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Abstract

A variety of open-source software tools are currently available to help building autonomous mobile robots. These tools
have proven their effectiveness in developing different types of robotic systems, but there are still needs related to safety
and efficiency that are not sufficiently covered. This article describes recent advances in the Aerostack software
framework to address part of these needs, which may become critical in the case of aerial robots. The article describes a
software tool that helps to develop the executive system, an important component of the control architecture whose
characteristics significantly affect the quality of the final autonomous robotic system. The presented tool uses an original
solution for execution control that aims at simplifying mission specification and protecting against errors, considering also
the efficiency needs of aerial robots. The effectiveness of the tool was evaluated by building an experimental autonomous
robot. The results of the evaluation show that it provides significant benefits about usability and reliability with acceptable
development effort and computational cost. The tool is based on Robot Operating System and it is publicly available as
part of the last release of the Aerostack software framework (version 3.0).
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Introduction

According to Kortenkamp et al.,1 the executive is the system

of a robot control architecture responsible for translating

high-level mission plans into low-level behaviors, invoking

behaviors at the appropriate times, monitoring execution,

and handling exceptions. The executive is a component of

autonomous robots that is especially critical since its char-

acteristics may affect significantly the quality of the final

robotic system in aspects such as reliability and efficiency.

To facilitate the construction of the executive system,

developers can use software tools that are freely available.
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These tools are different, for example, in the way they

represent mission plans. For instance, there are tools that

formulate mission plans using representations based on

finite state machines such as SMACH,2 rFSM,3 RAFCON,4

and FlexBE.5 Some tools use behavior trees such as the

ROS behavior_tree package6 and BehaviorTree.CPP

(MOOD2Be Project). Other solutions use declarative or

functional symbolic representations that facilitate the use

of automated planners. For example, ROSPlan7 uses PDDL

and CRAM8 uses Lisp and Prolog.

These tools effectively help to build autonomous robots,

although there are still difficulties that have not been suffi-

ciently addressed and may affect efficiency and reliability.

The execution of a mission should be robust enough to

handle factors such as the presence of unexpected events

in the environment, user specification errors in the mission

plan, and interruptions due to preemptive interaction

between the user and robot. This is particularly significant

in aerial robots, which normally require reliable solutions

to avoid dangerous behaviors during flights that can pro-

duce serious consequences. In general, there are different

approaches in robotics that try to deal with these factors.9

However, we have not found available open-source soft-

ware tools that solve these issues with sufficient efficiency

to be able to operate on board aerial vehicles.

This article describes recent advances in the Aerostack

software framework to address this need. We have

designed a new method for Aerostack that divides the exe-

cution control of a mission plan into different processes

with separate functions (plan interpretation, safety moni-

toring, behavior coordination, belief management, etc.).

The solution is presented in form of a model of executive

system formulated as a software architecture with a set of

reusable open-source components (based on ROS—Robot

Operating System). The model has been tested with the

help of aerial robots, although it has been designed to be

independent of the type of robot.

The remainder of the article is organized as follows. The

second section describes the Aerostack software frame-

work for which the presented solution has been created.

The third section presents the specific components of Aero-

stack used for building executive systems. The fourth sec-

tion shows the evaluation of the presented solution that

analyzes the benefits (about usability and reliability) and

the costs (about development effort and performance effi-

ciency). The fifth section compares our solution with

related work and, finally, the sixth section presents the

conclusions.

The Aerostack software framework

Aerostack (http://www.aerostack.org)10 is a software

framework for aerial robotics that has been developed in

our research group Computer Vision and Aerial Robotics at

Universidad Politécnica de Madrid. This framework, based

on ROS, provides a library of open-source software

components specialized in aerial robotics and a general

combination mechanism using an architectural pattern to

build the control architecture.

Aerostack has been used in the development of complex

robotic systems related, for example, to natural user inter-

faces,11 surface inspection,12 coordinated multi-robot sys-

tems,13 landing on moving platforms,14 search and rescue

missions,15 and altitude estimation in complex dynamic

environments.16

Figure 1 shows the reference architecture of Aerostack

as it is defined in the last release (version 3.0). In the figure,

circles represent data processing units (or processes in

short) that are implemented as ROS nodes (a duplicated

circle represents several processes of the same type). Pro-

cesses are organized in three main layers: interface, func-

tional, and executive. The interface layer includes

processes that help interact with the world. They include

processes that receive data from sensors or send commands

to robot actuators, as well as communication processes with

the human operator and other robots.

The other two layers, functional and executive, are com-

mon in multilayer architectures of autonomous systems, as

can be seen in the LAAS architecture,17 Claraty,18 or in the

general description of Kortenkamp et al.1 The Aerostack

architecture uses a standard communication channel, which

is implemented with ROS message types that are common

in aerial robotics. This channel facilitates process intero-

perability and makes the functional and executive layers

independent of specific aerial platforms.

