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Abstract In 1993, the CHINOOK tearn completed the computation of the 2 through 8-

piece checkers endgame databases, consisting of roughly 444 billion positions. 

Until recently, nobody had attempted to extend this work. In November 2001, 

we began an effort to compute the 9- and 10-piece databases. By June 2003, 

the entire 9-piece database and the 5-piece versus 5-piece portion of the 10-piece 

database were completed. The result is a 13 trillion position database, compressed 

into 148 GB of data organized for real-time decompression. This represents the 

larg est endgame database initiative yet attempted. The results obtained from these 

computations are being used to aid an attempt to weakly salve the game. This 

paper describes our experiences working on building large endgame databases. 
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1. Introduction 

Endgame databases have had an enormous impact in computer games re­

search. They have been instrumental in building world championship pro­

grams (e.g., the World Man-Machine Checkers Champion CHINOOK (Schaef­

fer, 1997)), solving games (e.g., Nine Men's Morris (Gasser, 1996) and Awari 

(Romein and Bal, 2002, 2003)), and uncovering new insights into games. 

For convergihg games, where the number of pieces on the board reduces 

as the game progresses, larger endgame databases are a performance asset 

to a game-playing program, both in terms of reducing the size of the search 

tree and by replacing heuristic evaluations with perfect knowledge. However, 

there are practica! considerations to building large databases, including the time 

required to compute them, and the resulting size of the ( compressed) databases. 

Few researchers and developers have the expertise, motivation, patience, and 

computing resources to push database technology to its limit (a recent exception 

is the solution to the game of Awari (Romein and Bal, 2002, 2003)). This 

means, for example, that the 6-piece chess endgame databases are unlikely to 

be completed in the near future. 
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CHIN o o K is the World Man-Mac hine Checkers Champion (Schaeffer, 1997). 1 

The 8-piece endgame databases were a critica} part of the program's success 

against the top human players. The databases contained secrets that were well 

beyond the understanding of even the premier players in the world. These 

databases were started in 1989 and completed in 1993-444 billion positions 

compressed into 5.6 GB of data. These numbers may seem small by today's 

standards, but were impressive back in the early 1990s when a state-of-the-art 

CPU was an Intel 486, 32 MB was considered tobe a lot of memory, and 1 GB 

disks were new technology and very expensive. 

Beginning in November 2001, we started production runs for computing the 

9- and 10-piece checkers endgame databases. The databases are not needed 

to improve the playing strength of checkers programs; there are currently at 

least five checkers programs that are superior to all human players. Rather, 

there is a more enticing goal: solving the game of checkers (or, more precisely, 

weakly solving the game (Allis, 1994)). The total search space for the game is 

5 x 1020 , a seemingly prohibitively large number. However, most of the search 

space is likely tobe irrelevant to the proof, and resulting estimates of the proof­

tree size are well within what is possible to compute with current technology. 

Building the 10-piece databases (specifically the key 5-piece versus 5-piece 

subset, where each si de has the same number of pieces) is a key stepping stone 

to solving checkers. 

This paper describes our experiences building the 9- and 10-piece checkers 

databases. The task was daunting, given the need for 64-bit addressing, large 

computations (up to 171 billion positions at a time), large intermediate disk 

needs ( over 1 TB ), verification of the results, and fault tolerance. In 1 O years, 

these numbers will seem trivial, but the techniques will be useful for the next 

large database computation. 

This paper makes the following contributions: 

1 the practica! considerations that complicate any long-te~ data-intensive 

computation, 

2 the system issues that need to be addressed, including memory con-

straints, concurrency, compression, and fault tolerance, 

3 improved data compression techniques, 

4 data on the 9- and 10-piece checkers databases, and 

5 speculation on the likelihood of solving checkers in the near future. 

Section 2 describes the algorithms used to compute the 8-piece databases. 

Section 3 discusses the enhancements needed to move to the larger 10-piece 

1 There are over 100 checkers variants. The variant used here is played on an 8 X 8 board and is popular in 

the former British Commonwealth and in North America. So-called International Checkers is played on a 

1 O x 1 O board and is popular in Russia, Europe, and Africa. 
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databases. The results from building the databases and the implications for 

solving the game of checkers are in Section 4. Section 5 concludes with per­

spectives on building larger databases. 

2. Algorithms 

The important application-specific properties that infiuence the database al-

gorithms are (Goldenberg et al., 2003) (the "Properties"): 

1 The game starts with 12 white and 12 black checkers on the board. 

2 A captured piece is removed from the board and cannot return. 

3 Checkers can be promoted to become kings (when the checker moves to 

the back rank of the opponent). 

4 Checkers move forward; kings move forward and backward. 

The algorithms used for the checkers computation are updated versions of 

those used to compute the CHINOOK 8-piece databases (Lake et al., 1994). 

