
BUILDING THE CHECKERS 10-PIECE ENDGAME

DATABASES

J. Schaeffer, Y. Bjămsson, N. Burch, R. Lake, P. Lu, S. Sutphen
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8

{jonathan,yngvi,burch,lake,paullu,steve}@cs.ualberta.ca, http://www.cs.ualberta.ca/

Abstract In 1993, the CHINOOK tearn completed the computation of the 2 through 8-

piece checkers endgame databases, consisting of roughly 444 billion positions.

Until recently, nobody had attempted to extend this work. In November 2001,

we began an effort to compute the 9- and 10-piece databases. By June 2003,

the entire 9-piece database and the 5-piece versus 5-piece portion of the 10-piece

database were completed. The result is a 13 trillion position database, compressed

into 148 GB of data organized for real-time decompression. This represents the

larg est endgame database initiative yet attempted. The results obtained from these

computations are being used to aid an attempt to weakly salve the game. This

paper describes our experiences working on building large endgame databases.

Keywords: Retrograde analysis, endgame databases, checkers

1. Introduction

Endgame databases have had an enormous impact in computer games re­

search. They have been instrumental in building world championship pro­

grams (e.g., the World Man-Machine Checkers Champion CHINOOK (Schaef­

fer, 1997)), solving games (e.g., Nine Men's Morris (Gasser, 1996) and Awari

(Romein and Bal, 2002, 2003)), and uncovering new insights into games.

For convergihg games, where the number of pieces on the board reduces

as the game progresses, larger endgame databases are a performance asset

to a game-playing program, both in terms of reducing the size of the search

tree and by replacing heuristic evaluations with perfect knowledge. However,

there are practica! considerations to building large databases, including the time

required to compute them, and the resulting size of the (compressed) databases.

Few researchers and developers have the expertise, motivation, patience, and

computing resources to push database technology to its limit (a recent exception

is the solution to the game of Awari (Romein and Bal, 2002, 2003)). This

means, for example, that the 6-piece chess endgame databases are unlikely to

be completed in the near future.

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

194 J. Schaeffer, Y. Bjărnsson, N. Burch, R. Lake, P. Lu, S. Sutphen

CHIN o o K is the World Man-Mac hine Checkers Champion (Schaeffer, 1997). 1

The 8-piece endgame databases were a critica} part of the program's success

against the top human players. The databases contained secrets that were well

beyond the understanding of even the premier players in the world. These

databases were started in 1989 and completed in 1993-444 billion positions

compressed into 5.6 GB of data. These numbers may seem small by today's

standards, but were impressive back in the early 1990s when a state-of-the-art

CPU was an Intel 486, 32 MB was considered tobe a lot of memory, and 1 GB

disks were new technology and very expensive.

Beginning in November 2001, we started production runs for computing the

9- and 10-piece checkers endgame databases. The databases are not needed

to improve the playing strength of checkers programs; there are currently at

least five checkers programs that are superior to all human players. Rather,

there is a more enticing goal: solving the game of checkers (or, more precisely,

weakly solving the game (Allis, 1994)). The total search space for the game is

5 x 1020 , a seemingly prohibitively large number. However, most of the search

space is likely tobe irrelevant to the proof, and resulting estimates of the proof­

tree size are well within what is possible to compute with current technology.

Building the 10-piece databases (specifically the key 5-piece versus 5-piece

subset, where each si de has the same number of pieces) is a key stepping stone

to solving checkers.

This paper describes our experiences building the 9- and 10-piece checkers

databases. The task was daunting, given the need for 64-bit addressing, large

computations (up to 171 billion positions at a time), large intermediate disk

needs (over 1 TB), verification of the results, and fault tolerance. In 1 O years,

these numbers will seem trivial, but the techniques will be useful for the next

large database computation.

This paper makes the following contributions:

1 the practica! considerations that complicate any long-te~ data-intensive

computation,

2 the system issues that need to be addressed, including memory con-

straints, concurrency, compression, and fault tolerance,

3 improved data compression techniques,

4 data on the 9- and 10-piece checkers databases, and

5 speculation on the likelihood of solving checkers in the near future.

Section 2 describes the algorithms used to compute the 8-piece databases.

Section 3 discusses the enhancements needed to move to the larger 10-piece

1 There are over 100 checkers variants. The variant used here is played on an 8 X 8 board and is popular in

the former British Commonwealth and in North America. So-called International Checkers is played on a

1 O x 1 O board and is popular in Russia, Europe, and Africa.

Building the Checkers 1 0-piece Endgame Databases 195

databases. The results from building the databases and the implications for

solving the game of checkers are in Section 4. Section 5 concludes with per­

spectives on building larger databases.

2. Algorithms

The important application-specific properties that infiuence the database al-

gorithms are (Goldenberg et al., 2003) (the "Properties"):

1 The game starts with 12 white and 12 black checkers on the board.

2 A captured piece is removed from the board and cannot return.

3 Checkers can be promoted to become kings (when the checker moves to

the back rank of the opponent).

4 Checkers move forward; kings move forward and backward.

The algorithms used for the checkers computation are updated versions of

those used to compute the CHINOOK 8-piece databases (Lake et al., 1994).