The functional layer includes processes for functional

abilities of robots. Aerostack provides a library of software

components to implement these processes and the devel-

oper can use and combine them to build a particular robotic

system architecture. For example, there are components

implementing recognition algorithms (e.g. recognizer of

ArUco markers or quick response (QR) codes), motion

controllers (e.g. proportional-integral-derivative (PID) con-

trollers for pose control or speed control and trajectory

controllers), processes that perform self-localization and

mapping (SLAM), motion planners that generate

obstacle-free paths to reach destination points, and methods

for communicating with other agents (other robots or

human operators).

The third layer of the Aerostack architecture is the exec-

utive layer and includes processes that execute the mission

plan by activating and monitoring the execution of the

functional abilities of the functional layer. The executive

layer includes three systems that perform the following

functions: mission control, execution control, and belief

management. The objective of the mission control system

is to control the execution of mission plans. This is done

using a mission plan interpreter that translates the mission

plan into execution requests. There is also a safety monitor

that reacts in the presence of unexpected events that require

urgent attention.
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Both processes, the mission plan interpreter and the

safety monitor, generate execution requests that are formu-

lated as commands that request to activate or deactivate

behaviors. Examples of behaviors in Aerostack are take

off, land, follow path, pay attention to QR

codes, and so on. We distinguish between two types of

behaviors according to their execution goal. On the one

hand, there are behaviors that recurrently perform an activ-

ity or maintain a desired state (e.g. pay attention to QR

codes). On the other hand, there are behaviors whose exe-

cution goal is to reach a final state (e.g. follow path) and

they finish their execution once the goal is achieved.

To activate and deactivate robot behaviors, the execu-

tive system has a second component, called execution con-

trol system,19 which translates behavior activation requests

into the execution of specific processes. This system also

monitors the execution of these processes and communicates

the result in terms of success or failure.

The execution control system provides protection

against requests that are not compatible with the environ-

ment state, checking in advance that each behavior to acti-

vate is consistent with the environment situation. The

execution control also ensures the consistency of the set

of concurrent processes that support the robot actions.

When a behavior is accepted to be active or inactive, the

execution control can deactivate and activate other related

behaviors.

The third component of the executive system is the

belief management system. This component is used as a

working memory to store the dynamic data generated dur-

ing the execution. This memory filters relevant facts

required for decision-making during mission execution.

The basic element stored in the memory is a belief which

represents a proposition about the world that the robot

believes to be true (the world here refers to both the exter-

nal world and the internal state of the robot). The content of

the memory is updated periodically (at low frequency)

using data from other layers of the Aerostack architecture

(functional layer and interface layer).

Software components for building the

executive system

Figure 2 summarizes the software components that Aero-

stack provides to help developers build the executive sys-

tem of an autonomous robot. In this figure, circles represent

Figure 1. The Aerostack reference architecture (version 3.0).
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ROS nodes, dashed arrows represent ROS services, and

continuous arrows represent ROS topics. In this design,

there are general components that are common for different

robotic systems (mission plan interpreter, safety monitor,

behavior coordinator, and belief manager). There are also

specific components that need to be programmed to

develop the executive system of a particular robot (beha-

vior execution controllers and belief updater).

Figure 2. Components of the executive system used in Aerostack.

Figure 3. Detail of components related to execution control and belief management.
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Execution control

Figure 3 shows the components of the execution control sys-

temat theupper part of the diagram.This designdistributes the

execution control in a set of behavior execution controllers

(one for each type of behavior) together with a behavior coor-

dinator that manages the concurrent execution of behaviors.

Behavior execution controllers provide modularity because

they encapsulate execution details for each behavior, which

helps add new behaviors with flexibility, without affecting

other behaviors and theoverall execution controlmechanisms.

Each behavior execution controller is implemented as a

separate ROS node that creates a uniform interface to be

used by the behavior coordinator. The interface is defined

with three request–reply services:

� Check situation verifies that the behavior can be

activated in the current situation of the environment

(e.g. to activate the behavior take off the aerial robot

must be landed).

� Activate behavior activates the execution of the

behavior using certain parameter values.

� Deactivate behavior stops the behavior execution.

When a behavior is activated, the behavior execution

controller monitors its execution in order to detect that it

works as expected. For example, the execution of the beha-

vior TAKE_OFF should finish in a maximum time (time-

out). When the behavior finishes, the behavior execution

controller sends a message reporting the result of behavior

execution, using the ROS topic called behavior activation

finished, with values such as goal achieved, timeout, wrong

progress, process failure, or interrupted. This monitoring is

a kind of self-reflective functionality that observes the own

robot behavior to provide cognizant failure, which is useful

to improve the usability and reliability of the final robotic

system.

The behavior coordinator works as a central process that

handles the concurrent execution of active behaviors. This

process responds to behavior activation requests and

ensures the consistency of their execution. The behavior

coordinator is implemented as a ROS node with two

request–reply ROS services to activate and deactivate

behaviors called respectively request behavior activation

and request behavior deactivation. To accept a behavior

activation request, the coordinator first checks the consis-

tency between the behavior and the state of the environ-

ment. This is done by asking the behavior execution

controller if the behavior satisfies the conditions of the

situation (service check situation described above).