This code had not been touched since the completion of the databases in 1993. 

The most common format of an endgame database stores for each position a 

distance metric. This metric is typically either the number of moves to win (if 

appropriate) or the number of moves to convert to another database. This level of 

detail is tremendously useful in practice since it allows a game-playing program 

to play the "best" database moves without needing any search. However, this 

representation requires (at least) a byte of data per position, and the resulting 

database does not compress well. The philosophy adopted for building checkers 

databases has been to build the largest databases possible. To do this necessitates 

storing the minimal amount of information per position in the database -

recording only whether a position is a win, a loss ora draw. The result facilitates 

the creation of large endgame databases that compress extremely welL 

For database calculations, each position is represented by 2 bits, representing 

the values win (W), loss (L), at least a draw (D), and unknown (U). Using D 

to mean at-least-a-draw instead of exactly a draw is useful, 'since it reduces 

the amount of disk IlO done by the program (see the Lookups phase described 

below). A portion of the endgame database (a slice) is computed by resolving 

ali positions as wins, losses or draws. The final result is compressed, verified, 

and then added to the master copy of the completed databases. 

The 10-piece databases are huge (8.5 trillion positions for just the 5-piece 

versus 5-piece subset), and it is not practica! to do the entire calculation as one 

big computation. Instead, the problem is broken down into smaller slices that 

can be solved more easily. The databases are broken down as follows: 

• By pieces: The N-piece database can be computed once the N-1-piece 

database is done (by Property #2). 

• By material: An N-piece database is further divided so that subsets with a 

different number of pieces per side can be computed in parallel (Property 
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#2). For example, in the 9-piece database computation, the 8 pieces 

versus 1, 7 versus 2, 6 versus 3, and 5 versus 4 subsets can be computed 

in paraliel. 

• By number of kings: The material division is further broken down by 

the number ofkings for each side (exploiting Property #3). For example, 

after 5 kings versus 4 kings have been computed, then the subset 4 kings 

and 1 checker versus 4 kings can be computed (the one checker might 

promote, thus the 5 king versus 4 king database must be computed first). 

• By leading rank: A sub-database is further sliced into pieces by consid­

ering the position of each side's most advanced (leading) checker (from 

ranks 1 to 7). Positions where the leading checker is on rank R must 

be computed before those where the leading checker is on rank R - 1 

(Property #4). For example, in the 4 kings and 1 checker versus 4 kings 

endgame, ali positions where the checker is on the severith rank must be 

computed before tackling ali positions where the checker is on the sixth 

rank. For databases where each side has a checker, this technique results 

in dividing the computation into 49 (not-necessarily-equal) slices, dra­

maticaliy reducing the size of the biggest computation to be performed. 

More details on the decomposition can be found in Lake et al. (1994). 

Table 1 shows how the 5-piece 

1 Database 11 Total Positions 1 Slices 1 versus 5-piece subset of the 10-

5500 16,257,084,480 1 

5401 142,249,489,200 7 

5302 247,789,432,800 7 

5203 214,750,841,760 7 

5104 92,565,018,000 7 

5005 15,868,288,800 6 

4411 311,375,610,000 28 

4312 1,085,553,705,600 49 

4213 941,518,468,800 49 

4114 406,152,630,000 49 

4015 69,686,136,000 42 

3322 946,853,107,200 28 

3223 1,643,753,217,600 49 

3124 709,688,460,000 49 

3025 121,877,184,000 42 

2233 714,003,388,800 28 

2134 617,101,500,000 49 

2035 106,080,312,960 42 

1144 133,467,390,552 28 

1045 45,934,129,104 42 

0055 3,956,576,472 21 

Total 11 8,586,481,972,128 1 630 1 

piece database can be subdivided into 

smaller pieces. The first column gives 

the number of kings and checkers for 

the sub-database using the notation 

"bk wk bc wc", where bk is the num­

ber of black kings, wk is the num­

ber of white kings, bc is the number 

of black checkers and wc is the num­

ber of white checkers~ The 8.5 tril­

lion positions are divided into 21 sub­

sets based on the number of kings and 

checkers. The 3223 subset (3 kings 

and 2 checkers for black; 2 kings and 3 

checkers for white) is the largest, with 

roughly 1.6 trillion positions. This is 

subdivided into 49 slices based on the 

leading checker. 

The largest slices in the 5 piece 

versus 5 piece subset of the 10-piece 

database are shown in Table 2. To 

Table 1. Database slices for 10-piece database specify a slice, we use the notation 
(5 versus 5 pieces). 
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Slice Size 

3223.77/2332.77 85,515,674,400 x2 = 171,031,348,800 

2233.76/2233.67 73,228,209,600 x2 = 146,456,419,200 

3223.67/2332.76 71,823,866,400 x2 = 143,647,732,800 

3223.76/2332.67 59,656,240,800 x2= 119,312,481,600 

3322.76/3322.67 58,741,300,800 x2 = 117,482,601,600 

3223.57/2332.75 58,132,058,400 x2 = 116,264,116,800 

2134.7711243.77 56,491,266,000 x2 = 112,982,532,000 

2233.77 104,558,625,600 104,558,625,600 

3223.66/2332.66 50,304,477,600 x2 = 100,608,955,200 

Table 2. Largest 10-piece database slices. 

