arkansas

Fayetteville, Arkansas 72701, U.S.A.

ABSTRACT

Message Authentication Codes (MAC) are used to ensure
the integrity of digital content is not compromised and to
authenticate the sender. A MAC can be constructed by
using a message digest and a shared secret value. Two
different digital contents should have a low probability of
having the same message digest. This is called a
collision. Also, when a message digest is used to create a
MAC, it should be difficult for an adversary to create a
collision. A rough calculation demonstrates that a
collision could be found for a 128-bit message digest in
approximately six hours with a parallel collision attack
using a special-purpose machine. A composite message
digest is constructed out of existing functions to decrease
the probability of collision. Also, the MAC based on the
composite message digest is constructed so that it is
difficult for an adversary to create a collision.

Keywords: Authentication, Message authentication
codes, and message digest.

1. INTRODUCTION

Message authentication permits two or more parties to
verify that the received digital content is genuine [1].
Assuring the authenticity of digital content is important
for electronic communication such as e-mail, e-
commerce, and a paperless environment. A Message
Authentication Code (MAC), sometimes called a
cryptographic checksum, is a function of the digital
content and a secret value shared between the sender and
the receiver. The MAC generates an authentication token
that is sent with the digital content [1][2]. The token
permits the receiver to verify that the sender sent the
digital content and that the digital content has not been
modified. Different digital content that generates the
same token is called a collision. It should be
computationally infeasible to generate a collision.
Therefore, the size of the token should be large enough
to prevent an adversary from using a general attack such
as the Birthday attack to create a collision [1].

The composite message digest and
corresponding MAC described in this paper is a basic
component of a complete system for implementing a
paperless environment in which all digital content is
authenticated [3]. The message digest is used to create a

MAC, but the focus is on the message digest ensuring the
integrity of the digital content. The authentication aspect
of the MAC will be discussed in a future paper. The
composite message digest is constructed by
concatenating multiple existing algorithms so that the
probability that two different digital contents have the
same message digest is low. Two common algorithms not
typically used for generating message digests, CRC and
Adler, are tested. A composite message digest is
successfully constructed using CRC algorithms. It is
difficult for an adversary to create a collision when using
this message digest.
 Van Oorschot and Wiener presented a method
for performing a parallel collision attack in [4]. In 1994,
they proposed an algorithm and a custom machine that
cost $10 million that could break MD5 in 24 days.
Today this machine would cost $14 million. Table 1
presents the mean number of steps that would be
necessary to find a collision and the approximate amount
of time to find one for different size message digests
using the method in [4] for years 2003 and 2024. As in
[4], it is assumed that 350,000 special purpose
processors could be built. The number of steps
performed each second by each of these processors was
changed to values that represent technology in 2003 by
using Moore’s Law that states that processor speed
doubles every 18 months. Therefore, the processor
speed was set to 3x109 steps per second for year 2003
and scaled accordingly for year 2024. It is assumed that
the complexity of the algorithm that can find a collision
is







 


 × pO k /22π , (1)

where k is the number of bits in the token and p is the
number of processors [4].

Table 1 Mean Time to find a Collision

bits E[steps] Year 2003 Year 2024
128 6.6x1013 6 hours 1 second
160 4.3x1018 46 hours 1 day
192 2.8x1023 3.0x106 years 180 years
256 1.2x1033 1.3x1016 years 7.9x1011 years
320 5.2x1042 5.5x1025 years 3.4x1021 years

 Table 1 demonstrates that an off-line special-
purpose machine could find a collision for 128-bit hash
function like MD5 in six hours in 2003 and in one

second in 2024. A collision for 160-bit hash function like
SHA-1 could be found in one day by year 2024. A goal
in this paper is to construct a message digest and
corresponding MAC that can sustain such an attack over
a 20-year period.