Then, the coordinator verifies that the behavior activa-

tion request is consistent with other active behaviors. This

verification is done using a method that performs a search

process to find a set of activations and deactivations that are

consistent with the activation request. This is necessary

because it may be possible that the activation of one

behavior requires the activation or deactivation of other

behaviors to satisfy the consistency constraints.

For this verification, the coordinator checks that a set of

constraints between active behaviors are satisfied. These

constraints are specific to the set of behaviors used in a

particular robotic system and they are written by the devel-

oper (in a text file using YAML syntax). Constraints

express relations about incompatibility and precedence.

Figure 4 shows an example that illustrates how these rela-

tions are represented for the behavior FOLLOW_PATH. The

rectangle located above in the figure associates a list of

behaviors that are not compatible with the behavior FOL-

LOW_PATH (two incompatible behaviors cannot be active

at the same time). The relation below in the figure

expresses precedence constraints using an and/or graph

representation. This example means that, before the beha-

vior FOLLOW_PATH can be activated, at least one set of

behaviors of the two disjunctive options must be active.

Since activations or deactivations can be asked by dif-

ferent requesters, the coordinator also uses a priority

scheme to avoid conflicts. Each request includes a priority

degree expressed with a number associated to each reques-

ter. For example, the current implementation of Aerostack

uses the following priority degrees: 4 (emergency activa-

tion), 3 (manual activation), 2 (activation due to mission

plan execution), and 1 (default activation). The activation

by default corresponds to behaviors that must be active

when there are no other incompatible behaviors active and

the current situation is compatible with their activation.

These behaviors may be, for example, behaviors that

should be active when the robot is not doing any specific

action. For instance, in the case of aerial robotics, the beha-

vior KEEP_HOVERING is a default behavior (hovering is a

maneuver in which the robot is maintained in nearly

motionless flight over a reference point at a constant alti-

tude and on a constant heading).

If the activation request is finally accepted, the coordi-

nator performs the set of activations and deactivations

Figure 4. Example of constraints representing consistency rela-
tions between behaviors.
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using the services provided by behavior execution control-

lers. Requests to deactivate a behavior are analyzed in a

similar way before being accepted because, when a beha-

vior is deactivated, other behaviors can be activated (e.g.

default behaviors). In addition, the coordinator is sub-

scribed to the ROS topic behavior activation finished that

informs when a behavior has finished its execution (e.g.

because it has reached the goal or because it has failed).

When this happens, the coordinator removes the behavior

from the list of active behaviors and checks if other beha-

viors should be activated.

Behavior execution controllers are programmed for each

particular control architecture. The developer writes spe-

cialized programs (e.g. with algorithms for feature extrac-

tion, SLAM, motion control, etc.) and, then, these programs

are managed by a ROS node that implements the execution

controller. Each execution controller is normally designed

to be general in order to be reusable for more than one

particular robot. For example, Aerostack provides a library

of reusable behavior controllers that are common in aerial

robotics.

To help developers program a behavior execution con-

troller, Aerostack provides a Cþþ class called Beha-

viorExecutionController that defines a common

interface to be used by the executive system to activate and

deactivate behaviors in a uniform way (see Figure 5). Each

particular subclass (e.g. a subclass for the behavior

GO_TO_POINT) includes a set of specific functions, which

override functions defined in the class, to control the exe-

cution of the behavior (see Table 1). For example, the

function checkGoal() for the behavior GO_TO_POINT

verifies that the robot has reached the destination point.

In order to improve the efficiency in the consumption of

computational resources, we implement behavior execution

controllers grouped in behavior systems. For this reason, we

use a type of node provided by the ROS library called node-

let (http://wiki.ros.org/nodelet). Each behavior execution

Figure 5. Cþþ classes to program behavior execution controllers.

Table 1. Specific functions of an execution controller.

Function Description

checkSituation() Checks if the behavior satisfies the
activation conditions

checkGoal() Checks if the behavior has reached the
goal

checkProgress() Checks if the behavior has a wrong
progress

checkProcesses() Checks if processes used by the behavior
are running

onConfigure() Reads configuration parameters (from
files or ROS parameters)

onActivate() Initiates inter-process communication
(e.g. subscribe and advertise), ensures
that processes are running, sets initial
values for variables, publishes initial
messages, calls initial services

onExecute() Executes the next step of the iteration
process

onDeactivate() Shutdownof inter-process communication
ensuring a safe stable state

ROS: Robot Operating System.
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controller class is subclass of nodelet. Each nodelet imple-

menting a behavior execution controller belongs to a group

of nodelets that form a behavior system. For example, in the

current implementation of Aerostack there is a behavior

system, called basic_quadrotor_behaviors, that includes

four behaviors: TAKE_OFF, LAND, WAIT, and

SELF_LOCALIZE_BY_ODOMETRY.

Belief management

As explained above, the belief management system works

as a working memory that stores dynamic data, needed for

mission planning decision-making, that are generated dur-

ing mission execution. The basic element stored in the

memory is a belief which is represented using logic predi-

cates in the general format of predicate(object, value) or in

a simpler form property(object). Objects are represented

with numerical identifiers as instances of a class. For exam-

ple, object(32,obstacle) represents that object 32 is

an obstacle and color(32, blue) represents that object

32 is blue.

