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ABSTRACT
With the emergence of new application-specific sensor and Ad-
hoc networks, increasingly complex and custom protocols will
be designed and deployed.  We propose a framework to
systematically design and evaluate networking protocols
based on a ‘building block’ approach. In this approach, each
protocol is broken down into a set of parameterized modules
called "building blocks", each having its own specific
functionality. The properties of these building blocks and
their interaction define the overall behavior of the protocol. In
this paper, we aim to identify the major research challenges
and questions in the building block approach. By addressing
some of those questions, we point out potential directions to
analyze and understand the behavior of networking protocols
systematically. We discuss two case studies on utilizing the
building block approach for analyzing Ad-hoc routing
protocols and IP mobility protocols in a systematic manner.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks ]: Network
Protocols

General Terms
Performance, Design

Keywords
Building Block, Protocol Design, Protocol Analysis, Mobile
Ad Hoc Network, Micro-Mobility

1. INTRODUCTION, MOTIVATION AND
CHALLENGES
Due to the ubiquity of small, inexpensive wireless
communicating devices, wireless sensor and ad-hoc networks
are emerging as new fields of networking. These networks are
application-specific, and often require custom protocol stacks
and network components to achieve their objective efficiently.
Traditional protocols, including Internet protocols, were
designed based on experience and feedback from implemented
systems, rendering the design and evaluation of networking
protocols costly and time-consuming. For the newly emerging
application-specific networks, designers cannot obtain such
feedback. Moreover, most of these systems cannot be easily
upgraded or modified once deployed. Hence, changing the

software or hardware for correcting design errors or improving
performance is either impossible or very expensive. The lack
of systematic design, evaluation and test methodologies i s
becoming a major concern for protocol designers with the
increase in protocol complexity.  A systematic methodology
or tool to analyze, fine-tune or synthesize protocols from
reusable parameterized components to meet performance
requirements would be ideally suited for the new networking
paradigms. The same methodology could also be extended to
the design and evaluation of Internet protocols.

One simple approach to develop such systematic methodology
may be to provide a library of protocol mechanisms that can be
re-used. Even if these protocol mechanisms are relatively well
understood and simple in isolation, reusing the library of
mechanisms may prove to be difficult due to the complex
interaction between the various distributed mechanisms,
which dependents on the environment in which they are
deployed. Effective reuse of library components requires a
systematic way in which the protocol composed of such
modules can be designed, tested and evaluated across the
scenarios under which it is expected to operate. This requires
explicit modeling of (a) the protocol mechanisms, (b) their
interactions and (c) the effects of the environment, including
the physical phenomena sensed, mobility, wireless channels,
among others.

Note that this library-based approach may be used to address
several problems. We identify two main problems in the
science of protocol design: (a) protocol synthesis and (b)
protocol analysis. In protocol synthesis, one may define a
high level functional requirement that should be achieved
using a combination of the library mechanisms. Although this
protocol synthesis problem is quite challenging and
interesting, we plan to consider it in our future work and we do
not address it in this paper. In protocol analysis, on the other
hand, an (initial) protocol is given and the goal is to develop
deep, micro-level, understanding of its performance and
limitations over a vast array of operating conditions. The
insight developed through this understanding helps in
refining existing protocols through an iterative process. This
protocol analysis problem is the focus of this paper.

As an attempt to address the above problem, we propose a
‘building block’ based framework in which the protocol i s
broken down to its constituent mechanistic building blocks.
The break down is based on functionality, thus resulting in
functionally separated modules. The modules along with their
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interaction represent the overall protocol behavior. By
decomposing the protocol into this set of mechanistic
building blocks, we hope to convert the complex problem of
modeling the overall protocol into a set of simpler sub-
problems of modeling the building blocks and their
interaction. By modeling both the blocks and their interaction,
we aim to develop a library-based tool by which protocol can
be designed, analyzed and evaluated systematically.

Integrated with this tool would be the environmental
conditions and effects, such as wireless channel models and
mobility.  We also propose to consider these environmental
effects as consisting of building blocks. This facilitates
traversal of various dimensions of the spaces of operational
conditions, to provide rich, meaningful, evaluation scenarios.

In order to be able to evaluate the utility of our building block
approach for protocol design, evaluation and analysis, we need
to understand the following challenges:

(1) In general, how do we define and represent the building
block modules and the interaction between them to make them
amenable to the required analysis?

(2) How do we break down a given protocol into it constituent
building blocks, and how do we organize the set of building
blocks back into a protocol?

(3) How do we model the underlying environments, where the
protocol is expected to be deployed, in a systematic manner?

(4) How do we use the building block approach for the design,
analysis and refinement of various protocols for a given
environment?

In this paper, we present an attempt to define the building
block modules and their interaction in a formal way by
capturing their unique functionality and key characteristics.
Based on these fundamental definitions, we further propose a
hierarchical building block framework to model the protocol
at different levels of abstraction. In such a hierarchical
structure, the building blocks at each level may be refined
using more detailed building blocks successively.
Considering that the underlying environment usually plays an
important role in affecting the protocol behavior and
performance, we also present a scheme to model the
environment in a systematic way.

To demonstrate the utility of our building block approach for
protocol evaluation and analysis, we present two case studies
on analyzing wireless networking protocols. In the first we
study classes of ad hoc routing protocols and in the second we
study classes of micro-mobility protocols. We show that by
using our approach, we develop a deep understanding of the
interplay between the parameterized protocol mechanisms and
the underlying environment. Several interesting lessons about
the design choice of protocol mechanisms and the generation
of evaluation scenarios are presented and discussed. For
example, in MANET reactive routing protocols (e.g.,
AODV[17], DSR[18]), flooding and caching seem to have a
great effect on performance, while salvaging in DSR barely
seems to have an effect on the protocol performance.

The purpose of this paper is not to provide a complete
solution for the protocol design and analysis problem. Rather,
it is to discuss the various problems faced in designing new
protocols for wireless networks, and to identify and clearly
define a set of problems and research questions that need to be
addressed in order to realize a more comprehensive solution.

In that sense, this paper attempts to address the challenges in
building the blocks of protocol design and analysis and
discuss the potential directions.