2. BACKGROUND

There are two methods of providing authentication [1].
First, digital content authentication can be provided by
using a hash function in combination with encryption. A
hash function maps a string of arbitrary length into a
fixed-length string [5]. The output of a hash function is
called a hash value, checksum, fingerprint, or message
digest. The message digest is then encrypted by either
using symmetric or asymmetric encryption to create a
token. The digital content and encrypted message digest
are then sent to the receiver. The receiver decrypts the
message digest and compares it with the message digest
that it independently calculates from the digital content
to verify that the digital content is authentic.

The second method, which is the focus of this
paper, is to use a Message Authentication Code (MAC),
which is a function of the digital content to be
authenticated and a secret shared value shared by the two
communicating parties to create an authentication token
[1]. By incorporating a secret value in the MAC, an
adversary is prevented from modifying the digital content
without detection. There are several reasons to use a
MAC instead of the encryption method for authentication
[5]. First, encryption software is slow. Authentication can
be implemented with or without secrecy with a MAC. A
second reason to use a MAC is that patents cover many
encryption algorithms. Finally, encryption algorithms are
subject to U.S. export control, which hinders their use for
international business.

In this paper, existing functions and data
transformations are used to construct a larger message
digest and corresponding MAC. The cyclic redundancy
check (CRC) [6] and Adler [7] functions are used. Both
algorithms require an initial vector (IV), so the IV is the
shared secret value. Also, compression is used to
transform the original digital content into another string
and the functions are applied to the transformed digital
content. Optimization is disabled in the compression
routines such that the size of the digital content that
cannot be compressed will increase. The individual
tokens of the functions are concatenated together to
create the larger token.

Not counting the length qualifiers, the length of
the complete authentication token consisted of six 32-bit
values for a total of 192 bits. The big MAC with a static
IV is applied to 64 million randomly generated files to
measure the number of collisions. No collision was found
for all 192 bits, but collisions were found for the
individual 32-bit functions. The number of collisions for

the individual functions is compared with the theoretical
number of collisions as predicted by the Birthday
paradox. The CRC function performs as predicted, but
the Adler function performs poorly as a hash function
generating approximately seven times as many collisions
as predicted by the Birthday paradox. Therefore, the
Adler function was first replaced with a CRC function
with the same generator polynomial and a different initial
vector. A successful attack easily created a collision.
Then the Adler function was replaced with a CRC
function that used a different generator polynomial than
the other CRC function and it performed as predicted by
the theory.

2.1. Hash functions
Two common hash functions are MD5 and SHA-1. The
MD5 hash function takes an arbitrary length of digital
content and produces a 128-bit message digest [8]. The
secure hash algorithm (SHA) was developed by the
National Institute of Standards and Technology (NIST)
and is published in FIPS 180-2 in August 2002. The
standard describes SHA-1, SHA-256, SHA-384, and
SHA-512, which have message digests of 160, 256, 384,
and 512 bits, respectively [9].

2.2. Message authentication codes

2.2.1 Universal hashing: Universal hashing can
be used to generate a MAC. In universal hashing,
instead of one hash function being used, a hash function
is chosen randomly from a set of functions that have
specific properties [10]. If the hash function is chosen
randomly each time, then the average performance of the
hashing operation is good for any distribution of input
digital content. This helps average out the performance
of hashing over several input digital contents with
different distributions. Using universal hashing, a MAC
can be constructed that is unbreakable with certainty p
[10].

There are two methods described in [10]. First,
each time digital content is sent, the sender and receiver
exchange a secret value that identifies which hash
function to use to authenticate this digital content. The
sender creates the token using the secret hash function
and sends it and the digital content to the receiver. The
receiver uses the same hash function to create a token
and compares it with the received token to authenticate
the digital content.

The second method presented in [10] is to
number each digital content with a number b that has the
same bit length as the token. Now there are two secret
values to be exchanged, the hash function and the digital
content number. The first is the particular hash function f
being used and the second is the number of the digital
content b. The number b must only be used once with a
particular function so it is also considered to be a one-
time pad. The token t is constructed by applying the hash

function f to the digital content m, f (m) and then XORing
the message digest with the number b. Therefore, the
token is bmft ⊕=)(, where ⊕ is the exclusive-or
operation. This permits the sender to be able to use the
same hash function as long as the number b is changed
every time.