Aerostack uses a ROS node called belief manager to

store and manage sets of beliefs (Figure 3). The belief

manager provides the services add belief, remove belief,

and query belief. The first two services are used to update

the content of the memory of beliefs. The service query

belief can be used to know if a belief is true and to deter-

mine the values of parameters. This is done using belief

expressions that may include variables. For example, a

query with the expression object(?x, battery),

charge(?x,?y) can return the values for variables

?x ¼ 92,?y ¼ full matching their corresponding values

in the belief memory.

The content of the belief memory can be updated using

information from the functional layer (e.g. data related to

feature extraction, self-localization, etc.). This is done by a

specialized process called belief updater, implemented as a

ROS node, that abstracts data from the behavior layer and

updates a category of beliefs by changing the content of the

belief memory. The current version of Aerostack provides a

belief updater, that maintains updated a number of basic

beliefs that are common for most aerial robots (e.g. beliefs

related to the position, flight state, etc.). Developers must

adapt this belief updater for each particular application if

they need to add other specific beliefs.

The belief manager maintains consistency between

beliefs according to their semantic properties. For example,

in general, it is assumed that values are mutually exclusive.

When a belief is added, for example, charge(92,

empty), the incompatible beliefs are automatically

retracted, for example, charge(92, full). The belief

manager uses a configuration file called belief_mana-

ger_config.yml to express semantic properties about

predicates. This file is application specific and can include

exceptions to the default semantics. For instance, the

following lines represent that the values of the predicate

content(?x,?y) are not mutually exclusive and the

maximum number of different values is five:

- predicate_name: content

mutual_exclusive_values: no

maximum_values: 5

This file can also include conditions to generate events

that require urgent attention. For example, the following

lines represent that when a predicate with the form char-

ge(?x,low) is added to the belief memory, a message is

published through the ROS topic emergency_event

containing such a predicate:

- predicate_name: charge

emergency_value: low

Mission control

The objective of the mission control system is to handle the

execution of mission plans. Each mission plan is a program

written by the developer that specifies the set of tasks that a

robot has to perform in a particular mission. For mission

control, the executive system in Aerostack uses two types

of components that run concurrently (Figure 6): (1) a mis-

sion plan interpreter, which translates the mission plan into

a sequence of execution requests following a goal-driven

execution, and (2) a safety monitor that reacts in the pres-

ence of emergencies following an event-driven execution.

The combination of both methods is handled by the

behavior coordinator, which receives execution requests

from both processes. The separation of the safety monitor

from the mission plan interpreter is useful, for example, to

simplify how mission plans are formulated because plans

do not need to include tasks to cope with situations that are

already handled by the safety monitor.

The current version of Aerostack provides two different

mission plan interpreters to help developers specify mis-

sion plans. The first one is based on a Python Application

Programming Interface (API). This is a convenient method

for users who are familiar with computer programming

languages and provides high flexibility for formulating

plans with complex control regimes. The second interpreter

uses a graphical approach based on behavior trees. This

method is more appropriate for users who are less familiar

with programming languages. This interpreter also pro-

vides better protection against errors and facilitates pre-

emptive interaction between the user and the robot.

Mission plan specification using the Python API. Aerostack pro-

vides an API with a set of functions to activate/deactivate

behaviors and functions to operate with the belief memory

(see Table 2). With this method, the user can write the

mission plan directly in Python calling specific functions

Molina et al. 7



of the API. Aerostack provides a ROS node to support this

API called python-based mission interpreter.

Figure 7 shows a simple example of a mission written in

Python using the API provided by Aerostack. In this

example, first, the function executeBehavior() is used

to ask the robot to take off. Then, the function queryBe-

lief() is used to consult the coordinates of an object that

is defined as an instance of goal. Next, the coordinates are

Figure 6. Detail of components for mission control.

Table 2. Example functions of the Python API.

Function Description

executeBehavior(x, y) Execute a goal-based behavior x with arguments y, and wait until the goal is reached
activateBehavior(x, y) Activate a behavior x with arguments y
deactivateBehavior(x) Deactivate the activation of behavior x
isActiveBehavior(x) Answer whether a behavior x is active (true) or not (false)
queryBelief(x) Answer if a belief expression matches predicates of the belief memory
addBelief(x) Add a belief expression to the belief memory
removeBelief(x) Remove a belief expression from the belief memory

API: Application Programming Interface.

Figure 7. Simple example of a mission plan specified in Python.

8 International Journal of Advanced Robotic Systems



extracted to be stored in variable destination. Then, the

function executeBehavior() is used to move the robot

to the destination point. Finally, the same function is used

to ask the robot to land.

Mission plan specification using behavior trees. A behavior

tree is a visual modeling language that uses a graphical

notation to represent the behavior of a system. In

robotics, behavior trees have been used recently20 and

specifically for unmanned aerial vehicles (UAVs).21,22

Aerostack provides two ROS nodes to operate with

behavior trees: (1) an interpreter of behavior trees to

execute the mission plan and monitor graphically its

execution, and (2) a graphical editor to create the mis-

sion plan as a behavior tree. The graphical editor does

not operate in runtime, but it is also implemented as a

ROS node because it communicates with the behavior

coordinator to get information about the available beha-

viors and the correct format of their parameters.