"bk wk bc wc. br wr" where br is the rank of the leading black checker and 

wr is the rank of the leading white checker. The largest slice is 171 billion 

positions (3223.77 with black to move and its mirror database 2332.77 with 

white to move). Using 2 bits per position, this slice requires almost 40 GB of 

storage during its computation phase. In total, there are only 9 slices that have 

a size of over 100 billion positions. 

Note that slices can be further sub-divided. Gil Dodgen and Ed Trice (2002) 

have experimented with using both the rank of the leading checker and the 

configuration of checkers on the first rank to achieve further' subdivisions. The 

finer granularity of the slices reduces the RAM needs and increases the compu­

tation's concurrency. For the work reported here, additional subdivisions were 

not needed. However, with current technology they might be needed if one 

wanted to compute the 11-piece databases (currently not in our plans). 

The endgame database solving programs were designed with the following 

objectives in mind: reduce the amount of disk 110 needed, reduce the memory 

requirements for the largest jobs, and use as many machines as possible. The 

computation of a database slice consists of 5 phases. The phases iterate over 

the data, where each position value in the slice has been initialized to unknown 

(U). The database construction phases are summarized in Table 3. 

1 Captures: The rules of checkers require that a capture move, if present 

in a position, must be played. A capture move removes one or more 

pieces from the board. Ali capture moves are looked up in previously 

computed databases and the maximum of the resulting values (WIL/D) 

is assigned to the position. For an N-piece database calculation, this 

phase only requires the 2 through N-1-piece databases. This is important 

because the N-1-piece databases are considerably smaller than the N­

piece databases. For example, the 9-piece databases are only 18 GB in 

size. Thus the capture phase for ali 10-piece database calculations can 

be computed well in advance of when the data is needed. 

2 Lookups: The databases are sliced according to the leading checker. 

When the leading checker advances, it will result in a position that has 
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already been computed. The Lookups phase resolves ali moves by the 

leading checker. By handling this I/0 in a separate phase, we can guar­

antee that the next phase (non-captures) does not have to access any 

previously computed database results. 

The advance of the checker may result in the current position being re­

solved as a win. In rare cases the only moves possible in a position are 

those of the leading checker. If ali these moves lead to losing positions, 

then the current position can be resolved as a loss. If the leading checker 

advances and the resulting position leads to a draw, then we have a lower 

bound on the value of the position. The position might still be a win 

(a king move or non-leading checker move could lead to a winning po­

sition). Thus, if a leading checker move results in a draw score, this 

position is marked as a D but with the semantics being 'that the value is 

2:: a draw. For this phase, only the N-piece database is needed (but, as 

explained below, because of the compression scheme used, the 2 through 

N-1-piece databases might also be required). 

3 Non-captures: The preceding phases resolved aU requests for infor­

mation from previously computed database slices. In the non-captures 

phase, only moves by kings and non-leading checkers are considered. 

Hence there is no need to access the previously-computed databases. 

In contrast to the previous phases, the non-captures phase is compute­

intensive. 

This phase iterates over aU positions in the slice, skipping over capture 

positions (their values are fixed) and WIL positions (their value cannot 

change). Only unresolved positions and draw positions are considered; 

the former to discover whether the position is a W IL/D and the the latter 

to see ifthe D can become a W. This phase only resolves wins and losses. 

When no more changes occur during an iteration, the non,captures phase 

is complete. Any position that has a U or D value must be a real draw. 

This phase may require iterating over the data 100 or more times (the 

maximum number of ply needed to force a winning position into another 

database slice ). To reduce the cost, the program iterates over ali positions 

until a "smaU" number of changes occurs in an iteration. The positions 

that change value are saved in a queue. For subsequent iterations, the only 

positions whose value can be resolved are those that are a predecessor of 

a queue position. 

4 Compression: The endgame databases are needed in a real-time search­

ing program (such as CHINOOK). Hence the data has tobe compressed in 

a way that supports real-time decompression. The compression scheme 

used is described in Section 3.3. 
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Name& Description Databases Values Time 

Needs Used Set (%) 

Captures Resolve capture moves. 2-(N-1) W,L,D 15 

IlO Sequential pass over the data. 

Lookups Reso1ve non-capture moves 2-N W,L,~D 24 

IlO that result in database positions. 

Sequential pass over the data. 

Non- Reso1ve non-capture moves. None W,L 20 

Captures Repeated passes over the data, 

CPU both sequential and random 

access, until no more changes. 