2.2.2 HMAC: Another construction to create a
MAC is called the Hash-based Message Authentication
Code (HMAC) [2]. It can use a hash function to provide
a practical and efficient MAC. HMAC uses a hash
function such as MD5 or SHA-1 that does not have an
inherent key or secret value to create a MAC by setting
the function’s initial vector (IV) to a secret value. HMAC
is popular and has gained wide acceptance. It is used to
implement authentication for Internet security protocols
[9]. Part of the reason that HMAC is successful is that
many countries restrict the import and export of software
that use keyed hash functions [11]. They do not restrict
keyless hash functions. Therefore, HMAC uses a keyless
hash function to build a keyed hash function. NIST
sanctions the use of HMAC when using the SHA-X
series for authentication [12].

2.2.3. MAC based on CRC: Krawczyk
presented two simple and efficient hash functions that
can be used for a MAC [13]. One is based on Toeplitz
hashing and the other is a cryptographic version of the
cyclic redundancy code (CRC). Either method can be
applied in two different ways. First, a hash function is
chosen secretly from a family of universal hash functions
for each separate digital content. Alternatively, the same
hash function is used to send multiple digital contents,
but the resulting message digest is encrypted with a one-
time pad to prevent an adversary from discovering which
hash function was chosen. The second method usually
requires generation of less random bits and the hash
functions can be generated off-line. For practical reasons,
the one-time pad can be implemented by secretly
exchanging a seed to a pseudorandom number generator.
 The cryptographic CRC or MAC presented in
[13] is constructed by treating digital content m as a
series of bits m(x). The secret value is an irreducible
polynomial p(x) of degree k over Galois field, GF(2).
Then the MAC using a CRC is defined as Eq. (2).

() ()() () ()xpxxmxmxpCRCMAC k mod, •= (2)

Note that multiplying the digital content by xk using
modular arithmetic causes the binary representation of
the digital content to be shifted k values to the left. This
operation must be performed or the CRC can be easily
broken [13]. Without performing the shift any of the
lower k bits of the message can be modified and the
corresponding position bit in the token can be modified.
Note that this can be performed after encrypting the
message digest with the one-time pad to successfully
forge the digital content. This linear property was also

used in [14] to modify packets in a wireless network so
that the CRC would not detect tampering.

The irreducible polynomial p(x) must be kept
secret. As shown in [15], the CRC process can be worked
backwards to find a consecutive sequence of bytes that
will make the CRC message digest of different digital
content be the same as the CRC message digest of the
original digital content with the same length.

2.3. Birthday attack
In this paper, it is assumed that the MAC maps the digital
content and the secret value into a fixed number of k bits
[1]. A general attack commonly called the Birthday
attack can be used against a hash function or a MAC [2].
It is based on the Birthday paradox from probability
theory [1]. An adversary could generate N valid digital
contents and N bad digital contents with the
corresponding message digests or MACs depending upon
whether a hash function or MAC is used. The probability
that some bad digital content would generate the same
message digest or MAC as one of the valid digital
contents is approximately equal to 0.5 as N approaches
2k/2. Therefore, the number of possible values
represented by the k bits of the MAC must be sufficiently
large so that the computation of 2k/2 variations of digital
content is infeasible.

When using the Birthday attack against a
message digest an adversary can work off-line to find
collisions because the hash function and the initial vector
(IV) are known. This type of off-line attack can become
feasible since the attack can be easily performed in
parallel [2][4] as discussed in the Introduction.

However, what if the sender or receiver wants to
forge the MAC? They both have the secret value, so
either could perform an off-line attack to find collisions
for an extended amount of time and then claim the other
one sent the new digital content. A goal is to construct
the composite MAC so that it can withstand an attack
over an extended amount of time.