Each behavior tree is represented with a hierarchy of

executable nodes. Nodes can succeed or fail during the exe-

cution of the mission plan. Intermediate nodes of the tree

establish the control regime (e.g. a sequence, a loop, etc.).

The types of intermediate nodes provided by Aerostack are

similar to the nodes provided by common behavior trees:

� Sequence. This node executes the child nodes in

sequence and succeeds when all the children suc-

ceed. Otherwise it fails.

� Selector. This node executes the child nodes in

sequence and succeeds when one of the children

succeeds. If none of them succeeds, it fails.

� Parallel. This node executes its child nodes in par-

allel. Let N be the number of child nodes. It returns

success if the number of succeeding children is

larger or equal than a local constant S, specified by

the user. Returns failure if the number of failing

children is larger N�S.

� Repeat. This node repeats the execution of a child

node a number of times. Returns success. It can only

have one child node.

� Repeat until fail. This node repeats the sequential

execution of child nodes until a child node fails. This

node always succeeds.

� Inverter. This node returns failure if the child node

succeeds. Otherwise it succeeds.

� Succeeder. This node executes its child node and, no

matter what is the result of the execution, it always

succeeds.

In Aerostack, leaf nodes of a behavior tree correspond to

operations related to behaviors and beliefs in the following

way:

� Behavior operation node.A behavior operation node

is used to activate or deactivate a behavior. There is

a node that executes a behavior which succeeds

when its goal is accomplished and fails if it is not

possible (this is a usual node in general behavior

trees). In Aerostack, there are also other operation

nodes to control behaviors that are activated to oper-

ate concurrently: (1) a node that activates a behavior,

which succeeds if the behavior is correctly activated

(without waiting to reach a goal), and (2) a node that

deactivates an active behavior, which succeeds if the

behavior is correctly deactivated.

� Belief operation node. A belief operation node inter-

acts with the belief memory of Aerostack to add,

remove, or query belief expressions. A node that

adds a belief expression succeeds if the belief is

correctly added. A node that removes a belief

expression from the memory succeeds if the belief

is correctly removed. A node that queries the mem-

ory is formulated with a belief expression with a set

of predicates. This node succeeds if the belief

expression matches the predicates that are present

in the belief memory.

Behavior trees in Aerostack can use variables to com-

municate information between leaf nodes. For example,

there can be a belief operation node in a mission plan to

consult the coordinates of the current position of the robot.

This node can use the following belief expression: posi-

tion(self,(?X,?Y,?Z)). In this expression, X, Y,

and Z are preceded by a question mark (?) to represent

that they are variables. When this node is executed, the

expression matches the corresponding predicate in

the belief memory. For example, if the belief memory has

the predicate position(self,(2.1,3.2,4.8)), the

variables get the values X ¼ 2.1, Y ¼ 3.2, Z ¼

4.8.The values of these variables can be used by other

nodes of the mission plan. For instance, there may be an

operation node in another place of the same mission plan

that uses the behavior GO_TO_POINT with the following

argument: coordinates: [þX, þY, þZ]. The sign plus

(þ) as a prefix of the variable name indicates that the vari-

able will be substituted during the execution by the value

that the variable has in this moment. Considering the pre-

vious example, this means that the robot will go to a desti-

nation with the coordinates (2.1, 3.2, 4.8).

Figure 8 shows an example of behavior tree as it is

displayed by the editor. Aerostack presents graphically the

behavior tree using a hierarchy browser, which is an intui-

tive and compact graphical representation that we have

found useful especially when the mission plan is complex.

The editor uses standard edition mechanisms, which are

familiar for general users, to create a behavior tree by add-

ing, modifying, or deleting nodes of the tree. The editor

provides guidance and assistance to users presenting valid

options on menu bars and checking the presence of user

errors in texts describing parameter values or belief expres-

sions. The created behavior tree is stored in YAML file.

Molina et al. 9



To execute the behavior tree, the interpreter loads the

YAML file with the mission plan and it follows its structure

to generate a sequence of activations and deactivations of

robot behaviors. During the execution, the interpreter shows

a window that presents graphically the dynamic evolution of

the execution and the current values of variables used by the

behavior tree. The interpreter also facilitates preemptive

interaction between the user and the robot, that is, the user

can interrupt the mission at any point and continue the exe-

cution in another node of the behavior tree.

Experimental tests

This section describes the evaluation procedure that we

conducted to analyze the effectiveness of the solution pre-

sented in this article. This evaluation was carried out by

analyzing an aerial robotic system that was built using the

software components presented in this article. The evalua-

tion procedure pays attention to the trade-off between

benefits for the final system and the costs related to devel-

opment effort and performance efficiency.