The remaining of this paper is organized as follow. Related
work is discussed in Section 2. Section 3 gives and overview
of our hierarchical building block approach, and describes the
model for building blocks and channels. A method to model
the underlying environment in a systematic manner is given in
Section 4. In section 5, the method to design, analyze and
refine the protocols through the hierarchical building block
approach is briefly discussed. Two case studies on ad hoc
routing and micro-mobility protocols, and the lesson learned
are discussed in Sections 6 and 7. We discuss some open
questions in Section 8 and conclude in Section 9.

2. RELATED WORKS
The building block methodology itself is not a new concept in
the field of distributed systems. The Internet is the most
obvious example of a system based on layered building
blocks.  The layers of the protocol stacks make up the building
blocks of the Internet. Each layer has well defined functions
and interfaces and one layer makes no assumption about the
internals of the other. This open architecture enables one layer
to perform seamlessly over the other as long as their interfaces
match. However this transparency comes at the cost of
potential duplication of functions at various levels.
Furthermore, the individual layers themselves are not
designed or implemented with any explicit layering or
components. Thus the design of each of the layers itself is
complex. One of the reasons for the seamless performance of
the various layers is that the Internet protocol stack has
enjoyed unprecedented success and has been used by millions
over decades thus flushing out bugs in both designs and
implementations by shear brute force. However, the new
application-specific stacks, protocols and applications will
not have this luxury and hence a systematic methodology i s
needed to design, develop, test and evaluate such systems.

The design of each layer affects the overall performance of the
protocol stack. Fig.1 shows the effects of each layer on the
higher layers. For example, fading at the physical layer will
manifest itself as higher bit error rate, which in turn will show

Figure 1: The Effect of Environment on Building Blocks
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up as packet loss at the MAC layer. However, introducing
additional mechanisms like channel coding or ARQ at the
MAC layer to counter these effects, may lead to decreased
effective bandwidth or increased packet delay. We need a
systematic way in which we can capture the inter-layer effects
so that we can evaluate their effects on the performance of
higher layers. Such a methodology would aid in refining
existing designs to get the required performance. This example
of building block based design presents an insight into the
methodology we propose to use.

Our work was partially inspired by VLSI CAD tools [16]. In
VLSI design the system is modeled at different levels of
abstractions and the model at each level is refined using finer
and more detailed models (Behavioral   Structural 
Physical). We wish to use similar techniques for the design of
network protocols. However, in VLSI any Boolean function can
be represented by a universal representation like NAND or
NOR gates. There exists nothing similar in the field of
networking protocols. The hierarchical techniques work
extremely well in VLSI CAD as the characteristics of the
universal representations are very well understood and
modeled. Due to the small set of the universal building blocks,
specifying them and testing for correctness is well understood
as compared to protocols. We aim to study the feasibility of a
similar hierarchical technique based on successive refinement
for systematic protocol design and analysis.

Significant work has been done in the field of protocol
composition from components [1],[2],[3],[4],[5]. The Ensemble
and the Horus projects [1] stand out as they are able to do both
formal proofs of protocol stacks as well as code generation.
They represent systems based on a library of micro-protocols
which are rather coarse grained and whose properties have
already been verified. The components are drawn from the
library and the required protocol is built in a strict vertical
fashion from the specification. The emphasis in such systems
is on protocol correctness and code generation. Since the
coarse grained library of building blocks acts as a set of black
boxes, extending the protocols is not easy in such frameworks.
BAST is another system that uses an object-oriented library of
reliable distributed protocols. As in the previous case
implementation and code generation are emphasized. The
system in [3] is also based in Ensemble, however it focuses on
optimization of the design within the Ensemble framework.
This mainly deals with implementation optimizations rather
than protocol design optimization. In [4] and [5] category
theory is used to provide guidelines to build functional
primitives or building blocks. They also address the issue of
interaction between building blocks. Though this list of
references is not exhaustive, most of them are concerned with
correctness of protocols and also with implementation or code
generation. Few have methodologies using which we can
analyze protocol performance and almost none of them model
performance based on the building block approach.
Furthermore, they do not address the issue of systematically
analyzing protocol performance in a given environment or
generating scenarios that can be used to provide good insights
into protocol performance and refinement.

3. THE HIERARCHICAL BUILDING
BLOCK FRAMEWORK
Network protocols are designed to achieve certain
functionality or objective. Protocols that achieve similar

objectives may be categorized into the same class. For
example, ad hoc routing protocols aim to provide valid
routing paths functionality suitable for the wireless mobile
environments. Also, micro-mobility protocols are used to
maintain the network connectivity of a mobile node while i t
moves between subnets within the same domain.

A common practice in the networking research community i s
to study each protocol as a whole entity through simulation or
analysis. The evaluation of network protocols are done in a
heuristic, rather ad hoc, fashion. Unlike traditional methods, in
our proposed hierarchical building block approach, the
protocol is decomposed into a set of parameterized
mechanistic components called 'building blocks', each of
which is in charge of a specific well-defined functionality used
in the protocol. Then, these building blocks are glued together
to interact with each other over 'channels' in a proper fashion.
For the different protocol instances falling into the same
category, the organization and exact parameter settings of
building blocks are different in each protocol instance. The
actions of the building blocks themselves and the interaction
between them via channel determine the behavior of the
protocol for a given environment.

First, we introduce the two basic elements of our building
block approach: 1) building blocks and 2) channels. We then
describe the dynamic behavior of the building blocks and
their interaction, and provide the hierarchical structure of our
building block approach as the basis for protocol analysis,
design and synthesis.

3.1 Building Blocks
The building blocks, the bricks used to construct the network
protocol, are a set of separated modular components that are
common to a broad class of network protocols attempting to
accomplish a similar goal. Thus, each building block is a
constituent of a protocol that addresses one (or several)
functionality, depending on its level of granularity.
Conceptually, each building block is specified in terms of a
number of variables to be stored and modified by the building
block as well as a series of actions conducted over those
variables. The variables are manipulated by the protocol, such
as the routing tables, packets, timers, etc. These variables also
determine the state of the building block, and the state of the
protocol. The actions define how the individual building
block behaves in the face of different conditions. Once the
building block is called upon, it follows its specification and
conducts the appropriate actions over the variables, based on
the particular circumstance at that time.

The set of actions specified in building block only defines
how the building block reacts to various input events in
general trend. The specific behavior and performance of a
building block, however, also depends on its parameter
settings (e.g., timer values, range of flooding). Hence, in
practice, the behavior of network protocols may differ
considerably, even though they consist of the same set of
building blocks, organized in a similar way. The parameterized
building block approach allows us to capture this difference
between protocols belonging to same category.