Compress Convert to final compressed None D 1 

IlO format. 

Sequential pass over the data. 

Verify Verify that the new results 2-N None 40 

IlO are consistent intemally and 

with pre-existing databases. 

Sequential pass over the data. 

Table 3. Database construction summary. 

5 Verification: Errors are a fact of life in any long-running computation. 

Since one result depends on another, it is critica} thaţ the computations 

be verified for correctness. There is an easy way to do this: after the non­

captures phase, a quick scan of the data can verify if the resulting set of 

values is internally consistent (self-consistency). This is quick, but does 

not catch ali possible errors. Instead, our verification phase operates not 

on the 2-bit-per-position representation but on the compressed database. 

Ali positions are verified that they are consistent not only within the 

slice, but also with respect to previously computed data. The latter point 

dramatically increases the cost of the verification, but can find errors not 

caught by the fast scheme. Besides, it makes it easier to sleep at night! 

The database construction phases are summarized in Table 3. The time 

column is a generic average that represents the percentage of wall clock time 

spent in each phase. These numbers can vary significantly depending on the 

data set used. The verification phase is the most expensive since, in effect, it 

has to repeat most of the work done in the previous phases. 

The breakdown of the computation into inul tiple phases assists in planning 

how to effectively acquire and use computing resources. The captures, lookups, 

and verification phases are IlO bound. These phases need to be run on machines 

with a minimum of 300 GB of disk storage, and they benefit from the fastest 

possible disk drives. The non-capture phase is compute bound and should be 

run on the fastest available processor. This phase is easily parallelized, and the 

performance scales well to a large number of processors on a shared-memory 

computer. 
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3. Moving from Eight to Ten Pieces 

This section discusses the issues that had to be addressed to enhance the 

CHINOOK database calculations to accommodate the larger size ofthe 10-piece 

databases. 

3.1 64-bit Indices 

By subdividing the databases into slices, the original CHINOOK code could 

get by with using 32-bit numbers for position indices. For the 1 0-piece databases, 

the largest individual slice was 104 billion positions (the symmetric database 

2233.77), necessitating at least 37 bits for addressing. 

The CHINOOK code was converted to use 64-bit indices. By-and-large this 

was easy to do, but there were some subtleties that were initially overlooked. 

For example, most C compilers do automatic conversion between 32- and 64-

bit numbers (both ways), possibly losing precision (and usually not getting a 

compiler warning). Another danger was intermediate expression results. Some 

expressions combined 32- and 64-bit data with implicit data conversions that 

could lead to errors. 

Note that simply converting ali numbers to use 64 bits was not an option. The 

tables used for computing position indices occupy a lot of memory. Using 32-

bit numbers wherever possible reduced the memory footprint of the program, 

freeing up more space for disk caching. 

3.2 64-bit File Sizes 

When we started the project, support for 64-bit file sizes was not fully inte­

grated in Linux. However, we were fortunate in that the experimental kernels 

we used fully supported the two routines that we needed: open64 and lseek64. 

Support for large files has limited other groups wanting to build large databases 

on Windows' platforms. 

3.3 Compression 

Many endgame databases associate a distance metric with a database position 

(the number of moves to win or the number of moves to convert to another 

database slice). For checkers, this was impractical. Our goal was to build the 

largest database possible. For this to happen, disk space and the execution 

overhead of accessing the data could not be a limitation. For example, if a 

byte was associated with each of the 13 trillion database positions computed, 

then 13 TB of disk would be needed. Even a generous 10:1 compression ratio 

would stillleave the database size at an awkward 1.3 TB. The large disk size 

will dramatically slow down database computations since it will be difficult 
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to achieve spatial and temporal disk locality (this was elegantly addressed for 

smaller databases by Lincke and Marzetta (2000)). 

Allowing only win-loss-draw values in the database enables 5 position values 

tobe encoded in a byte (35 = 243 < 256). Using this trivial compression would 

result in 13 trillion positions being encoded into 2.6 TB. This is still too large 

(and expensive) tobe practica!. Further data compression is needed. 

The data has to be available for use in a real-time search. Hence any com­

pression scheme has to support rapid real-time decompression. The databases 

were compressed by using two techniques: removing information that can be 

easily re-computed, and run-length encoding. 

Any position where either side to move could result in a capture would have 

the position result removed from the database (i.e., capture and threatened cap­

ture positions). It is easy to re-compute the value of a capture position: play 

the capture move(s) and look up the resulting position(s) in the database. Re­

moving values for positions where a capture is threatened is more problematic. 

To re-compute this value, the side to move must try ali possible moves and, in 

some cases, in the resulting position the opponent has a forced capture or there 

is a threatened capture-all these positions must be looked up in the database. 