This code had not been touched since the completion of the databases in 1993.

The most common format of an endgame database stores for each position a

distance metric. This metric is typically either the number of moves to win (if

appropriate) or the number of moves to convert to another database. This level of

detail is tremendously useful in practice since it allows a game-playing program

to play the "best" database moves without needing any search. However, this

representation requires (at least) a byte of data per position, and the resulting

database does not compress well. The philosophy adopted for building checkers

databases has been to build the largest databases possible. To do this necessitates

storing the minimal amount of information per position in the database -

recording only whether a position is a win, a loss ora draw. The result facilitates

the creation of large endgame databases that compress extremely welL

For database calculations, each position is represented by 2 bits, representing

the values win (W), loss (L), at least a draw (D), and unknown (U). Using D

to mean at-least-a-draw instead of exactly a draw is useful, 'since it reduces

the amount of disk IlO done by the program (see the Lookups phase described

below). A portion of the endgame database (a slice) is computed by resolving

ali positions as wins, losses or draws. The final result is compressed, verified,

and then added to the master copy of the completed databases.

The 10-piece databases are huge (8.5 trillion positions for just the 5-piece

versus 5-piece subset), and it is not practica! to do the entire calculation as one

big computation. Instead, the problem is broken down into smaller slices that

can be solved more easily. The databases are broken down as follows:

• By pieces: The N-piece database can be computed once the N-1-piece

database is done (by Property #2).

• By material: An N-piece database is further divided so that subsets with a

different number of pieces per side can be computed in parallel (Property

196 1. Schaeffer, Y. Bjărnsson, N. Burch, R. Lake, P. Lu, S. Sutphen

#2). For example, in the 9-piece database computation, the 8 pieces

versus 1, 7 versus 2, 6 versus 3, and 5 versus 4 subsets can be computed

in paraliel.

• By number of kings: The material division is further broken down by

the number ofkings for each side (exploiting Property #3). For example,

after 5 kings versus 4 kings have been computed, then the subset 4 kings

and 1 checker versus 4 kings can be computed (the one checker might

promote, thus the 5 king versus 4 king database must be computed first).

• By leading rank: A sub-database is further sliced into pieces by consid­

ering the position of each side's most advanced (leading) checker (from

ranks 1 to 7). Positions where the leading checker is on rank R must

be computed before those where the leading checker is on rank R - 1

(Property #4). For example, in the 4 kings and 1 checker versus 4 kings

endgame, ali positions where the checker is on the severith rank must be

computed before tackling ali positions where the checker is on the sixth

rank. For databases where each side has a checker, this technique results

in dividing the computation into 49 (not-necessarily-equal) slices, dra­

maticaliy reducing the size of the biggest computation to be performed.

More details on the decomposition can be found in Lake et al. (1994).

Table 1 shows how the 5-piece

1 Database 11 Total Positions 1 Slices 1 versus 5-piece subset of the 10-

5500 16,257,084,480 1

5401 142,249,489,200 7

5302 247,789,432,800 7

5203 214,750,841,760 7

5104 92,565,018,000 7

5005 15,868,288,800 6

4411 311,375,610,000 28

4312 1,085,553,705,600 49

4213 941,518,468,800 49

4114 406,152,630,000 49

4015 69,686,136,000 42

3322 946,853,107,200 28

3223 1,643,753,217,600 49

3124 709,688,460,000 49

3025 121,877,184,000 42

2233 714,003,388,800 28

2134 617,101,500,000 49

2035 106,080,312,960 42

1144 133,467,390,552 28

1045 45,934,129,104 42

0055 3,956,576,472 21

Total 11 8,586,481,972,128 1 630 1

piece database can be subdivided into

smaller pieces. The first column gives

the number of kings and checkers for

the sub-database using the notation

"bk wk bc wc", where bk is the num­

ber of black kings, wk is the num­

ber of white kings, bc is the number

of black checkers and wc is the num­

ber of white checkers~ The 8.5 tril­

lion positions are divided into 21 sub­

sets based on the number of kings and

checkers. The 3223 subset (3 kings

and 2 checkers for black; 2 kings and 3

checkers for white) is the largest, with

roughly 1.6 trillion positions. This is

subdivided into 49 slices based on the

leading checker.

The largest slices in the 5 piece

versus 5 piece subset of the 10-piece

database are shown in Table 2. To

Table 1. Database slices for 10-piece database specify a slice, we use the notation
(5 versus 5 pieces).

Building the Checkers 1 0-piece Endgame Databases 197

Slice Size

3223.77/2332.77 85,515,674,400 x2 = 171,031,348,800

2233.76/2233.67 73,228,209,600 x2 = 146,456,419,200

3223.67/2332.76 71,823,866,400 x2 = 143,647,732,800

3223.76/2332.67 59,656,240,800 x2= 119,312,481,600

3322.76/3322.67 58,741,300,800 x2 = 117,482,601,600

3223.57/2332.75 58,132,058,400 x2 = 116,264,116,800

2134.7711243.77 56,491,266,000 x2 = 112,982,532,000

2233.77 104,558,625,600 104,558,625,600

3223.66/2332.66 50,304,477,600 x2 = 100,608,955,200

Table 2. Largest 10-piece database slices.