In this paper, 64 million random files are
generated and different variants of the composite
message digest are applied to look for collisions. Since
the message digest is a composite of smaller functions,
the number of theoretical collisions is compared with the
actual number of collisions for the individual functions.
Let m be the number of files. Let k be the number of bits
in the token. For m random files, the probability of
finding a collision given a particular token is equal to Eq.
(3).

[]
1

2
121|

−






 −−=
m

k

k
tokencollsionP (3)

This quantity can be approximated by using the
inequality in Eq. (4).

()xx −≤− exp1 (4)

which results in

[] 










 −−−≈ k

mtokencollsionP
2

1exp1| . (5)

Then, the theoretical mean number of collisions
E[collisions] for m random files and a token that has k
bits is approximately equal to Eq. (6).

[] 


















 −−−≈ k

mmcollsionE
2

1exp1 (6)

2.4. Building a big MAC
One way to create a larger MAC that reduces the
probability of collision is to apply a MAC to digital
content with two or more independent keys [16]. For
example, a MAC with a token that has k bits has a
probability of collision using the Birthday paradox of
1/2k/2. If the MAC is applied with two independent keys
and the token consists of the two tokens concatenated,
then the probability of collision decreases to 1/2k [16].
Another way to reduce the probability of collision is to
apply multiple members of the universal hash-function
family to the digital content and concatenate the results
[17]. In this case, the secret values are which members of
the universal hash function that were used.

3. PROPOSED BIG MAC

The proposed big MAC consists of six 32-bit hashes and
two 64-bit length qualifiers and is shown in Figure 1. The
length qualifiers will be ignored. The first two
components of the MAC are named uncompressed CRC-
32 and uncompressed Adler-32 because they are applied
to the uncompressed digital content. The second two
components are named compressed CRC-32 and
compressed Adler-32 because they are applied to a
compressed version of the digital content. The digital
content is compressed using LZSS [18], and then the
CRC-32 and Adler-32 are computed. Optimization is
eliminated in the compression routines so the file size
grows for digital content that cannot be compressed. The
next two components are a combination of two hash
functions. The first is a CRC-32 of CRC-32 blocks. The
CRC-32 is used on blocks of 4 bytes to create multiple
tokens, which are concatenated and then the second
CRC-32 hash function is applied to these tokens. The
next component is a CRC-32 of Adler-32 blocks, where
the blocks are 4 bytes. A CRC-32 hash function is
applied to the concatenated tokens calculated with Adler-
32. The last two components are the length and
compressed length qualifiers, where the length is the
digital content length in bytes and the compressed length
is the length of the digital content compressed with LZSS
in bytes.

Figure 1 Proposed Big MAC

4. TESTS

4.1. Simple MAC forgery when using CRC
The method used in [13] to forge a MAC was verified on
several files. Several files were changed by one bit in the
least significant four bytes because the proposed MAC is
composed of 32-bit CRC and Adler functions. Then the
token was changed in the same position as the modified
file to successfully forge the CRC component of the
MAC.

Krawczyk proposes a simple fix to prevent the
simple forgery that is described above [13]. Appending k
zeros to the end of the message, where k is the length in
bits of the CRC message digest, will randomize the bit
needed to change so that is it harder to forge. The same
test files used to verify the method of changing one bit to
forge a file were used to test the method described in
[13] of adding k zeros. Four bytes of zeros were added to
the files and the MAC was applied again. As expected,
the CRC function could not be easily forged.

4.2. Distribution of collisions
Next, three tests were performed to see what affect
adding the zeros would have on the distributions of the
component tokens. First, 64 million random 1-KB files
were created and their corresponding tokens. Next, the
same files were used, except the last 4 bytes were
changed to zeros. Then, 4 bytes of zeros were appended
to the 1-KB files and the MAC was applied. The results
are shown in Figure 2.