Hence positions with a threatened capture may require an expensive search to 

resolve. It quickly became clear that with our compression algorithms, sim­

ply removing capture position values was not good enough; we had to remove 

threatened capture positions to make the compressed database size reasonable. 

Our estimate is that removing threatened capture positions improves the com­

pression by a factor of 4. 

Ali capture and threatened capture positions had their value replaced by the 

dominant value in the database slice. Then run-length encoding would be used 

to compress the data. The original CHINOOK algorithm encoded 5 positions 

into a byte (Lake et al., 1994). That left 13 values for the run-length encoding 

(256 - 35 = 13). These values were used to represent runs of the dominant 

value, for runs of length 10 to 3,200. For example, a database slice might be 

dominated by wins. The capture and threatened capture positions (typically 

75% of the positions) would have their values replaced by a win. Run-length 

encoding would find many long stretches of wins and encode them into one ( or 

a few) bytes. 

The original CHINOOK databases, 444 billion positions (ali the 2 through 

8-piece databases), were compressed into 5.6 GB. This works out to an average 

of roughly 77 positions encoded in a byte. This is misleading since the lop­

sided databases (e.g., 6 pieces versus 2) compress very well (they are almost 

ali wins for the strong side), whereas the even material databases (e.g., 4 pieces 

versus 4 pieces) have a mix of win, loss and draw values, resulting in poorer 

(but still good compression). The 4 pieces versus 4 pieces database averaged 

22 positions per byte. 
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For the 10-piece databases, our initial estimates were that the above scheme 

would result in a final database size of 400 GB. Thus it was important to find 

a better compression scheme. The new algorithm is based on Huffman coding 

and consists of the following steps: 

1 Replace capture and threatened capture positions with the W /L/D value 

that continues the current run. 

2 Convert the above into a string of (WIUD, run_length) pairs. There will 

not be two consecutive runs with the same first value. 

3 Predict the value of a run based on the value of the run before the previous 

run. For example, given runs (draw, X) and (loss, Y) we would predict 

the value of the next run to be draw. The prediction is correct roughly 

95% of the time. Now convert the string so that a (value, length) pair 

simply becomes length, preceded by a special miss symbol if the value 

is not correctly predicted. 

4 If a maximum run length of N is chosen, we then have N - 1 length 

symbols, one escape symbol that states that an integer length follows, and 

one symbol that states that the value of this run is predicted incorrectly. 

Given the frequencies of these symbols, an optimallength limited prefix 

free code (length limited Huffman code (Turpin and Moffat, 1995)) can 

be generated. We use a fixed code generated from the largest database file 

(a separate code per database file does not improve compression much). 

Twenty bits was chosen as a reasonable limitation on the length of the 

bit strings, as a table 1,048,576 entries wide used for decoding seemed 

reasonable and larger string lengths provided minimal improvements. 

Given this maximum, empirica! testing on the databases showed a num­

ber around 10,000 tobe the best choice for the maximum run length 

allowed before escaping to a 32-bit integer description. lncreasing the 

number of symbols overly crowded the space of bit strings available for 

compression by too much, and decreasing the maximum run lertgth in­

creased the number of escaped symbols by too much. 

5 The previous types used to predict the types of the first two runs are 

set by looking ahead at these two symbols and using the values that 

will correctly predict them. These values are stored at the front of the 

compressed bit-string using three bits .. 

With the new scheme the complete 2-piece through 8-piece databases reduce 

in size from 5.6 to 2.7 GB, cutting the database in half (averaging out to 155 

positions per byte). The complete 9-piece databases is 16.8 GB, an average 

of 227 positions per byte. The 10-piece databases (5 pieces versus 5 pieces) 

compress to 125 GB, 65 positions per byte. This represents a substantial im­

provement over the 22 positions per byte seen for the 4 pieces versus 4 pieces 

subset of the 8-piece databases. 
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3.4 Disk 1/0 

Table 3 shows that the wall clock time is dominated by the IlO-intensive 

phases. The captures, lookups, and verify phases all sequentially proceed 

through the data. However, each may result in a (usually small) search to 

resolve the value of the position by looking up values in previously computed 

databases. This search is a consequence of the data compression scheme used 

(which removes the value for any capture and threatened capture position). The 

alternative was to keep the uncompressed data on disk and use that instead. This 

was not done because of the possibility of introducing an error; the values based 

on IlO operations (e.g., capture positions) have not been verified for correct­

ness. Rather than trust unverified data, we preferred the (slower) use of the 

compressed data. 

The capture phase runs quite quickly. Surprisingly, typically over 60% of 

the positions get resolved in this phase. Each position has slightly more than 

one legal capture move per position. The remaining positions need to have a 

lookup performed. These positions average roughly 3 moves by the leading 

checker(s), each of which has tobe looked up. Each of these searches is, on 

average, considerably more expensive than a simple capture position. Thus, 

even though the lookup resolves only typically 10-15% of database, it runs 

slower than the captures phase because of the increased amount of I/0. 