"bk wk bc wc. br wr" where br is the rank of the leading black checker and

wr is the rank of the leading white checker. The largest slice is 171 billion

positions (3223.77 with black to move and its mirror database 2332.77 with

white to move). Using 2 bits per position, this slice requires almost 40 GB of

storage during its computation phase. In total, there are only 9 slices that have

a size of over 100 billion positions.

Note that slices can be further sub-divided. Gil Dodgen and Ed Trice (2002)

have experimented with using both the rank of the leading checker and the

configuration of checkers on the first rank to achieve further' subdivisions. The

finer granularity of the slices reduces the RAM needs and increases the compu­

tation's concurrency. For the work reported here, additional subdivisions were

not needed. However, with current technology they might be needed if one

wanted to compute the 11-piece databases (currently not in our plans).

The endgame database solving programs were designed with the following

objectives in mind: reduce the amount of disk 110 needed, reduce the memory

requirements for the largest jobs, and use as many machines as possible. The

computation of a database slice consists of 5 phases. The phases iterate over

the data, where each position value in the slice has been initialized to unknown

(U). The database construction phases are summarized in Table 3.

1 Captures: The rules of checkers require that a capture move, if present

in a position, must be played. A capture move removes one or more

pieces from the board. Ali capture moves are looked up in previously

computed databases and the maximum of the resulting values (WIL/D)

is assigned to the position. For an N-piece database calculation, this

phase only requires the 2 through N-1-piece databases. This is important

because the N-1-piece databases are considerably smaller than the N­

piece databases. For example, the 9-piece databases are only 18 GB in

size. Thus the capture phase for ali 10-piece database calculations can

be computed well in advance of when the data is needed.

2 Lookups: The databases are sliced according to the leading checker.

When the leading checker advances, it will result in a position that has

198 J. Schaeffer, Y. Bjornsson, N. Burch, R. Lake, P. Lu, S. Sutphen

already been computed. The Lookups phase resolves ali moves by the

leading checker. By handling this I/0 in a separate phase, we can guar­

antee that the next phase (non-captures) does not have to access any

previously computed database results.

The advance of the checker may result in the current position being re­

solved as a win. In rare cases the only moves possible in a position are

those of the leading checker. If ali these moves lead to losing positions,

then the current position can be resolved as a loss. If the leading checker

advances and the resulting position leads to a draw, then we have a lower

bound on the value of the position. The position might still be a win

(a king move or non-leading checker move could lead to a winning po­

sition). Thus, if a leading checker move results in a draw score, this

position is marked as a D but with the semantics being 'that the value is

2:: a draw. For this phase, only the N-piece database is needed (but, as

explained below, because of the compression scheme used, the 2 through

N-1-piece databases might also be required).

3 Non-captures: The preceding phases resolved aU requests for infor­

mation from previously computed database slices. In the non-captures

phase, only moves by kings and non-leading checkers are considered.

Hence there is no need to access the previously-computed databases.

In contrast to the previous phases, the non-captures phase is compute­

intensive.

This phase iterates over aU positions in the slice, skipping over capture

positions (their values are fixed) and WIL positions (their value cannot

change). Only unresolved positions and draw positions are considered;

the former to discover whether the position is a W IL/D and the the latter

to see ifthe D can become a W. This phase only resolves wins and losses.

When no more changes occur during an iteration, the non,captures phase

is complete. Any position that has a U or D value must be a real draw.

This phase may require iterating over the data 100 or more times (the

maximum number of ply needed to force a winning position into another

database slice). To reduce the cost, the program iterates over ali positions

until a "smaU" number of changes occurs in an iteration. The positions

that change value are saved in a queue. For subsequent iterations, the only

positions whose value can be resolved are those that are a predecessor of

a queue position.

4 Compression: The endgame databases are needed in a real-time search­

ing program (such as CHINOOK). Hence the data has tobe compressed in

a way that supports real-time decompression. The compression scheme

used is described in Section 3.3.

Building the Checkers 1 0-piece Endgame Databases 199

Name& Description Databases Values Time

Needs Used Set (%)

Captures Resolve capture moves. 2-(N-1) W,L,D 15

IlO Sequential pass over the data.

Lookups Reso1ve non-capture moves 2-N W,L,~D 24

IlO that result in database positions.

Sequential pass over the data.

Non- Reso1ve non-capture moves. None W,L 20

Captures Repeated passes over the data,

CPU both sequential and random

access, until no more changes.

Compress Convert to final compressed None D 1

IlO format.

Sequential pass over the data.

Verify Verify that the new results 2-N None 40

IlO are consistent intemally and

with pre-existing databases.

Sequential pass over the data.

Table 3. Database construction summary.

5 Verification: Errors are a fact of life in any long-running computation.

Since one result depends on another, it is critica} thaţ the computations

be verified for correctness. There is an easy way to do this: after the non­

captures phase, a quick scan of the data can verify if the resulting set of

values is internally consistent (self-consistency). This is quick, but does

not catch ali possible errors. Instead, our verification phase operates not

on the 2-bit-per-position representation but on the compressed database.