In order to distinguish and represent the building blocks with
different functionalities and parameter settings, it is essential
to capture the inherent characteristics and properties of
building blocks. Based on the above discussion, formally, we
describe the building block as tuple
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[V(ariables), E(vent)  E(ffect), P(arameters)]

where

(1) The V(ariables)  describe the variables kept at each
building block, used to model the state of the building block.

(2) The E(vent)  E(ffect) includes a set of rules regulating the
transitions from the incoming event to the outgoing effect
generated by the building block. In effect, it defines the
functionality of the building block under various input
conditions. The E(vent) describes the stimulus that invokes
this building block, including procedure call, message
passing, or timer event. After the event occurs, the building
block performs the specific actions over the corresponding
variables and possibly generates a resulting event represented
by the E(ffect).

(3) The P(arameter) defines the parameter settings used for the
building block reflecting the implementation details, such as
timer expiration values (or intervals) or caching policy. These
parameters may be used to adjust the performance of the
building block.

Thus, a building block is composed of three major
components: (a) variables kept in the building block, (b) the
actions taken by the building block and (c) the parameter
setting of the building block.

To illustrate, in a mobile ad hoc routing protocol, for example,
the function of maintaining the caching table is considered as
a single building block. In addition to a number of cache
entries (i.e., variables), the building block also includes the
basic operations (or transition rules), including caching table
initiation, insertion, deletion and lookup. Parameters of such
building block include maximum number of caching entries
and cache expiration timers, the setting of which is expected to
affect the detailed behavior and performance. In the case study
shown in section 6, we conduct further detailed investigation
on this building block.

3.2 Channels
Each individual building block is responsible for one specific
function that is only part of whole protocol mechanisms.
Therefore, various building blocks with different
functionalities are organized together in certain fashion to
realize the protocol as a whole. Specifically, the building
blocks are connected with each other via their interfaces on
well-defined channels.

A channel is introduced to model the connection between
building blocks. The building blocks may interact with each
other within the same node, or between different nodes.
Typically, interface calls between building blocks in a local
node can be modeled by a channel that delivers the interface
call reliably and instantaneously. However when the building

blocks are located in different nodes, such interface calls may
be lost, duplicated, reordered, delayed, etc. The concept of
channels enables us to model and represent the different type
of connections between the building blocks in a uniform way.

A building block is linked to another building block via a
channel if and only if there is an interface call between these
two building blocks. In other words, if the function of one
building block is called upon by another building block, or if
some messages are passed, a channel must exist between these
two building blocks.

It is also essential to capture the inherent properties of the
channel between building blocks. We describe the channel as a
tuple

[I(nport)O(utport), C(haracteristics), M(essages)]

where

(1) The I(nport) designates the input interface of a building
block on one end of a channel, the O(utport) designates the
output interface of another building block on the other end of
the channel.

(2) The C(haracteristics) describe the properties of the
channel, including the characteristics of delay,  or loss
experienced  by the packets.

(3) The M(essages) describe the type of the messages, if any,
transferred over channel between the two building blocks.

3.3 Dynamic Behavior of Building Blocks
and Channels
Once the building blocks and the channels are determined, the
network protocol could be represented as a graph consisting of
building blocks and channels, where the parameterized
building blocks are the vertices and the channels connecting
the building blocks are the edges. Conducting the operations
of individual building blocks in an appropriate order, we are
able to implement the protocol mechanisms. This reflects the
static aspect of protocol mechanism.

The network protocol is deployed and operated under a variety
of different conditions and environments, which generates a
sequence of stimulating events causing the protocol to act.
Those events are of various types, including link breakage
caused by node mobility, service interruption caused by node
failure, or service requests placed by the applications and
users. Upon receiving the input stimuli, the building blocks
react to the incoming events, conducting the proper operations
and interacting with each other, in accordance with the
transition rules regulated by the functionality of the building
blocks and channels.  

ACM SIGCOMM Computer Communications Review Volume 34, Number 3: July 200460



Figure 2:  The Protocol Design, Analysis and Refinement Framework Through Building Block Approach

The tuples defined for the building blocks and channels in
section 3.1 and section 3.2 only reflect their static structure,
including their functionalities and their inherent
characteristics. The dynamic behavior of the building blocks
could be estimated if the sequence of input events is known,
since the behavior of the building blocks is deterministic. To
be exact, we could describe the dynamic behavior of building
block as

{[V(ariables), E(vent) E(ffect), P(arameters)], E(vent)}

where tuple [V(ariables), E(vent)  E(ffect), P(arameters)]
identifies the functionality of the building block and E(vent)
specifies the sequence of events injected into building block.
Similarly, the interaction between building blocks could be
estimated if the events occurring over the channel are known.
We also describe the dynamic behavior of the interaction
between building blocks as  

{[I(nport)O(utport), C(haracteristics), M(essages)],
E(vent)}

where tuple [I(nport)   O(utport), C(haracteristics),
M(essages)]  identifies the key properties of interface call
conducted over the channel and E(vent) describes the sequence
of events in the channel.

The performance of building blocks with different parameter
settings may vary under various environments. To analyze the
performance of a building block, it could be modeled as a
mechanistic ‘black box’ with certain parameter settings. The
performance for building block could be formally described as

Performance = f( Pi, E )

where Pi are the values of parameter settings for building
block i, E  represents the underlying environments, and
Performance is a certain performance metric of the building
block. Function f( ) reflects the mechanism of building block,
which may or may not be written in closed form.

To illustrate, we take the example of the remote cache lookup
building block in the Dynamic Source Routing (DSR) [17]
protocol in MANET under mobility scenarios. In this building
block, the cache, in effect the routing table, is looked up once
an existing route breaks. One metric capturing the mobility
environment is the frequency of link failure. One performance
metric for the building block is the overall overhead to
conduct this lookup. By adjusting the size of cache table and
how the cache tables are updated, we achieve different
performances under the same mobility scenarios.  

An individual building block with specific parameter setting
achieves certain performance under some environmental
conditions. However, the building blocks interact with each
other in a complex fashion. The overall protocol performance
is the result of the individual building block performance in
addition to the interaction between building blocks. Hence,
careful examination of the interaction between the building
blocks is needed to understand the overall performance. By
appropriately addressing this issue, a micro-level analysis of
the protocol mechanisms is conducted in a systematic fashion.
This way, we are able to synthesize and analyze high-level
building blocks from their smaller, simpler, lower-level
building blocks.