Figure 2 Distributions of Collisions on the big MAC

The mean number of collisions for a 32-bit hash is
946,604 for 64 million random files. Since this big MAC
is composed of multiple 32-bit functions, collisions do
occur for the individual functions. Notice that the
uncompressed Adler-32 and compressed Adler-32 have
about seven times as many collisions as the other
components of the MAC.

4.3. Adler replaced with CRC
Next, the Adler-32 hash was replaced with CRC-32 since
the Adler-32 hash function had about seven times as
many collisions as predicted by the Birthday paradox.
First, the 64-million-message test was performed using
the same polynomial for both of the CRCs, but different
initial vectors. In this test, the polynomial 0x04C11DB7
is used for both CRC-32 hash functions. The initial
vector for the first CRC-32 was set to 0xFFFFFFFF and
the initial vector for the second CRC was set to
0x55555555.

The next test used different polynomials for the
two CRC-32 functions, but the same initial vector. The
polynomial for the first CRC-32 was set to 0x04C11DB7
and the polynomial for the second CRC-32 was set to
0xA288C559. The seed 0xFFFFFFFF was used for both
CRC-32 hash functions. The results are shown in Figure
3.

The number of collisions for the individual
functions is approximately the same for both of the tests.
Also, the empirical data is approximately equal to the
predicted number of collisions of 946,604. Thus, using a
CRC function instead of the Adler-32 hash function
provides a MAC with a more uniform distribution. As
seen in Figure 3, the tokens on the compressed messages,
CCRC and CCRC2, have more collisions than the tokens
on the uncompressed messages because of the smaller
data set. Notice that the blocked hash functions, BCRC
and BCRC2, have slightly less collisions. This is because
the input stream from the first application of the CRC
causes the input to the second hash function to be more
uniform.

Figure 3 Distributions of collisions replacing Adler

with CRC

4.4. CRC attack on same CRC polynomials with
different seeds
The CRC attack described in [15] was performed on the
files described in the previous section to change a byte
and add four additional bytes to maintain the same token
and message length. The attack was performed on the
MAC that used the same CRC polynomial 0x04C11DB7
with different seeds.

Both polynomials were set to 0x04C11DB7 and
the initial vectors were set to 0xFFFFFFFF and
0x55555555, respectively. There were a total of 64
million tokens generated. No full collisions were found.
However, both the CRC that used an initial vector of
0xFFFFFFFF and the CRC that used an initial vector of
0x55555555 were compromised. In other words, a byte
was changed in the file and four additional bytes were
placed in the file that caused two functions of the
composite MAC to be the same as the original message.
So the same CRC polynomial with two different IVs does
not provide a good big MAC.

The reason that the attack on one of the CRC
functions simultaneously works on the other CRC
function can be explained by the cyclic nature of the
CRC. With the same generator polynomial, a CRC
generates a cycle of bit patterns depending upon the
input file. The initial vector just picks a position in the
cycle. Therefore, the CRC attack in [15] reverses both
CRC sequences causing two different files to have the
same pair of CRC tokens.

4.5. CRC attack using different CRC
polynomials with the same initial vector
In the second test, the polynomial 0x04C11DB7 was
used for CRC1 and Adler was replaced with the CRC2
hash function using the polynomial 0xA288C559. The
initial vector 0xFFFFFFFF was used for both CRCs and
64 million tokens were generated. CRC1 was
compromised by the CRC attack, but CRC2 was
unaffected by the attack. The attack did not work because
a different generator polynomial was used. Therefore, it

is suggested that when building a composite MAC with
CRC hash functions that different polynomials should be
used.

5. CONCLUSIONS

In this paper, a larger message digest was constructed by
concatenating the output of multiple CRC functions using
different generator polynomials to decrease the
probability of collision using a method similar to [13]. It
also demonstrated that adding the same number of zeros
as the CRC message digest prevents a simple forgery.
Even though the larger composite message digest uses
CRC functions, which are not typically used because of
their lack of cryptographic strength, it performs well
against a brute-force attack. Different functions, such as
MD5 or SHA-1, could be used instead to create a larger
message digest and corresponding MAC, if necessary.
Finally, the technique of concatenating multiple functions
to build the larger message digest can be used to
construct a variable-size message digest depending upon
the required strength.