Ali positions are verified that they are consistent not only within the

slice, but also with respect to previously computed data. The latter point

dramatically increases the cost of the verification, but can find errors not

caught by the fast scheme. Besides, it makes it easier to sleep at night!

The database construction phases are summarized in Table 3. The time

column is a generic average that represents the percentage of wall clock time

spent in each phase. These numbers can vary significantly depending on the

data set used. The verification phase is the most expensive since, in effect, it

has to repeat most of the work done in the previous phases.

The breakdown of the computation into inul tiple phases assists in planning

how to effectively acquire and use computing resources. The captures, lookups,

and verification phases are IlO bound. These phases need to be run on machines

with a minimum of 300 GB of disk storage, and they benefit from the fastest

possible disk drives. The non-capture phase is compute bound and should be

run on the fastest available processor. This phase is easily parallelized, and the

performance scales well to a large number of processors on a shared-memory

computer.

200 J. Schaeffer, Y. Bjărnsson, N. Burch, R. Lake, P. Lu, S. Sutphen

3. Moving from Eight to Ten Pieces

This section discusses the issues that had to be addressed to enhance the

CHINOOK database calculations to accommodate the larger size ofthe 10-piece

databases.

3.1 64-bit Indices

By subdividing the databases into slices, the original CHINOOK code could

get by with using 32-bit numbers for position indices. For the 1 0-piece databases,

the largest individual slice was 104 billion positions (the symmetric database

2233.77), necessitating at least 37 bits for addressing.

The CHINOOK code was converted to use 64-bit indices. By-and-large this

was easy to do, but there were some subtleties that were initially overlooked.

For example, most C compilers do automatic conversion between 32- and 64-

bit numbers (both ways), possibly losing precision (and usually not getting a

compiler warning). Another danger was intermediate expression results. Some

expressions combined 32- and 64-bit data with implicit data conversions that

could lead to errors.

Note that simply converting ali numbers to use 64 bits was not an option. The

tables used for computing position indices occupy a lot of memory. Using 32-

bit numbers wherever possible reduced the memory footprint of the program,

freeing up more space for disk caching.

3.2 64-bit File Sizes

When we started the project, support for 64-bit file sizes was not fully inte­

grated in Linux. However, we were fortunate in that the experimental kernels

we used fully supported the two routines that we needed: open64 and lseek64.

Support for large files has limited other groups wanting to build large databases

on Windows' platforms.

3.3 Compression

Many endgame databases associate a distance metric with a database position

(the number of moves to win or the number of moves to convert to another

database slice). For checkers, this was impractical. Our goal was to build the

largest database possible. For this to happen, disk space and the execution

overhead of accessing the data could not be a limitation. For example, if a

byte was associated with each of the 13 trillion database positions computed,

then 13 TB of disk would be needed. Even a generous 10:1 compression ratio

would stillleave the database size at an awkward 1.3 TB. The large disk size

will dramatically slow down database computations since it will be difficult

Building the Checkers 1 0-piece Endgame Databases 201

to achieve spatial and temporal disk locality (this was elegantly addressed for

smaller databases by Lincke and Marzetta (2000)).

Allowing only win-loss-draw values in the database enables 5 position values

tobe encoded in a byte (35 = 243 < 256). Using this trivial compression would

result in 13 trillion positions being encoded into 2.6 TB. This is still too large

(and expensive) tobe practica!. Further data compression is needed.

The data has to be available for use in a real-time search. Hence any com­

pression scheme has to support rapid real-time decompression. The databases

were compressed by using two techniques: removing information that can be

easily re-computed, and run-length encoding.

Any position where either side to move could result in a capture would have

the position result removed from the database (i.e., capture and threatened cap­

ture positions). It is easy to re-compute the value of a capture position: play

the capture move(s) and look up the resulting position(s) in the database. Re­

moving values for positions where a capture is threatened is more problematic.

To re-compute this value, the side to move must try ali possible moves and, in

some cases, in the resulting position the opponent has a forced capture or there

is a threatened capture-all these positions must be looked up in the database.

Hence positions with a threatened capture may require an expensive search to

resolve. It quickly became clear that with our compression algorithms, sim­

ply removing capture position values was not good enough; we had to remove

threatened capture positions to make the compressed database size reasonable.

Our estimate is that removing threatened capture positions improves the com­

pression by a factor of 4.

Ali capture and threatened capture positions had their value replaced by the

dominant value in the database slice. Then run-length encoding would be used

to compress the data. The original CHINOOK algorithm encoded 5 positions

into a byte (Lake et al., 1994). That left 13 values for the run-length encoding

(256 - 35 = 13). These values were used to represent runs of the dominant

value, for runs of length 10 to 3,200. For example, a database slice might be

dominated by wins. The capture and threatened capture positions (typically

75% of the positions) would have their values replaced by a win. Run-length

encoding would find many long stretches of wins and encode them into one (or

a few) bytes.

The original CHINOOK databases, 444 billion positions (ali the 2 through

8-piece databases), were compressed into 5.6 GB. This works out to an average

of roughly 77 positions encoded in a byte. This is misleading since the lop­

sided databases (e.g., 6 pieces versus 2) compress very well (they are almost

ali wins for the strong side), whereas the even material databases (e.g., 4 pieces

versus 4 pieces) have a mix of win, loss and draw values, resulting in poorer

(but still good compression). The 4 pieces versus 4 pieces database averaged

22 positions per byte.

