

23rd European Symposium on Reliability of Electron Devices, Failure Physics and Analysis

October 1 - 5, 2012 Cagliari, ITALY

Building the electrical model of the Photoelectric Laser Stimulation of a PMOS transistor in 90 nm technology

A. Sarafianos^{a,b}, R. Llido^{a,c}, O. Gagliano^a, V. Serradeil^a, M. Lisart^a, V. Goubier^a, J.M. Dutertre^b, A. Tria^b, V. Pouget^c, D. Lewis^c

^a STMicroelectronics, Avenue Célestin Coq 13790 Rousset, France

^b Centre de Microélectronique de Provence - Georges Charpak 880 Avenue de Mimet 13541 Gardanne, France

^c Université de Bordeaux 351 Cours de la Libération 33405, Talence, France

- Understand effect of PLS (Photoelectrical Laser Stimulation) on a diode and then on a PMOS transistor in 90nm technology.

Present an electrical model of a PMOS transistor under PLS.

Outline

	Slide number
Introduction	4
Diode under PLS study - I(V) characteristic measurement - - Gaussian effect of the laser on a PN junction	6 & 7 10 & 11
Electrical model of a PMOS under PLS Presentation of the electrical model of a diode Presentation of the electrical model a the PMOS transistor Effect of the laser power (measurements vs electrical model) Gate effect (measurements vs electrical model) Principe of 3D current cartographies extracted from ELDO simulation 3D current cartographies 	12 13 14 15 16 17
Conclusion	18

Introduction:

 Failure analysis: extensive use of laser stimulation techniques: Extensive and time consuming

This paper present:

an electrical model of the PLS of a PMOS transistor.

Build from: electrical measurements (Iphemos Hamamatsu)

Goal: Predict the response of a PMOS transistor to PLS in a very small amount of calculation time.

Principe of the Photoelectric Laser stimulation (PLS)

Characterization of a diode N+ on P-substrate under PLS

	Laser parameter	Value	
	Continuous laser beam	Yes	
	Laser power	Variable from 0 to 40 mw	
	Diameter of the spot	Ø 3.25 µm	
	Laser wavelength	1064 nm	
Localiz the las	ation of er beam	Layout of the diode N+ on P- substrate	1e

Measurement of a diode under PLS

I(V) characteristic of a N+/P-substrate diode under PLS

Gaussian effect on a PN junction

Gaussian like behavior of the N+/ Psubstrate diode

Characterization made for the three objectives of the I-phemos equipment 2.5X – 20X – 50X

Presentation of the subckt lph

In our model every PN junction under PLS are modeled by a current source

Where: S is the area of the PN junction I_{laser} is a function depending of the laser power P_{laser}

$$I_{laser} = 0.0323 * P_{laser}^{2} + 0.3335 * P_{laser} - 0.1624$$

Alphagauss is a parameter evolved between 0 and 1

$$\alpha_{gauss}(d) = a * \exp\left(-\frac{d^2}{c_1}\right) + b * \exp\left(-\frac{d^2}{c_2}\right)$$

For every PN junction the user have to plug a subckt lph and set two parameters:

- The area of the PN junction: S

- The distance between the laser spot and the closest edge to the junction: *d*

Laser power ELDO simulation vs measurement

Good correlation between ELDO simulation and measurement

Current cartographies Principe

More the spot is close to the PN junction and more its photocurrent is high.

3D current cartographies extracted from ELDO simulation

From drain electrode

From source electrode

Conclusion

- Electrical simulation of the interaction between laser and silicon on a PMOS transistor in 90nm technology seems to be an extremely reliable, fast and also economical tool
- The validity of our approach is assessed by the very good correlation obtained between simulations and measurements.
- This work will be extended to PMOS transistors and then more complex gates.

Thank you for your attention...