As an example, the performance of a high-level building block
consisted of three low-level building blocks can be described
as follow

Performance=G(f1(P1,E),f2(P2,E),f3(P3,E), h12( ), h13( ), h23())

Where f1(P1,E), f2(P2,E), f3(P3,E) describe the performance
model of the three low-level building blocks respectively, and
h12(), h13(), h23() describe the interactions between those
building blocks.

3.4 The Hierarchical Organization of
Protocols in terms of Building Blocks
The whole network protocol is initially broken into a set of
building blocks with different functionalities. These building
blocks interact with each other via channels. Each building
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block has its own specification and behavior. The overall
behavior of a network protocol for a given environment is a
combination of the behaviors of different building blocks and
their interaction.

Sometimes, analyzing and modeling the first level building
blocks (BBs) is not simple enough. One approach in this case
would be to decompose these building blocks further. That is,
the functionality of a high-level building block could be
further decomposed into a number of low-level building
blocks, each implements part of the functionality of the high-
level building block. The division of building blocks is done
successively, until the level where the resulting low-level
building blocks are simple enough to be well-defined,
parameterized and their interaction simply modeled. Since the
decomposition of protocol is done in a hierarchical manner, we
call it the Hierarchical Building Block framework. Fig.2
illustrates a hierarchical building block approach for a specific
network protocol.

In decomposition, the set of low-level building blocks with
their interaction should be equivalent to the original high-
level building block. In other words, several rules should be
satisfied during the decomposition process, including

(1) The set of low-level building blocks in concert accomplish
the same functionality of the high-level building block;

(2) The structure of low-level building blocks together with
their interactions agree with the structure of high level
building block;

(3) The interfaces of the set of low-level building blocks are
compatible with the set of interfaces of its high-level
counterpart;

(4) The set of low-level building blocks achieves the same
behavior of high-level building block under various network
scenarios;

As long as above conditions are satisfied, the decomposition
of high-level building block into set of low-level building
blocks could be done in different ways, depending on the
designer’s preference.

4. THE MODELING OF ENVIRONMENT
Network protocols are deployed in various kinds of
environments where complex and unexpected events may
occur. For example, intra-domain routing protocols are
deployed over a variety of different topologies. Also mobile
ad hoc networks may be used in different scenarios where the
node mobility patterns and communication traffic patterns
may vary widely. Furthermore, wireless sensor networks, that
collect and monitor physical phenomena, may be used in a
mixture of applications ranging from habitual environment
monitoring to object tracking. The protocol performance will
depend heavily on the deployment environment. Hence,
understanding the micro-level protocol behavior and
performance across a wide array of operating conditions i s
essential for the design of robust, efficient protocols.

It is essential to evaluate and analyze the performance of
designed protocol in a variety of environments before the
deployment, in a systematic way and to be able to gain a
deeper understanding into how the protocols, and its

composite building blocks, behave under different test cases.
Furthermore, through examining the effect of building block
parameters, those parameters could be adjusted to achieve the
desirable performance under a given scenario. This i s
particularly important for the cases where the requirement of
the network protocol is application-specific, as the case in
classes of sensor network.

Modeling the underlying environment in a systematic and
faithful way plays an important role in the evaluating,
analyzing and refining the network protocols. The
environment is thought of as an n-dimensional evaluation
space, with each dimension representing a particular factor of
the environment. Each factor represents a certain class of
events with common properties. For example, the underlying
environments to test mobile ad hoc and sensor networks
potentially include several factors, such as node mobility
pattern, communication traffic pattern, node failure pattern and
power consumption pattern, etc. Moreover, each factor of the
environment is also an m-dimensional subspace, consisting of
several small elements with different characteristics. For
instance, the mobility space includes several dimensions like
relative velocity between nodes, spatial dependence of
velocity between nodes, temporal dependence of velocity
between time, etc. [8]. The communication traffic space
includes the dimensions such as duration of communication
traffic, location of communication traffic and type of
communication traffic etc.  Fig. 2 illustrates an example for the
evaluation space of environment spanning several
dimensions.  

To thoroughly study the effect of the environment on the
protocol performance, we propose to evaluate the protocol
over a rich set of models that span the design space of the
environment. To do so, the first step is to determine the
dimensions of evaluation space and its composite subspaces.
Once these are determined, metrics that quantitatively measure
their key characteristics should be defined. By taking the
characteristics of each environment space dimension into
consideration, a set of parameterized environment models
could be obtained, resulting in a good coverage of the
proposed environment metric space by producing a rich set of
environmental models. This set of environmental models is
used as an underlying ‘‘test-suite’’ to evaluate and analyze the
protocol and its mechanistic building blocks in future
research.

5. DESIGN, PERFORMANCE ANALYSIS
AND REFINEMENT OF PROTOCOLS
5.1 Design
Protocol design usually starts with a high level functional
description which is later refined into additional functional
requirements based on the correctness and performance
requirement in a given environment. This type of monolithic
design is extremely complex when the protocol requires many
functional components that interact in a distributed fashion.
So we advocate a modular and hierarchical design approach in
which the functional requirement of the protocol is achieved
by having coarse-grained building blocks that interact with
e a c h  o t h e r  t o
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Figure 3:  Diagram of Building Block Approach for MANET Reactive Protocols

produce the required functionality. Once the functional
requirements of the building blocks and their interaction are
known, the interfaces, states, variables and parameters can be
defined. Based on the interaction between the building blocks
and the environmental conditions in which they are expected
to perform, they can be connected by appropriate channels.
Depending on the channel characteristics, additional
mechanisms may need to be added to each of the building
blocks so as to meet the functional requirements of the
building blocks under various channel characteristics. This
process can be repeated continuously till we reach the required
granularity.

An important thing to note here is that there may be many
ways in which the protocol can be split into building blocks
and each combination may have the same or different
performance. Implementability of the functions of the
building blocks, complexity of implementation and
extensibility of the protocol are some of the things that need
to be kept in mind while using the building blocks approach.

5.2 Performance Analysis and Refinement
The ability to analyze the performance of a protocol based on
the building blocks approach is essential during the design of
new protocols or when the existing protocols need to be
studied or refined. While designing new protocols, there may
be many ways in which the protocol can be divided into
functional components. Performance is one of the criteria used
to select one type of functional division over the other. Once
we know the functional building blocks and their interaction,
we can evaluate the performance under the given operating
environment as described in Section 4.