202 J. Schaeffer, Y. Bjărnsson, N. Burch, R. Lake, P. Lu, S. Sutphen

For the 10-piece databases, our initial estimates were that the above scheme

would result in a final database size of 400 GB. Thus it was important to find

a better compression scheme. The new algorithm is based on Huffman coding

and consists of the following steps:

1 Replace capture and threatened capture positions with the W /L/D value

that continues the current run.

2 Convert the above into a string of (WIUD, run_length) pairs. There will

not be two consecutive runs with the same first value.

3 Predict the value of a run based on the value of the run before the previous

run. For example, given runs (draw, X) and (loss, Y) we would predict

the value of the next run to be draw. The prediction is correct roughly

95% of the time. Now convert the string so that a (value, length) pair

simply becomes length, preceded by a special miss symbol if the value

is not correctly predicted.

4 If a maximum run length of N is chosen, we then have N - 1 length

symbols, one escape symbol that states that an integer length follows, and

one symbol that states that the value of this run is predicted incorrectly.

Given the frequencies of these symbols, an optimallength limited prefix

free code (length limited Huffman code (Turpin and Moffat, 1995)) can

be generated. We use a fixed code generated from the largest database file

(a separate code per database file does not improve compression much).

Twenty bits was chosen as a reasonable limitation on the length of the

bit strings, as a table 1,048,576 entries wide used for decoding seemed

reasonable and larger string lengths provided minimal improvements.

Given this maximum, empirica! testing on the databases showed a num­

ber around 10,000 tobe the best choice for the maximum run length

allowed before escaping to a 32-bit integer description. lncreasing the

number of symbols overly crowded the space of bit strings available for

compression by too much, and decreasing the maximum run lertgth in­

creased the number of escaped symbols by too much.

5 The previous types used to predict the types of the first two runs are

set by looking ahead at these two symbols and using the values that

will correctly predict them. These values are stored at the front of the

compressed bit-string using three bits ..

With the new scheme the complete 2-piece through 8-piece databases reduce

in size from 5.6 to 2.7 GB, cutting the database in half (averaging out to 155

positions per byte). The complete 9-piece databases is 16.8 GB, an average

of 227 positions per byte. The 10-piece databases (5 pieces versus 5 pieces)

compress to 125 GB, 65 positions per byte. This represents a substantial im­

provement over the 22 positions per byte seen for the 4 pieces versus 4 pieces

subset of the 8-piece databases.

Building the Checkers 1 0-piece Endgame Databases 203

3.4 Disk 1/0

Table 3 shows that the wall clock time is dominated by the IlO-intensive

phases. The captures, lookups, and verify phases all sequentially proceed

through the data. However, each may result in a (usually small) search to

resolve the value of the position by looking up values in previously computed

databases. This search is a consequence of the data compression scheme used

(which removes the value for any capture and threatened capture position). The

alternative was to keep the uncompressed data on disk and use that instead. This

was not done because of the possibility of introducing an error; the values based

on IlO operations (e.g., capture positions) have not been verified for correct­

ness. Rather than trust unverified data, we preferred the (slower) use of the

compressed data.

The capture phase runs quite quickly. Surprisingly, typically over 60% of

the positions get resolved in this phase. Each position has slightly more than

one legal capture move per position. The remaining positions need to have a

lookup performed. These positions average roughly 3 moves by the leading

checker(s), each of which has tobe looked up. Each of these searches is, on

average, considerably more expensive than a simple capture position. Thus,

even though the lookup resolves only typically 10-15% of database, it runs

slower than the captures phase because of the increased amount of I/0.

Each position has IlO performed on it a maximum of two times. Capture

positions are visited only in the captures phase; they are not included in the

final compressed database, so no verification has to be done. All the remaining

positions may have to have IlO done twice: once to do a lookup of any leading

checker moves, and once to verify the position value if there is no threatened

capture.

The databases have been organized to increase data locality. Database slices

that are likely to lead into one another are located physically close to each other

in a database file. As well, the program maintains its own internat disk paging,

allowing the program to prioritize the database pages kept in memory. The

result is that the program, using 200 MB of page buffers, ends up doing one

disk IlO for an average of 500 database position value requests. In other words,

the hit rate is 499/500.

IlO could be significantly reduced ifthe database construction program used

slices selectively. Some of the databases are relatively small, and slicing them

into 49 pieces incurs a lot of unnecessary overhead. These databases could be

constructed as one big computation. For example, the 1045 database has only

45 billion positions-using roughly 10.5 GB. Rather than slicing this piece into

42 slices-each with a lookups phase-the entire database could be done as a

single computation. Then the lookups would only be required for part of the

204 J. Schaeffer, Y. Bjdrnsson, N. Burch, R. Lake, P. Lu, S. Sutphen

database-where there was a leading checker on the 7th rank. This has not

been done.

It may seem that the non-captures phase should require the most computa­

tional effort, given that this phase must make repeated passes over the data.