Each position has IlO performed on it a maximum of two times. Capture 

positions are visited only in the captures phase; they are not included in the 

final compressed database, so no verification has to be done. All the remaining 

positions may have to have IlO done twice: once to do a lookup of any leading 

checker moves, and once to verify the position value if there is no threatened 

capture. 

The databases have been organized to increase data locality. Database slices 

that are likely to lead into one another are located physically close to each other 

in a database file. As well, the program maintains its own internat disk paging, 

allowing the program to prioritize the database pages kept in memory. The 

result is that the program, using 200 MB of page buffers, ends up doing one 

disk IlO for an average of 500 database position value requests. In other words, 

the hit rate is 499/500. 

IlO could be significantly reduced ifthe database construction program used 

slices selectively. Some of the databases are relatively small, and slicing them 

into 49 pieces incurs a lot of unnecessary overhead. These databases could be 

constructed as one big computation. For example, the 1045 database has only 

45 billion positions-using roughly 10.5 GB. Rather than slicing this piece into 

42 slices-each with a lookups phase-the entire database could be done as a 

single computation. Then the lookups would only be required for part of the 
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database-where there was a leading checker on the 7th rank. This has not 

been done. 

It may seem that the non-captures phase should require the most computa­

tional effort, given that this phase must make repeated passes over the data. 

Further, some of databases are too large tobe resident in RAM, requiring costly 

disk paging. Fortunately, this was not a problem in our implementation. The 

non-captures phase was set up so that references to values in other databases 

(requiring IlO operations) were not needed. The position indexing scheme was 
organized to facilitate spatial and temporallocality. This allowed a (relatively) 
small working set of data to be resident in memory during the non-captures 

phase. This was facilitated by having an interna! paging mechanism, allowing 

the program to take advantage of application-dependent properties to minimize 

the IlO. On our machines, 200 MB of RAM was allocated for pages. With this, 

we have been able to complete the non-captures phase on files as large as 25 

GB in only a few days. 

It is interesting to note that the profile of the database computation has 

changed significantly since we did this work in the early 1990s. Some parts of 

the program that were previously IlO bound are now CPU bound (more memory 
to eliminate costly IlO), while other parts that were CPU bound are now IlO 

bound (CPU speed has improved more than disk speed). This meant that we 
had to re-profile the program and use additional optimization techniques. 

3.5 Errors 

Given that this computation takes many CPU years to run and terabytes of 

data transferred from and to disk, it is critica! that an error not be allowed to 

creep into the calculation. An error early on in the computation, for example, 

may result in the entire calculation having to be repeated. For example, in 

October 2001, Gil Dodgen and Ed Trice calculated the 8-piece databases. We 
compared the CHINOOK results with theirs and discovered a d~fference in the 

7-piece results (Dodgen and Trice, 2002). It eventually tumed out that the 

CHINOOK databases were wrong (a few thousand positions). However, even 

with the error the databases still passed all our verification tests! This may 

seem strange, but it can happen. The computed data can be intemally consistent, 
but wrong. The best way to verify the correctness of the databases is to have 

them independently computed and then the results compared-as we did with 

the Dodgen!frice data.2 Needless to say, we are hoping that this experience is 

not repeated with our 9- and 10-piece calculations. 

2We are aware of another effort to compute the 9-piece databases and (apparently) the 10-piece databases. 

We ha ve made two offers to exchange information with this party so that the correctness of both of our efforts 

could be verified. The offers have been declined. 
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During the course ofthe calculations, we had to contend with a faulty CPU, 

bad memory, a disk crash, network errors and operator errors. In some cases, 

these errors were trivial to spot (dead disk), while others proved more sub­

tie (faulty memory chip). Precautions were taken to reduce the likelihood of 

introducing an error into the computation: 

1 Ali calculations were logged. This was useful if a post-mortem was 

needed to identify the reason(s) for a computation failure. 

2 Ali data copied over a network was verified. The source and destination 

files had a cyclic redundancy check (CRC) value computed, and the two 

had to match. In practice, most copies worked correctly. However, at 

least once a month the CRC check would fail signaling a copy error. 

3 The database files were augmented with a 32-bit CRC number for each 

block of 1024 bytes. Whenever a disk read (local or over the network) 

was performed, the data read would be verified for consistency with the 

CRC number. This enhancement allowed us to find a subtle bug in the 

program, and occasionaliy would uncover a read failure that was not 

reported by the operating system. 

4 Ali data computed-databases in their original and compressed form­

were archived to tape. Thus, if a catastrophic event occurred (e.g., an 

error was discovered in the early part of the computation), we would 

be able to recover by repairing the faulty data rather than having to re­

compute it from scratch. The need to retrieve data from tape occurred 

only once. 