Refinement of existing protocols or newly designed protocols
essentially involves either tuning the parameters of the
building blocks or adding / deleting building blocks from the
original design. With the operating environment represented
as n-dimension evaluation space, we need to translate the
parameters of the environment into interface calls of the
building blocks that directly take inputs from the
environment. For example, fading, a physical layer effect

caused by environmental changes, translates to some
distribution of BER, which is the input to the physical layer
building blocks. Once we translate these environmental
changes to interface calls with the required properties
(temporal, probabilistic, stochastic etc), they can be used to
understand and analyze the effects of the environment on
protocol performance based on the performance metrics of the
building blocks and channels that link them together.

Performance tuning involves optimal or near optimal setting
of parameters of building blocks so that the best possible
performance is obtained in the given set of environmental
conditions. The building blocks approach allows us to
understand how the protocol building blocks performance
affects the overall performance and hence performance tuning
can be done in a systematic manner. When entire building
blocks or a set of building blocks are replaced as in the case of
protocol re-design or refinement, it is much easier to
understand the effect of the new building blocks and their
interaction on the performance of the overall protocol.

6. PERFORMANCE ANALYSIS OF
BUILDING BLOCKS FOR MANET
REACTIVE ROUTING PROTOCOLS
A mobile ad hoc network is a collection of mobile nodes
forming a network without any existing infrastructure.
Previous studies (e.g. [8]) observe that the mobility factor
plays a significant role in affecting the MANET routing
protocols. Therefore, one of the main challenges in mobile ad
hoc networks research is understanding the effect of mobility
on the performance of routing protocols. In this case study, we
carry out a preliminary building block based analysis for the
impact of mobility on two reactive routing protocols, DSR
[17] and AODV [18], after identifying the basic building
blocks of MANET reactive routing protocols and their
parameter setting. Thus we can extract the relative merits of
different parameter settings and achieve a better understanding
of various building blocks of MANET routing protocols,
which will serve as a solid cornerstone for the development of
more efficient MANET routing protocols.
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The part(a) and part(b) of Fig.3 show the building block
architecture for DSR and AODV respectively, the part(c) of
Fig.3 shows a generalized building block architecture for
reactive MANET protocols.

6.1 Building Blocks for DSR and AODV
First we discuss the functionality, organization and design
choices (parameter settings) of the identified building blocks
of reactive MANET routing protocols and specific parameter
settings for DSR and AODV1. We pose some questions about
the utility of the various design choices made by these
protocols. In section 6.2, we attempt to answer these questions.

Reactive ad hoc routing protocols such as DSR and AODV are
composed of two major phases: Route discovery and Route
maintenance.

Route Discovery is initiated if there is no cached route
available to the destination. This mechanism consists of the
following building blocks:

Flooding building block: The flooding building block takes
responsibility to distribute the route request messages within
the network. Here, the key parameter is the range of flooding,
generally described by TTL field in the IP header. For the
range of flooding, DSR conducts a non-propagating direct-
neighborhood inquiry (TTL=1) before the global flooding
(TTL=D, D is network diameter). Similarly, AODV uses the
expanding ring search (TTL=1,3,5,7) before the global
flooding is initiated. Here, we want to answer the following
question: How useful are non-propagating route requests?

Caching building block: The caching building block helps to
efficiently and promptly provide the route to the destination
without referring to the destination every time. One key
parameter of this block is whether aggressive caching i s
allowed, i.e. whether multiple cache entries are allowed for the
same destination and whether a node can cache the route
information it overhears? As we know, DSR uses aggressive
caching, while AODV does not. For caching, we are interested
in the following questions: How useful is caching? and Is
aggressive caching better than non-aggressive caching?

The Route Maintenance phase takes the responsibility of
detecting broken links and repairing the corresponding routes.
This phase is made up of the following building blocks:

Error Detection building block: It is used to monitor the
status of the link of a node with its immediate neighbors. Here,
the parameter is the mode of error detection used. Since both
DSR and AODV can use similar choice, we do not investigate
this building block in our analysis.   

Error Handling building block: It finds alternative routes to
replace an invalid route after a broken link is detected. One of
the parameters to this block is what recovery scheme should be
used. In DSR, on detecting a broken link, the upstream node
will first search its cache to replace the invalid route(this
scheme is called salvaging), although the found alternative
route may also be invalid in some scenarios. While in AODV,
the upstream node detecting the broken link will initiate a
localized flooding to find the route to the destination. For this

                                                                        
1 The process of protocol decomposition for both protocols, which

follows the methodology introduced in this paper, is omitted because of
the limited space. More details are included in Ref.[6].

building block, we are interested in the following question:
Which is a better scheme for localized error handling: cache
lookup or localized flooding?

Error Notification building block: It is used to notify the
nodes in the network about invalid routes. The key parameter
to this building block is the recipient of the error message.
Either only the source is notified or the entire network i s
notified. Since both DSR and AODV only notify the error to
the source, so we do not investigate this building block in our
analysis.   

Besides these three questions about the design choices, we are
also interested at the explanation for the observation we made
in [8]: DSR outperforms AODV in most mobility scenarios
except the Freeway and Manhattan model with high mobility.

6.2 Experiments to Evaluate and Analyze the
Building Blocks
We identified parts of the network simulator (ns-2) code [13]
which implement these building blocks and profiled them
during our simulations. Following the methodology of
modeling the environment introduced in Section III, the
mobility scenarios are generated to include a set of random
waypoint, RPGM, Freeway and Manhattan models [8] whose
maximum velocity vary from 5m/s to 60m/s, which is believed
to span the whole evaluation space for mobility factors. The
performance of building blocks under those mobility
scenarios is discussed as follow and several questions asked
above are answered.

Flooding: We measure the likelihood of finding a route to the
destination from the source's neighborhood. Through
simulations, we find that non-propagating route request i s
frequently used (more than 30% for DSR and more than 10%
for AODV in most scenarios). However, the ratio for DSR is
almost twice as large as that for AODV across all mobility
models. A possible reason for this comes from the fact that
DSR uses aggressive caching as compared to AODV. When
such a caching scheme is coupled with the mechanism of non-
propagating route requests, it translates to low routing
overhead and high throughput as was shown in our study and
several other comparative studies. Thus, it seems that caching
has a significant impact on the performance of DSR and AODV.
Hence we study it next.