Further, some of databases are too large tobe resident in RAM, requiring costly

disk paging. Fortunately, this was not a problem in our implementation. The

non-captures phase was set up so that references to values in other databases

(requiring IlO operations) were not needed. The position indexing scheme was
organized to facilitate spatial and temporallocality. This allowed a (relatively)
small working set of data to be resident in memory during the non-captures

phase. This was facilitated by having an interna! paging mechanism, allowing

the program to take advantage of application-dependent properties to minimize

the IlO. On our machines, 200 MB of RAM was allocated for pages. With this,

we have been able to complete the non-captures phase on files as large as 25

GB in only a few days.

It is interesting to note that the profile of the database computation has

changed significantly since we did this work in the early 1990s. Some parts of

the program that were previously IlO bound are now CPU bound (more memory
to eliminate costly IlO), while other parts that were CPU bound are now IlO

bound (CPU speed has improved more than disk speed). This meant that we
had to re-profile the program and use additional optimization techniques.

3.5 Errors

Given that this computation takes many CPU years to run and terabytes of

data transferred from and to disk, it is critica! that an error not be allowed to

creep into the calculation. An error early on in the computation, for example,

may result in the entire calculation having to be repeated. For example, in

October 2001, Gil Dodgen and Ed Trice calculated the 8-piece databases. We
compared the CHINOOK results with theirs and discovered a d~fference in the

7-piece results (Dodgen and Trice, 2002). It eventually tumed out that the

CHINOOK databases were wrong (a few thousand positions). However, even

with the error the databases still passed all our verification tests! This may

seem strange, but it can happen. The computed data can be intemally consistent,
but wrong. The best way to verify the correctness of the databases is to have

them independently computed and then the results compared-as we did with

the Dodgen!frice data.2 Needless to say, we are hoping that this experience is

not repeated with our 9- and 10-piece calculations.

2We are aware of another effort to compute the 9-piece databases and (apparently) the 10-piece databases.

We ha ve made two offers to exchange information with this party so that the correctness of both of our efforts

could be verified. The offers have been declined.

Building the Checkers 10-piece Endgame Databases 205

During the course ofthe calculations, we had to contend with a faulty CPU,

bad memory, a disk crash, network errors and operator errors. In some cases,

these errors were trivial to spot (dead disk), while others proved more sub­

tie (faulty memory chip). Precautions were taken to reduce the likelihood of

introducing an error into the computation:

1 Ali calculations were logged. This was useful if a post-mortem was

needed to identify the reason(s) for a computation failure.

2 Ali data copied over a network was verified. The source and destination

files had a cyclic redundancy check (CRC) value computed, and the two

had to match. In practice, most copies worked correctly. However, at

least once a month the CRC check would fail signaling a copy error.

3 The database files were augmented with a 32-bit CRC number for each

block of 1024 bytes. Whenever a disk read (local or over the network)

was performed, the data read would be verified for consistency with the

CRC number. This enhancement allowed us to find a subtle bug in the

program, and occasionaliy would uncover a read failure that was not

reported by the operating system.

4 Ali data computed-databases in their original and compressed form­

were archived to tape. Thus, if a catastrophic event occurred (e.g., an

error was discovered in the early part of the computation), we would

be able to recover by repairing the faulty data rather than having to re­

compute it from scratch. The need to retrieve data from tape occurred

only once.

Despite ali the above precautions, occasionally the computation of a database

slice failed to verify, even though the logs showed no record of any error oc­

curring.

Are the databases correct? We do not know, but hope that someone will soon

repeat our calculations and confirm our results.

3.6 System Issues

For the checkers computation, keeping many machines 100% busy is a dif­

ficult task. It is complicated by the calculation dependencies (some databases

must be computed before others), hardware specialization (run IlO-intensive

jobs on machines with fast disks; run CPU-i:htensive jobs on machines with fast

processors), and disk management (transferring files; making sure that disks

do not fili up). We developed tools that can automate most of the computa­

tion dependency and hardware specialization issues (Goldenberg et al., 2003).

However, managing the data turned out to be labour intensive and a source of

potential errors. We were unable to find or build a usable tool that could properly

manage the data file dependencies, taking into account disk space constraints,

in such a way as to maximize throughput. This appears to be a very difficult

206 J. Schaeffer, Y. Bjărnsson, N. Burch, R. Lake, P. Lu, S. Sutphen

problem, but one that needs to be solved if data-intensive computations are to

be fuliy automated.

4. Results

This section discusses the results of computing ali the 9-piece databases and

the 5 pieces versus 5 pieces subset of the 10-piece databases.

4.1 Computation

Table 4 shows the sizes of the databases completed. 3 13.1 trillion positions

have been computed. We claim that this is the largest endgame database (in

terms of number of positions) yet computed for any game.

The computation took 18 months. The 9-piece calculation began in Novem­

ber 2001 and the 10-piece in January 2002. These computatioris ended in June

2003. Most ofthe work was completed on dual-processor AMD machines. The

memory used ranged from 1 to 4 GB. Older, slower (800 MHz) computers were

used to pre-compute the captures phase of the computation. The lookups, non­

captures, and verification phases were done using an average of 3 machines,

with an average speed of 1.5 GHz. Ali phases used both processors to speed

up the computation.