Table 3 shows the quality characteristics analyzed in the

evaluation procedure. To select these characteristics, we used

the definitions used by the international standard ISO/IEC

25010:2011 (https://www.iso.org/obp/ui/#iso:std:iso-iec:

25010:ed-1:v1:en), considering the following aspects: devel-

opment effort (which was analyzed by observing the amount

of code reused in relation to the amount of new code pro-

grammed), performance efficiency (time behavior and

resource utilization), and benefits for the final system (user

protection and fault tolerance). The following sections pres-

ent the details and results of this evaluation procedure.

Development effort

This section describes the work that was done to evaluate

how much Aerostack reduces the effort of building the

executive system of a particular aerial robotic system. The

Figure 8. Example of behavior tree as it is displayed graphically by the editor.

Table 3. Quality characteristics analyzed in the evaluation procedure.

Evaluated characteristic Definition (ISO/IEC 25010:2011)

Reusability Degree to which an asset can be used in more than one system, or in building other assets
Time behavior Degree to which the response and processing times and throughput rates of a product or system, when

performing its functions, meet requirements
Resource utilization Degree to which the amounts and types of resources used by a product or system, when performing its

functions, meet requirements
User error protection Degree to which a system protects users against making errors
Fault tolerance Degree to which a system, product, or component operates as intended despite the presence of hardware or

software faults
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system developed was based on the competition Autono-

mous Drone Race of IROS 2018 (International Conference

of Intelligent Robots and Systems). This competition is a

race with indoor autonomous flight challenges (e.g. frames

to cross). In the experiments, we used a simplified version of

this mission with four frames to cross (with different orien-

tations and different heights). The aerial robot performs

autonomously the mission, knowing in advance approximate

locations of frames and using visual recognition to find the

detailed position of frames before crossing them.

Figure 9 shows the area that we used for experimental

flights with frames to cross. In these tests, we used an aerial

vehicle Parrot Bebop 2, and a laptop computer with the fol-

lowing features: CPU Intel i7-7700HQ, 8 cores, 2.8 GHz, and

16GBRAM.Figure 10 shows an example of a real flight. The

figure also shows the sequence of the first five behaviors

(TAKE_OFF,GO_TO_POINT,etc.) with references to the

point of the trajectory where they are activated. In this case,

the aerial robot spent 117.1 s to complete the mission.

For some experiments, we also performed simulated

missions using a computer with the following features:

CPU Intel i5-4460, 4 cores 3.2 GHz, and 16 GB RAM.

Figure 11 shows a screen snapshot corresponding to the

execution in one of the experiments using the Rotors

simulator.23 The image shows the behavior tree viewer

on the left. On the right, the figure shows the 3D image

generated by Rotors and, at the bottom, the image

obtained by the front camera of the drone (showing with

green color the frames recognized by the computer vision

algorithm).

The main tasks performed for building the executive

system for this robotic system were the following:

1. Programming new execution controllers. We pro-

grammed several behavior execution controllers for

the new motion behaviors used in this robot. This

corresponds to the following behaviors (see

Table 4): SEARCH_FRAME, APPROACH FRAME,

SELF_LOCALIZE, and MOVE_FORWARD.

2. Reusing software for execution control. Some of the

execution controllers had been already programmed

in previous projects, so they were available in Aero-

stack as reusable components. This corresponds to

the following behaviors (see Table 4): GO_TO_-

POINT, ROTATE, KEEP_HOVERING, TAKE_-

OFF, and LAND.

3. Configure common modules. This task corresponds

to the configuration of the common ROS nodes

corresponding of the executive system (e.g. beha-

vior coordinator, mission plan interpreters, etc.).

For example, the file of the behavior catalog was

extended to include the new behaviors and the

mission plan was written using both the Python

API and the behavior tree editor to compare both

approaches.

We evaluated reusability in this development, consider-

ing the degree to which Aerostack was used in building the

executive system of the robotic system. The number of

lines corresponding to the common components of Aero-

stack for executive systems is 13,519 lines, which includes:

behavior tree interpreter, Python-based mission interpreter,

behavior tree editor, behavior coordinator, belief manager,

and class behavior process. Several behavior execution

controllers were also reused (for behaviors GO_TO_-

POINT, ROTATE, KEEP_HOVERING, TAKE_OFF, and

LAND) which corresponds to 1915 lines. The execution

controllers for the new behaviors (SEARCH_FRAME,

APPROACH_FRAME, SELF_LOCALIZE, and MOVE_FOR-

WARD) have in total 2839 lines. These numbers show that a

large part of the code of the executive system (84%) corre-

sponds to Aerostack code that was reused. Only a small

fraction (16%) was needed to be programmed as new code

for the executive system.

Figure 9. The aerial robot and the flight area used for experi-
mental tests.

Figure 10. An example of the trajectory generated in a real flight.
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Computational cost of the executive system

The computational cost of the executive system developed

with Aerostack was evaluated by measuring its perfor-

mance efficiency in terms of time behavior and resource

utilization. We estimated the processing time of the exec-

utive system in the following way. During the mission

execution, a sequence of behavior activations is generated

b1; . . . ; bnf g (where n is the number of behavior activations

requested in a mission plan). The variables used are:

� Mission control time s: arithmetic mean of

s1;s2 . . . ; sn where si is the time from the moment

a behavior bi�1 has finished its execution until the

Figure 11. Screen snapshot corresponding to one of the experiments using the behavior tree interpreter (on the left) and the
simulator Rotors (on the right).