Caching:  To measure the effectiveness of caching, we evaluate
the ratio of the number of route replies coming from the cache
to the total number of route replies. Fig.4(a) and Fig.4(b) show
that this ratio is high for Random Waypoint, Manhattan and
Freeway models, which implies that most of the route replies
for these mobility models come from the cache(more than 80%
in most mobility scenarios).

The ratio difference for DSR and AODV is greater than 20% for
all mobility models.  DSR uses aggressive caching as
compared
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Figure 4: Ratio of Route Reply from the Cache

to AODV. Thus, the likelihood of a route reply coming from a
cache is higher in DSR than in AODV. Therefore, fewer route
requests will be needed and thus the routing overhead of DSR
is lower than AODV as we observed in [8]. Thus, aggressive
caching seems to be a good design choice.

To completely evaluate the caching strategy, we also need to
examine the validity of the cache entries. We evaluate the ratio
of invalid cache entries to the total number of cache entries for
DSR. In experiments, we find the invalid cache ratio increases
from RPGM (around 10%) to Random Waypoint to Freeway
(around 60%) to Manhattan (around 80%) mobility models. It
means that caching may have adverse effects in mobility
models with a high relative speed and it may lead to cache
invalidation. Packets may be sent on invalid routes, which
might lead to packets being dropped and route request retries.
This leads to a lower throughput and higher overhead for DSR
for the Freeway and Manhattan models as was shown in our
study.

On the other hand, in mobility models with very high relative
speed like Manhattan and Freeway, AODV seems to achieve as
good a throughput as DSR (and sometimes better). AODV does
not use aggressive caching, thus the ratio of the number of
route replies coming from the cache to the total number of
route replies is lesser for AODV than DSR. Thus, the likelihood
of getting invalid routes from the cache is lesser for AODV
than for DSR. This may explain why AODV outperforms DSR
in Freeway and Manhattan models with high mobility.

Moreover, at high relative speeds, the number of routes broken
is greater. Thus, a protocol that has a better error-handling
mechanism at higher relative speeds might perform better in
such situations. This line of reasoning leads us to evaluate the
next building block of interest - Error Handling.

Error Handling: To study the effectiveness of error handling,
we focus on localized error handling. We evaluate the ratio of
the number of localized error handling to the total number of
route errors for both DSR and AODV. For DSR, we notice that
salvaging accounts for less than 2% of the total number of
route errors. Moreover, if we take invalid cache entries into
account, the effect of salvaging on the protocol performance i s
further lowered. On the other hand, in AODV, a route request i s
initiated by the upstream node which detects the broken link if
it is closer to the destination. In AODV, the frequency of
initiating localized flooding is between 40% and 50% for
Freeway and Manhattan models. Moreover the routes obtained

by this mechanism are more up to date than those from the
cache salvaging in DSR. This is another factor which explains
the better performance of AODV as compared to DSR in the
Freeway and Manhattan models.   

6.3 Discussion for Refinement of Building
Blocks
The above study of the building blocks has given us greater
insight into the design of the reactive routing protocols for
MANETs. Decomposing a protocol into building blocks and
evaluating these building blocks have shown us scenarios in
which the chosen parameters can give a better performance.
From the above study, we learnt the following principles of
protocol design:

1. Caching helps reduce the protocol overhead. However,
whether aggressive caching should be used depends on the
scenarios in which the protocol will be deployed. For low
mobility scenarios, aggressive caching might be useful, while
for higher mobility scenarios, the more stale cache entries
incurred by aggressive caching might affect the protocol
throughput adversely.

2. Non Propagating route requests, when combined with
caching also reduce the protocol overhead. If caching is
widely done in the network, it may be more advantageous to
do non propagating route requests (or expanding ring search)
than globally flooding the route request. In DSR, due to
aggressive caching, it may be more useful to do expanding
ring search (from the source) on a route error than doing a
global flooding (from the source).

3. The nature of localized error handling also has a
significant impact on protocol performance. Re-initiating a
route request from an intermediate node can be more
advantageous than doing a local cache lookup in high
mobility scenarios, while a cache lookup might be more
advantageous for low mobility scenarios.

Thus, no particular parameter setting of these building blocks
is the most optimal for all scenarios. This further strengthens
our conclusion that there is no clear winner among the
protocols across all mobility scenarios. A promising direction
in this area may be to design mobility-adaptive protocols.
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7. BUILDING BLOCK ANALYSIS FOR
MICRO MOBILITY PROTOCOLS
Mobile IP supports mobility of the IP hosts. However, frequent
handoff leads to frequent registration with the home agent,
leading to increased packet loss and delay. Micro-mobility
protocols reduce this delay and loss by hiding mobility of the
host from the Home agent as long as the mobile node (MN) i s
with the same domain. Extensive research in the field of micro
mobility has led to the development of a large number of
protocols like HAWAII [12], CIP [10] and M&M [11]. Most of
these protocols use a combination of customized mechanisms
for routing and handoff. Micro mobility protocols need to
work in a wide variety of scenarios, such as varied underlying
infrastructure support, mobility patterns, MAC and physical
layer. To explore the design and evaluation space, we partition
the functionality of micro mobility protocols the following
common mechanistic building blocks: (1) addressing, (2)
routing and packet forwarding, (3) association and de-
association detection (mobility detection), (4) buffering, (5)
handoff optimization and signaling, (6) paging and (7)
authentication, authorization and accounting (AAA). In
addition, we recognize the need for additional mechanisms: (1)
address mapping, and address map distribution and (2)
distribution tree root selection and announcement. Different
versions of different micro mobility protocols have different
instances (appropriate subset) of the building blocks. Fig. 5
depicts the building blocks (except AAA) and the relationship
between them. The dotted lines indicate the information
required by different building blocks whereas the solid lines
indicate one building block utilizing or triggering
mechanisms of the other building blocks.

Figure 5:  Building Blocks for Micro Mobility Protocol

To get a better understanding of the building blocks in
different micro mobility protocols, the next part of this
section describes where each building block is used in
different micro mobility protocols and how packets arriving at
the BR are delivered to the MN (in a foreign domain).