We had infrequent access to a 64-processor SGI 03000 (500 MHz) with 32

GB of RAM. The machine was used to run the non-captures phase of many

of the largest database slices. The database program was paralielized using

POSIX threads so that the range of positions could be equally divided between

the processors and computed in paraliel. The largest computation (171 billion

positions) took 2.3 days of SGI time to resolve. The length of time was due

to the relative slowness of the processors (500 MHz) and the number ofpasses

over the data that were required to resolve ali the positions.

The total amount of computing done is difficult to estimate given that a vary­

ing number of machines were used, with different number of processors, and

with differing processor speeds. Normalized to a 1.5 GHz processor, a balipark

estimate is that the complete 2 through 9-piece databases and the 5 versus 5

piece subset of the 10-piece databases required 15 CPU years of computing.

Since a few of the 6 versus 4 piece database slices have been computed (low

priority on a single machine), we could actualiy start computing the 11-piece

database (6 versus 5 subset). This computation is roughly 10-fold bigger (117

trillion) than what has already been accomplished. We will not pursue this

unless the 10-piece databases are insufficient for solving the game of checkers

in a reasonable amount of time.

3Note that some 6 piece versus 4 piece slices have been computed.

Building the Checkers 1 0-piece Endgame Databases 207

1 Num Pieces 11 Pieces/Side 1 Size 11 Total Completed 1

1-0 120 11 120 1

2

11

2-0

1 -1 3,488
3,48411

6,9721

3

Il
3-0

2-1 196 032
65,19211

261 2241
' '

4 4-0 883,458

3-1 3,546,384

2-2 2,662,932 7,092,774

5 5-0 9,237,424

4-1 46,409,320

3-2 93,041,488 148,688,232

6 6-0 77,526,288

5-1 467,999,856

4-2 1,174,279,692

3-3 783,806,128 2,503,611,964

7 7-0 536,417,856

6-1 3, 782,903,904

5-2 11,404,950,960

4-3 19,055,258,760 34,779,531,480

8 8-0 3,118,957,920

7-1 25,172,147,520

6-2 88,657,111,920

5-3 177,982,456,720

4-4 111,378,534,401 406,309,208,481

9 9-0 15,455,930,880

8-1 140,531,639,040

7-2 566,442,589,440

6-3 1,328,448,083,840

5-4 1,997,749,399,776 4,048,627,642,976

10 10-0 65,975,569,920

9-1 o
'

8-2 o
7-3 o
6-4 o
5-5 8,586,481,972,128 8,652,457,542,048

Total 13,144,833,586,271

Table 4. Databases completed.

4.2 Statistics

Because of the concurrency used in the non-captures phase (2 processors

would iterate on a slice in parallel), it is hard to know the exact number of

ply required to resolve a slice. There were some slices that needed over 180.

iterations to resolve, a lower bound that is probably very close to the actual

208 J. Schaeffer, Y. Bjărnsson, N. Burch, R. Lake, P. Lu, S. Sutphen

number. Consider what this number means. There were slices where over 180

ply were needed before a capture could be forced or the leading checker could

safely advance one square. In the latter case, one wonders how many more ply

would be needed to win the game once that checker had safely advanced a single

square-it could be huge! This gives rise to the speculation that there are 10-

piece positions that may require many hundreds of ply to sol ve. For example,

Gil Dodgen and Ed Trice have built a perfect-play 7-piece database, and they

report the longest win (against best play) tobe 253 ply (127 moves) (Trice and

Dodgen, 2003). There must be 10-piece positions that are considerably longer

than that.

The previous discussion illustrates the disadvantage of computing only W /L/D

values. CHINOOK could reach a 10-piece position and not know how to win it.

The search could flounder, not being able to choose between winning moves to

find a quick path to victory. The (real) danger is that the program will end up

cycling around, not knowing how to make progress (although this has not been

seen in practice).

4.3 Solving Checkers

The total possible search space for the game of checkers ,is 5 x 1020 (see

Table 5)-a daunting number. But how much of it has to be explored to sol ve

checkers? Three assumptions can be used to get a rough upper bound on the

effort required to solve checkers. The following heuristics are used to identify

the key search space for the proof tree; parts that are excluded may be needed

in the case of proving trivially won positions.

• Material Balance: An advantage of 2 or more pieces is huge; equivalent

to roughly a rook or more in chess. It seems reasonable to assume that

a proof would not have to go through positions with lop-sided material.

The useful positions are those where the material balance is even, or one

side has a single piece advantage.

• King Balance: One side having 3 or more kings than the other rarely

occurs in practice. Hence we limit the search space to subsets where the

number of kings for each side differs by at most 2.

• Number of Kings: Kings only appe<l! on the board !ater in the game.

For example, although it is theoretically possible to have 24 pieces on the

board with one of them being a king, this scenario is highly contrived. A

reasonable assumption is to limit the number of kings to being 6 when

there are 10 or less pieces on the board, 4 with 12 or more pieces, 2 with

14 or more pieces, and zero with 24 or less pieces.