Table 4. Motion behaviors used in the robotic system.

Behavior Description

SEARCH_FRAME The robot searches for a frame by doing certain movements. The robot uses a visual recognition algorithm to
detect the presence of the frame

APPROACH_FRAME The robot approaches the frame using a visual servoing method to be in front of the frame ready to cross it
MOVE_FORWARD The robot moves forward a certain distance. This behavior uses a simple open-loop controller that is used to

cross quickly the frame
GO_TO_POINT The robot goes to a 3D point defined by spatial coordinates (x, y, z)
ROTATE The robot rotates left or right a certain number of degrees (angle) on the vertical axis (yaw)
TAKE_OFF The robot takes off vertically from a static surface. This behavior ends when the robot reaches a default altitude
LAND The robot lands vertically in the current position. This behavior assumes that the ground is static
KEEP_HOVERING The robot is maintained in nearly motionless flight over a reference point at a constant altitude and on a constant

heading
SELF_LOCALIZE The robot determines the coordinates corresponding to its location using information from sensors (e.g. IMU and

camera images)

12 International Journal of Advanced Robotic Systems



moment the behavior coordinator receives a mes-

sage that requests to activate the next behavior bi.

During this time, the mission plan interpreter deter-

mines the next behavior to activate.

� Coordination time t: arithmetic mean of

t1; t2; . . . ; tn where ti is the time from the moment

the behavior coordinator receives a message that

requests to activate behavior bi until the moment the

coordinator has determined the set of behaviors to

activate and deactivate.

� Activation time ’: arithmetic mean of ’1; ’2; . . . ;

’n where ’i is the time from the moment the beha-

vior coordinator has determined the set of behaviors

to activate and deactivate (as a response to the

request to activate the behavior bi), until the moment

all these activations and deactivations are completed

by the corresponding behavior execution controllers.

During the activation of a behavior, the execution

controller (1) creates ROS objects for inter-process

communication such as subscribers, publishers, and

service clients, (2) starts the execution of processes,

and (3) initiates the execution control (e.g. set initial

values of variables, publish initial messages, and call

initial services). During the deactivation of a beha-

vior, the execution controller may unsubscribe ROS

topics, disconnect service clients, and stop running

processes.

Table 5 shows the results obtained for these variables.

The experiments were done with a mission plan with n ¼
20. The mission plan was represented using two alternative

options, the PythonAPI and a behavior tree. The results show

that the Python-based mission interpreter consumes more

time than the behavior tree interpreter for mission control.

For the behavior tree interpreter this value is s ¼ 4:4ms and

for the Python-based mission interpreter this value is

s ¼ 54:8 ms, which corresponds to a difference of 50.4

ms. This difference may be explained by the fact that the

Python-based mission interpreter uses the general interpreter

of the Python language, which requires additional computa-

tion. The behavior tree interpreter is programmed in Cþþ
and does not use the Python interpreter.

Table 5 also presents the results corresponding to coor-

dination time t. As expected, values are similar for both the

Python mission and the behavior tree mission. The values

are t ¼ 1.8 ms for the behavior tree and t ¼ 1.1 ms for the

Python mission.

Table 5 indicates that a significant part of the processing

time corresponds to the activation time ’ of behavior exe-

cution controllers, which has similar values with the beha-

vior tree and with the Python mission (41.9 and 45.2 ms,

respectively). This time depends on each particular appli-

cation and it is affected by the number of ROS objects

created for inter-process communication (e.g. subscribers,

publishers, and service clients) and the number of processes

that are started and stopped.

In general, the results show that the use of the general

components of the executive system adds a delay estimated

as s þ t ¼ 6.2 ms/behavior (using the behavior tree) and s

þ t ¼ 53.2 ms/behavior (using Python). If we consider also

the time used by the specific behavior execution controllers

developed for this system the total delay is s þ t þ ’ ¼
48.1 ms/behavior (using the behavior tree) and s þ t þ
’ ¼ 98.4 ms/behavior (using Python).

Concerning resource utilization, Table 6 shows CPU

usage and memory usage of different processes related to

the executive system. Regarding CPU usage, both the beha-

vior tree and Python obtain similar values (12.1% and

11.8%). In the case of memory usage, the behavior tree

obtains a lower value (43.7 MiB) than the value obtained

by behavior trees (76 MiB) which is explained by the mem-

ory usage required by the process python2 (general inter-

preter of Python language). In general, these results are

considered acceptable. The generic processes, in particular,

obtain good values with measures for the behavior tree:

CPU usage of 4.7% and memory usage of 18.7 MiB.