When an MN moves from one domain to another, it incurs MIP
handoff. The MN acquires a unicast address, which it retains as
long as it remains within that domain. In M&M, the unicast
address is also used to generate a unique multicast address
using an algorithmic mapping. In contrast, CIP and HAWAII
do not use any kind of mapping mechanism. In these

protocols, when a border router(BR) of the foreign domain
within which the MN resides receives packets destined to the
MN, it either looks for a forwarding entry in its routing table
or a tunnel to the next agent in the hierarchy. If neither is
found, it can optionally buffer packets and/or page the MN.
For the BR to recognize that the packet is destined to an MN
(so that BR initiates paging for packet destined only to MN),
there must be a mechanism by which BR can recognize the
association. Therefore mechanisms that map and announce the
association of the MN's address are required. The MN (or its
serving access router or base station(BS)) responds to paging
and initiates route setup. To initiate the creation of the
delivery tree, the initiator must know where to send the route
update messages (usually towards the root of the delivery
tree). Thus there must be a mechanism by which the root of the
delivery tree can be selected (statically or dynamically) and
announced2.

7.1 Analysis using Building Block Approach
Packet delivery performance of a micro-mobility protocol is a
strong function of the type of handoff optimization
mechanism being used. Typically, handoff delay and jitter are
a function of association/de-association detection (mobility
detection), AAA, route setup/repair and handoff optimization
delays.

Thandoff = f(TmobilityDetection, TAAA, TrouteRepair,

ThandoffOpt, Tgap)

where TmobilityDetection is the time it takes for the MN to detect
that it has entered into the coverage of a new BS (association),
or for the old BS to realize that the MN has moved out of its
coverage (de-association), TAAA is the time taken to complete
AAA functions at the micro mobility level, TrouteRepair is the
time it takes for the routing entries to be installed on the route
to the MN after it has moved, ThandoffOpt is the time required to
setup buffering and forwarding functionality (not necessarily
in that order) and Tgap is the time for which the MN is not in
the  radio coverage of any BSs.

Association and de-association detection building block i s
responsible for triggering route repair and handoff
optimization mechanisms. As the granularity of the
TmobilityDetection becomes coarse, handoff jitter tends to increase.
When this approaches the order of magnitude of link delays,
Thandoff increases. However, scenarios in which the MN can
simultaneously communicate with more than one BS, the
granularity of TmobilityDetection is not an issue as long as there i s
sufficient overlap in the radio coverage.

The time taken for route repair is a function of the delay of the
path on which the update messages traverse. TrouteRepair in bi-
cast and CAR-set handoff optimization schemes is of the order
of link delays from the new BS to the fork router. In buffer and
forward schemes like HAWAII MSF, it is twice as much since
route update message travels from the new BS to the old BS
(typically this is twice the magnitude of the delays from BS to
fork router). In buffer and forward schemes like MSF, the time
required to forward packets is of the order of link delays from
the old BS to the new BS, whereas in forward and buffer
                                                                        
2 For the detailed discussion about the functionality of building blocks in

the micro mobility protocols, please check Ref.[7].
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schemes like triggered CAR-set, the forwarding time is of the
order of the wireless link delay.  

7.2 Evaluation Scenarios
With an understanding of the effect of the building blocks on
performance metrics, we can generate parameterized scenarios
to stress the building blocks. Following parameters can be
used to generate a rich set of evaluation scenarios: Radio
technologies (reactive and non-reactive handoff), Uniformity
of radio coverage (varying gaps in radio coverage), Link
delays (wired and wireless), Topology (tree of varying depths,
non-tree), MN mobility patterns and Granularity of association
and de-association detection. To target the handoff related
building blocks, we generated scenarios with varied radio
technologies (MN having the ability to simultaneously
communicate with two or more BSs, MN with the ability to
communicate with only one BS at a time), radio coverage
(different overlaps, gaps in radio coverage), different link
delays and tree depths. In scenarios where there were no gaps
in wireless coverage, and MN was able to simultaneously
communicate with more than one BS, bi-casting yields
negligible loss and zero handoff delay (for both CIP and
M&M), but at the cost of increased packet duplication. In this
scenario, the MN continues to receive packets from the old BS
while the mobility detection and route repair occurs (as long
as it is in the coverage of both the BS, Toverlap). As long as the
following condition is satisfied, bi-cast handoff optimization
mechanism does not incur packet loss.

Toverlap > TmobilityDetection + TAAA + 2 * TrouteRepair 

Figure 6:  Handoff Delay and Jitter

However, bi-cast handoff scheme incurs high packet loss in
scenarios in which the MN cannot simultaneously
communicate with more than one BS (reactive handoff
scenarios). Fig. 6 shows the handoff delay and jitter
performance of CIP and M&M with bi-cast in reactive
scenarios. Here, Toverlap is effectively zero and the handoff
delay for bi-cast given by the following formula

Thandoff = TmobilityDetection + TAAA + 2 * TrouteRepair.

Since packets are not buffered, all packets during handoff are
lost when bi-cast handoff optimization is used in reactive
handoff scenarios. Though HAWAII incurs handoff delay, it
does not suffer any packet loss as it buffers packets. For the
buffer and forward scheme like MSF  handoff delay is given by

Thandoff = TmobilityDetection + TAAA + ThandoffOpt.

In MSF, the ThandoffOpt is effectively the RRT between the new
BS and the old BS. Since this is typically twice that of
TrouteRepair, MSF suffers from higher handoff delay and jitter.
Fig. 7 shows the packet loss performance of HAWAII with
MSF, M&M with pro-active CAR-set and CIP with bi-cast,
handoff optimization mechanisms in reactive handoff
scenarios. In the pro-active CAR-set scheme, packets are
simultaneously transmitted to all the BS adjacent to the BS to
which the MN is associated with. Therefore, the handoff delay
is  given by

Thandoff = TmobilityDetect + TAAA.

TrouteRepair is zero since the BS to which the MN hands-off will
already be receiving packets. This scheme does not use
buffering. Here, the CAR-set handoff optimization mechanism
trades off extra bandwidth to reduce packet loss, handoff delay
and reordering. Non buffering schemes like bi-cast and pro-
active CAR-set do not perform very well in scenarios in which
there are gaps is radio coverage.  Mechanisms using buffering
perform better in scenarios where there are gaps in radio
coverage. In this scenario, M&M uses triggered CAR-set
handoff mechanism. Here, the old BS senses that the MN is out
of range and triggers packet delivery to the BSs in the CAR-
set. Packets are buffered at each BS and forwarded to the MN
when the MN moves into its coverage. Packets are lost from the
point at which the old BS realizes that the MN is out of range
until the BSs in the CAR-set start receiving packets (after
initiating route repair).  This is typically the time it takes to
perform signaling between the old BS and the CAR-set BS and
the time it takes to perform route repair from the new BS.
Handoff duration for triggered CAR-set is given by

Thandoff = Tgap + TmobilityDetect + TAAA.