Despite ali the above precautions, occasionally the computation of a database 

slice failed to verify, even though the logs showed no record of any error oc­

curring. 

Are the databases correct? We do not know, but hope that someone will soon 

repeat our calculations and confirm our results. 

3.6 System Issues 

For the checkers computation, keeping many machines 100% busy is a dif­

ficult task. It is complicated by the calculation dependencies (some databases 

must be computed before others), hardware specialization (run IlO-intensive 

jobs on machines with fast disks; run CPU-i:htensive jobs on machines with fast 

processors), and disk management (transferring files; making sure that disks 

do not fili up). We developed tools that can automate most of the computa­

tion dependency and hardware specialization issues (Goldenberg et al., 2003). 

However, managing the data turned out to be labour intensive and a source of 

potential errors. We were unable to find or build a usable tool that could properly 

manage the data file dependencies, taking into account disk space constraints, 

in such a way as to maximize throughput. This appears to be a very difficult 
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problem, but one that needs to be solved if data-intensive computations are to 

be fuliy automated. 

4. Results 

This section discusses the results of computing ali the 9-piece databases and 

the 5 pieces versus 5 pieces subset of the 10-piece databases. 

4.1 Computation 

Table 4 shows the sizes of the databases completed. 3 13.1 trillion positions 

have been computed. We claim that this is the largest endgame database (in 

terms of number of positions) yet computed for any game. 

The computation took 18 months. The 9-piece calculation began in Novem­

ber 2001 and the 10-piece in January 2002. These computatioris ended in June 

2003. Most ofthe work was completed on dual-processor AMD machines. The 

memory used ranged from 1 to 4 GB. Older, slower (800 MHz) computers were 

used to pre-compute the captures phase of the computation. The lookups, non­

captures, and verification phases were done using an average of 3 machines, 

with an average speed of 1.5 GHz. Ali phases used both processors to speed 

up the computation. 

We had infrequent access to a 64-processor SGI 03000 (500 MHz) with 32 

GB of RAM. The machine was used to run the non-captures phase of many 

of the largest database slices. The database program was paralielized using 

POSIX threads so that the range of positions could be equally divided between 

the processors and computed in paraliel. The largest computation (171 billion 

positions) took 2.3 days of SGI time to resolve. The length of time was due 

to the relative slowness of the processors (500 MHz) and the number ofpasses 

over the data that were required to resolve ali the positions. 

The total amount of computing done is difficult to estimate given that a vary­

ing number of machines were used, with different number of processors, and 

with differing processor speeds. Normalized to a 1.5 GHz processor, a balipark 

estimate is that the complete 2 through 9-piece databases and the 5 versus 5 

piece subset of the 10-piece databases required 15 CPU years of computing. 

Since a few of the 6 versus 4 piece database slices have been computed (low 

priority on a single machine), we could actualiy start computing the 11-piece 

database (6 versus 5 subset). This computation is roughly 10-fold bigger (117 

trillion) than what has already been accomplished. We will not pursue this 

unless the 10-piece databases are insufficient for solving the game of checkers 

in a reasonable amount of time. 

3Note that some 6 piece versus 4 piece slices have been computed. 
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1 Num Pieces 11 Pieces/Side 1 Size 11 Total Completed 1 

1-0 120 11 120 1 

2 

11 

2-0 

1 -1 3,488 
3,48411 

6,9721 

3 

Il 
3-0 

2-1 196 032 
65,19211 

261 2241 
' ' 

4 4-0 883,458 

3-1 3,546,384 

2-2 2,662,932 7,092,774 

5 5-0 9,237,424 

4-1 46,409,320 

3-2 93,041,488 148,688,232 

6 6-0 77,526,288 

5-1 467,999,856 

4-2 1,174,279,692 

3-3 783,806,128 2,503,611,964 

7 7-0 536,417,856 

6-1 3, 782,903,904 

5-2 11,404,950,960 

4-3 19,055,258,760 34,779,531,480 

8 8-0 3,118,957,920 

7-1 25,172,147,520 

6-2 88,657,111,920 

5-3 177,982,456,720 

4-4 111,378,534,401 406,309,208,481 

9 9-0 15,455,930,880 

8-1 140,531,639,040 

7-2 566,442,589,440 

6-3 1,328,448,083,840 

5-4 1,997,749,399,776 4,048,627,642,976 

10 10-0 65,975,569,920 

9-1 o 
' 

8-2 o 
7-3 o 
6-4 o 
5-5 8,586,481,972,128 8,652,457,542,048 

Total 13,144,833,586,271 

Table 4. Databases completed. 