6. ACKNOWLEDGMENTS

The authors would like to thank Logical Dynamics, Inc.,
for the opportunity to collaborate on the authentication
research. The material is based upon work supported by
the National Science Foundation under Grant No.
0090596.

7. REFERENCES

[1] R. R. Jueneman, S. M. Matyas, and C. H. Meyer,
“Message Authentication,” IEEE Communications
Magazine, vol. 23, no. 9, Sep. 1985, pp. 29-40.
[2] M. Bellare, R. Canetti, and H. Krawczyk, “Keying
hash functions for message authentication,” in
Proceedings of CRYPTO ’96, Lecture notes in Computer
Science, vol. 1109, N. Koblitz ed., Aug. 1996, New
York: Springer-Verlag.
[3] Logical Dynamics, Inc., http://www.logidyn.com
[4] P. Van Oorschot and M. Wiener, “Parallel collision
search with applications to hash functions and discrete
logarithms,” in Proceedings of the 2nd ACM Conf.
Computer and Communications Security, Nov. 1994,
Fairfax, VA.

[5] W. Stallings, Cryptography and Network Security:
Principles and Practice, 3rd ed., Prentice Hall, 2003.
[6] S. Lin, D. J. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Prentice Hall, 1982.
[7] J. G. Fletcher, “An arithmetic checksum for serial
transmissions,” IEEE transactions on Communications,
vol. COM-30, no. 1, Jan. 1982, pp. 247-252.
[8] R. Rivest, The MD5 Message-Digest Algorithm,
RFC 1321, Apr. 1992.
[9] FIPS 180-2, Secure Hash Standard, NIST, Aug. 1,
2002.
[10] M. N. Wegman and J. L. Carter, “New hash
functions and their use in authentication and set
equality,” Journal of Computer and System Sciences,
vol. 22, 1981, pp. 265-279.
[11] M. Bishop, Computer Security: Art and Science,
Pearson Education, 2003.
[12] FIPS 198, The Keyed-Hash Message Authentication
Code (HMAC), NIST, March 6, 2002.
[13] H. Krawczyk, “LFSR-based hashing and
authentication,” in Proceedings of CRYPTO ’94, Lecture
notes in Computer Science, vol. 839, Aug. 1994, New
York: Springer-Verlag, pp. 129-139.
[14] N. Borisov, I. Goldberg, and D. Wagner,
“Intercepting mobile communications: the insecurity of
802.11,” in Proceedings of the seventh annual
international conference on Mobile computing and
networking, 2001, Rome, Italy, pp. 180-189.
[15] B. Maxwell, D. R. Thompson, G. Amerson, and L.
Johnson, “Analysis of CRC methods and potential data
integrity exploits,” in Proceedings of the International
Conference on Emerging Technologies, Aug. 25-26,
2003, Minneapolis, MN.
http://www.rfbinternational.com/papers/thompson.pdf
[16] S. Halevi and H. Krawczyk, “MMH: software
message authentication in the Gbit/second rates,” in
Proceedings of the 4th Workshop on Fast Software
Encryption, Lecture notes in Computer Science, vol.
1267, 1997, New York: Springer-Verlag, pp. 172-189.
[17] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P.
Rogaway, “UMAC: Fast and secure message
authentication,” in Proceedings of CRYPTO ’99, Lecture
notes in Computer Science, vol. 1666, Aug. 1999, New
York: Springer-Verlag.
[18] Storer, J. A. and Szymanski, T. G., “The macro
model for data compression,” in Proceedings of 10th
ACM Symp. on Theory of Computing, 1978, San Diego,
CA, pp. 30-39.

http://www.rfbinternational.com/papers/thompson.pdf