However, for buffer and forward schemes like MSF, the time
take to handoff is given by

Thandoff = Tgap + TmobilityDetect +  TAAA  + ThandoffOpt

Therefore, the MSF scheme incurs slightly higher handoff
delay along with packet reordering. The triggered CAR-set
handoff optimization mechanism trades off a little packet loss
to reduce bandwidth utilization, handoff delay and packet
reordering. Fig. 8 illustrates the packet loss performance of
M&M (with triggered CAR-set), HAWAII (with MSF) and CIP

(with bi-cast).

Figure 7:  Packet Loss during Reactive Handoff
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To target the routing building block, we evaluated the
protocols on different topologies (tree and non-tree with
varying link delay and tree depth). Routing in both CIP and
M&M establishes the   shortest path from the root of the
delivery tree to the MN. This is because both protocols send
route repair messages towards the root of the delivery tree.
HAWAII (MSF) establishes the shortest routes only in tree
topologies. In non-tree topologies, HAWAII establishes sub-
optimal routes due to the tight coupling between the handoff
optimization and the routing building blocks. In HAWAII
MSF, after association detection, the MN sends a route update
message from the new BS towards the old BS. As long as the
fork router is in the path between the old and new BS, this
scheme establishes shortest routes. However, if fork router
does not lie in the shortest path from the old BS to the new BS,
forwarding paths are established from the old BS. This not
only leads to sub-optimal routes, but also to increased
bandwidth utilization and increased mobile specific states in
the network.

Figure 8:  Packet Loss in Scenarios with Non-uniform Radio
Coverage

7.3 Observations
Depending on the performance requirement and the scenarios
in which we expect the protocol to operate, a single handoff
optimization mechanism may not be sufficient. A protocol that
can adapt or select an appropriate handoff optimization
mechanism to the scenario at hand will invariably perform
better than an instance of the protocol that cannot adapt.  

Using the building block approach we were able to clearly
identify and isolate the factors that influence the protocol
performance. Furthermore, the approach also enabled us to
understand the effects of different building blocks in different
scenarios. In our experience, using the building block
approach facilitates the systematic study (by generating
scenarios targeting specific building block) of the effects of
various handoff mechanisms (bi-casting, buffering) on packet
delivery performance (packet loss, handoff delay, packet
duplication) and route setup on route optimality and scaling
behavior. This gives us an important insight into the design of
micro-mobility protocols, enabling us to target specific
building blocks to achieve the required performance in
various scenarios.

8. DISCUSSIONS
This work represents the first step in our effort to evaluate,
analyze, model and design network protocols in a systematic
way through the building block approach. The fundamental
idea and generic framework of our building block approach
were described and several key concepts were introduced in
this challenges paper. However, we should acknowledge that a
number of open questions in this framework remain unsolved
until now and bear further research.    

One open question is the formal methodology to break down
the protocol into building blocks by which the decomposition
of protocol into building blocks and interactions could be
automated. Our current solution is still a heuristic method
where the procedure of decomposition, organization,
generalization and parameterization of building blocks are
conducted manually based on the designer’s experience [6]. It
is a well-known fact that the bad modular design, caused by a
human-driven error-prone process, could result in
unnecessarily complex and inefficient systems of
functionality modules. For example, improper abstraction of
mechanistic building blocks based on functionality may give
rise to the complicated pattern of interactions between
building blocks, which defeats to our original objective of
reducing the complexity of protocol evaluation and analysis
through the building block approach. The break down of the
protocol into a set of building blocks in a meaningful way
may be achieved in several ways. Currently we are
investigating a minimum-interaction decomposition scheme
resulting in functionality-independent building blocks based
on graph theory.  

The protocols in the same category normally consist of similar
sets of building blocks with particular functionality. The
functionality of the building blocks is similar while their
parameter setting and implementation details across protocols
may vary. To utilize this commonality, one approach is to
establish a library of building blocks for a given class of
protocols attempting to achieve the same objective. The
protocol design process then is to pick the proper set of
building blocks and adjust the parameter settings based on the
deployed environments. For example, IETF reliable multicast
transmission (rmt) charter suggests a set of building blocks
including data reliability building block, congestion control
building block, security building block, group management
building block, session management building block [14,15]
should be used to compose a protocol for the purpose of
reliable multicast transmission. Thus, one possible direction
in this area is to establish libraries of building blocks for the
various classes of networking protocols. An effort to
standardize the building blocks for the different purposes may
ultimately facilitate the design and analysis of networking
protocols, with the caveat that no one set of building blocks i s
sufficient to conduct all kinds of protocol evaluation studies.
In addition, each library of building blocks should include a
set of test-suites that are rich enough to span the
environmental dimensions of the target application.

9. CONCLUSIONS
The emergence of progressively more complex protocols, such
as classes of application-specific wireless mobile ad hoc and
sensor networks, demands a systematic methodology and
tools to evaluate, analyze and model the protocol performance
under various environments. In this work, we propose a
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hierarchical building block approach to decompose
networking protocols into sets of building blocks. Each
building block performs a particular functionality and
connects with other building blocks via channels. The overall
behavior of a network protocol under a given environment is
determined by the building blocks as well as the interaction
between them. As a consequence, the complex problem of
evaluating and analyzing the protocol performance may be
reduced to a set of sub-problem of evaluating and modeling
simple building blocks. By studying the impact of parameter
settings of each building block and the interaction between
building blocks on protocol performance, greater insight is
developed into the design choice of building blocks for
different environments. This insight could be used to fine-
tune the parameters of protocol or refine the protocol design to
improve its performance for the target applications. To
illustrate the utility of this building block framework, two
case studies were presented on ad hoc reactive routing
protocols and micro-mobility protocols. The studies describe
how the protocols are decomposed into a set of building
blocks connected via well-defined interfaces on the channels.
Through systematic evaluation of the protocols, several
lessons about the protocols’ design as well as the underlying
test suites are discussed.  In this work, we attempt to point out
a potential direction to analyze and understand the behavior of
protocols based on the building block approach. We hope that
this research direction lead to tools that aid the ‘art’ of
protocol design using the ‘science’ of protocol design.
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