4.2 Statistics 

Because of the concurrency used in the non-captures phase (2 processors 

would iterate on a slice in parallel), it is hard to know the exact number of 

ply required to resolve a slice. There were some slices that needed over 180. 

iterations to resolve, a lower bound that is probably very close to the actual 
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number. Consider what this number means. There were slices where over 180 

ply were needed before a capture could be forced or the leading checker could 

safely advance one square. In the latter case, one wonders how many more ply 

would be needed to win the game once that checker had safely advanced a single 

square-it could be huge! This gives rise to the speculation that there are 10-

piece positions that may require many hundreds of ply to sol ve. For example, 

Gil Dodgen and Ed Trice have built a perfect-play 7-piece database, and they 

report the longest win (against best play) tobe 253 ply (127 moves) (Trice and 

Dodgen, 2003). There must be 10-piece positions that are considerably longer 

than that. 

The previous discussion illustrates the disadvantage of computing only W /L/D 

values. CHINOOK could reach a 10-piece position and not know how to win it. 

The search could flounder, not being able to choose between winning moves to 

find a quick path to victory. The (real) danger is that the program will end up 

cycling around, not knowing how to make progress (although this has not been 

seen in practice). 

4.3 Solving Checkers 

The total possible search space for the game of checkers ,is 5 x 1020 (see 

Table 5)-a daunting number. But how much of it has to be explored to sol ve 

checkers? Three assumptions can be used to get a rough upper bound on the 

effort required to solve checkers. The following heuristics are used to identify 

the key search space for the proof tree; parts that are excluded may be needed 

in the case of proving trivially won positions. 

• Material Balance: An advantage of 2 or more pieces is huge; equivalent 

to roughly a rook or more in chess. It seems reasonable to assume that 

a proof would not have to go through positions with lop-sided material. 

The useful positions are those where the material balance is even, or one 

side has a single piece advantage. 

• King Balance: One side having 3 or more kings than the other rarely 

occurs in practice. Hence we limit the search space to subsets where the 

number of kings for each side differs by at most 2. 

• Number of Kings: Kings only appe<l! on the board !ater in the game. 

For example, although it is theoretically possible to have 24 pieces on the 

board with one of them being a king, this scenario is highly contrived. A 

reasonable assumption is to limit the number of kings to being 6 when 

there are 10 or less pieces on the board, 4 with 12 or more pieces, 2 with 

14 or more pieces, and zero with 24 or less pieces. 

Table 5 shows the results of applying the above assumption. From 0(1020 ) 

the potential search space drops to 0(1014). Of this, the databases computed 
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1 Pieces 11 Database Size 1 Plausible Bound 1 

1 120 120 

2 6,972 3,488 

3 261,224 196,032 

4 7,092,774 2,662,932 

5 148,688,232 89,972,128 

6 2,503,611,964 759,865,120 

7 34,779,531,480 17,681,009,520 

8 406,309,208,481 103,706,534,351 

9 4,048,627,642,976 1,551,749,730,336 

10 34,778,882,769,216 5,862,356,551,488 

11 259,669,578,902,016 21,456,015,775,392 

12 1,695,618,078,654,976 46,262,266,685,096 

13 9, 726,900,031,328,256 22,268,142,277,920 

14 49,134,911,067,979,776 29,879,692,089,280 

15 218,511,510,918,189,056 802,158,318,720 

16 852,888,183,557,922,816 723,777,011,100 

17 2,905,162,728,973,680,640 2,169,968,941,008 

18 8,568,043,414,939,516,928 1 ,527,822,346,512 

19 21,661,954,506,100,113,408 3,587,090,153,856 

20 46,352,957,062,510,379,008 1,959,596,777,424 

21 82,459,728,874,435,248,128 3,564,284,669,088 

22 118,435,747,136,817,856,512 1 ,489 ,690, 180,992 

23 129,406,908,049' 181 ,900,800 2,057,391 ,420,240 

24 90,072,726,844,888,186,880 641,335,986,590 

1 Total 11 500,995,484,682,338,672,639 1 145,925,579,158,733 

Table 5. Reducing the checkers search space. 

thus far represent roughly 7.5 trillion-5% of the reduced search space. It is too 

early to know the full impact of the 10-piece databases in the checkers proof. 

5. Conclusions 

Disks are getting larger and cheaper; terabyte systems are affordable and 

petabyte systems exist. Moore's law continues to hold and multi-processor 

systems are ubiquitous. RAM is inexpensive, and hardware and operating 

systems are gradually moving to accommodate large memories. In effect, there 

is no technologicallimit to pushing database technology to even greater heights. 

The endgame databases reported here contain over 1013 data points, a 30-fold 

increase over what seemed possible a decade ago. High-end technology that is 

available today could be used to push this to 1014 . 

The reason for computing the 10-piece databases was to solve the game of 

checkers. The databases eliminate the bottom of the search tree. A separate 

project is building the top of the proof tree, searching forward from the root 
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towards the databases. When the two search frontiers meet, checkers will be 

solved. At this point in time, it is too early to tell how soon this will happen. 
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