Table 5 shows the results of applying the above assumption. From 0(1020)

the potential search space drops to 0(1014). Of this, the databases computed

Building the Checkers 1 0-piece Endgame Databases 209

1 Pieces 11 Database Size 1 Plausible Bound 1

1 120 120

2 6,972 3,488

3 261,224 196,032

4 7,092,774 2,662,932

5 148,688,232 89,972,128

6 2,503,611,964 759,865,120

7 34,779,531,480 17,681,009,520

8 406,309,208,481 103,706,534,351

9 4,048,627,642,976 1,551,749,730,336

10 34,778,882,769,216 5,862,356,551,488

11 259,669,578,902,016 21,456,015,775,392

12 1,695,618,078,654,976 46,262,266,685,096

13 9, 726,900,031,328,256 22,268,142,277,920

14 49,134,911,067,979,776 29,879,692,089,280

15 218,511,510,918,189,056 802,158,318,720

16 852,888,183,557,922,816 723,777,011,100

17 2,905,162,728,973,680,640 2,169,968,941,008

18 8,568,043,414,939,516,928 1 ,527,822,346,512

19 21,661,954,506,100,113,408 3,587,090,153,856

20 46,352,957,062,510,379,008 1,959,596,777,424

21 82,459,728,874,435,248,128 3,564,284,669,088

22 118,435,747,136,817,856,512 1 ,489 ,690, 180,992

23 129,406,908,049' 181 ,900,800 2,057,391 ,420,240

24 90,072,726,844,888,186,880 641,335,986,590

1 Total 11 500,995,484,682,338,672,639 1 145,925,579,158,733

Table 5. Reducing the checkers search space.

thus far represent roughly 7.5 trillion-5% of the reduced search space. It is too

early to know the full impact of the 10-piece databases in the checkers proof.

5. Conclusions

Disks are getting larger and cheaper; terabyte systems are affordable and

petabyte systems exist. Moore's law continues to hold and multi-processor

systems are ubiquitous. RAM is inexpensive, and hardware and operating

systems are gradually moving to accommodate large memories. In effect, there

is no technologicallimit to pushing database technology to even greater heights.

The endgame databases reported here contain over 1013 data points, a 30-fold

increase over what seemed possible a decade ago. High-end technology that is

available today could be used to push this to 1014 .

The reason for computing the 10-piece databases was to solve the game of

checkers. The databases eliminate the bottom of the search tree. A separate

project is building the top of the proof tree, searching forward from the root

210 J. Schaeffer, Y. Bjornsson, N. Burch, R. Lake, P. Lu, S. Sutphen

towards the databases. When the two search frontiers meet, checkers will be

solved. At this point in time, it is too early to tell how soon this will happen.

Acknowledgements

This work benefitted from email interactions with Ed Trice and Gil Dodgen.

Their independent calculation of the 8-piece database uncovered an error in the

CHINOOK databases. It was better to tind this error before starting the 9- and

1 0-piece calculation than afterwards!

This research was supported by grants from the Natural Sciences and En­

gineering Council of Canada (NSERC) and Alberta's Informatics Center of

Research Excellence (iCORE), and used resources funded by the Canada Foun­

dation for Innovation (the MACI project). The efforts of the Software Systems

and Hardware Support Groups of the Computing Science Department, Univer­

sity of Alberta, are greatly appreciated.

References

Allis, L. (1994). Searching for Solutions in Games and Artificial Intelligence. PhD thesis, De-

partment of Computing Science, Universiteit Maastricht, Maastricht, The Netherlands.

Dodgen, G. and Trice, E. (2002). Personal communication.

Gasser, R. (1996). Solving Nine Men's Morris. Computational Intelligence, 12:24-41.

Goldenberg, M., Lu, P., Pinchack, C., and Schaeffer, J. (2003). TrellisDAG: A System for Struc-

tured DAG Scheduling. In 9th Workshop on Job Scheduling Strategiesfor Parallel Processing,

pages 21-34. Springer-Verlag.

Lake, R., Schaeffer, J., and Lu, P. (1994). Solving large retrograde analysis problems using a

network of workstations. In van den Herik, H., Herschberg, I., and Uiterwijk, J., editors,

Advances in Computer Chess 7, pages 135-162. University of Limburg, Maastricht, The

Netherlands.

Lincke, T. and Marzetta, A. (2000). Large endgame databases with limited memory space. ICGA

Journal, 23(3):131-138.

Romein, J. and Bal, H. (2002). Awari is solved. ICGA Journal, 25(3):162-165.

Romein, J. and Bal, H. (2003). Solving the game of awari using parallel retrograde analysis.

IEEE Computer. To appear.

Schaeffer, J. (1997). One Jump Ahead: Challenging Human Supremacy in Checkers. Springer­

Verlag.

Trice, E. and Dodgen, G. (2003). The 7-piece perfect play lookup database for the game of

checkers. In van den Herik, H., lida, H., and Heinz, E., editors, Advances in Computer

Games 10, pages 211-230. Kluwer Academic Publishers, Norwell, MA.

Turpin, A. and Moffat, A. (1995). Practicallength-limited coding for large alphabets. The Com­

puter Journal, 38(5):339-347.