Besides these measures, it is important to note that each

ROS node consumes additional resources due to the use of

node launchers (process roslaunch). According to our mea-

sures, the average use of each launcher consumes 47.8 MiB

of memory and 0.3% of CPU usage. This consumption

justifies using behavior systems that integrate groups of

behavior execution controllers as nodelets, instead of sep-

arate ROS nodes. In our case, two behaviors systems (with

four behaviors each system) use two launchers (which

means 95.6 MiB and 0.6%), while using eight separate

behaviors would use eight launchers (i.e. 382.4 MiB and

2.4%).

Usability and reliability of the final robotic system

This section describes the evaluation conducted to analyze

the benefits that the final robotic system obtains by having

the executive system developed using Aerostack. We

Table 5. Results obtained in the experiments about processing time (values in ms).

Variable Description Behavior tree, B Python, P Difference, |B � P|

s Mission control time 4.4 54.8 50.4
t Coordination time 1.8 1.1 0.7
’ Activation time 41.9 45.2 3.3

Sum s þ t 6.2 53.2 47.0
Sum s þ t þ ’ 48.1 98.4 50.3

Molina et al. 13



considered here two characteristics: user error protection

and fault tolerance. To assess user error protection, we

manually constructed a testsite with a representative set

of potential errors that users can make when they specify

a mission plan. This testsite includes local errors (category

A) related to simple lexical error (subcategory A.1) or syn-

tax errors (subcategory A.2). This category also includes

errors related to wrong values for parameters (subcategory

A.3). We determined types of local errors by analyzing the

representation used by the mission specification method.

The testsite also includes other errors (category B) related

to the global consistency of the mission (consistency

between different tasks B.1 or consistency between tasks

and the environment B.2). In this case, we identified types

of errors by analyzing the interaction between robot beha-

viors and the interaction between robot behaviors and the

environment. We created manually examples of these error

types and were included in the testsite.

Table 7 shows a sample of tests corresponding to the

testsite and how they are detected. The column detection

time indicates when the error is detected: during specifi-

cation time or in runtime. The column component indi-

cates the main component of the executive system that is

used to detect the error. All user errors corresponding to

category A are detected during specification time using

information provided by the behavior coordinator. These

errors are detected during the construction of a mission

plan using the behavior tree editor (the Phyton API does

Table 6. Results obtained in the experiments about resource utilization.

Processes (ROS nodes)
CPU usage,

behavior tree (%)
CPU usage,
Python (%)

Memory usage,
behavior tree (MiB)

Memory usage,
Python (MiB)

Behavior coordinator 0.3 0.3 1.3 1.3
Belief manager 0.3 0.3 1.0 1.0
Belief updater 2.0 2.0 1.0 1.0
Safety monitor 0.1 0.1 1.0 1.0
Behavior tree interpreter 2.0 14.4
Process “python2” 0.7 47.4
Sum 4.7 3.4 18.7 51.7
Behavior system with four basic behaviors 3.2 3.2 12.4 12.4
Behavior system with four motion behaviors 5.2 5.2 12.6 12.6
Sum 12.1 11.8 43.7 76.7

ROS: Robot Operating System.

Table 7. Sample of tests performed to analyze user error protection.

No. Category Example of user error Detection time Component

1 A.1 Activate a behavior with the wrong name “wrong_behavior_name” Specification time Behavior coordinator
2 A.1 Activate the behavior TAKE_OFF with the parameter name

“wrong_parameter_name: 5”
Specification time Behavior coordinator

3 A.2 Query the belief memory with wrong syntax of belief expression
“wrong_predicate_name(”

Specification time Behavior coordinator

4 A.2 Activate behavior ROTATE with wrong syntax for parameter “angle >
angle”

Specification time Behavior coordinator

5 A.3 Activate behavior GO_TO_POINT with wrong value for parameter
“coordinates: wrong_value”

Specification time Behavior coordinator

6 A.3 Activate behavior ROTATE with parameter out of range “angle: 10000” Specification time Behavior coordinator
7 B.1 Consult the belief memory the expression “my_belief(?X)” with a variable

X that is not used in the plan
Not detected

8 B.1 Deactivate behavior PAY_ATTENTION_TO_QR_CODES that was not
activated

Runtime Behavior coordinator

9 B.1 Write a mission that includes LAND and then activate ROTATE Runtime Behavior execution
controller

10 B.1 Write a mission that activates TAKE_OFF without any behavior for self-
localization activated previously

Runtime Behavior coordinator

11 B.1 Write a mission that activates ROTATE without deactivating the
incompatible behavior KEEP_HOVERING that was activated previously

Runtime Behavior coordinator

12 B.2 Activate behavior TAKE_OFF when the robot is flying Runtime Behavior execution
controller

13 B.2 Execute a long mission plan (300 tasks) that could not be completed with
the battery charge of 25%

Runtime
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not provide protection for any of these errors during spe-

cification time).

During the execution of the mission, errors correspond-

ing to category B are detected in the following way. Error 7

is not detected because it does not affect to the execution.

Errors 8 and 10 are correctly detected and reported by the

behavior coordinator. Error 11 is correctly detected and

solved by the behavior coordinator deactivating the incom-

patible behavior. Errors 9 and 12 are correctly detected by

behavior execution controllers (checking the conditions

about the situation). In the case of error 13, the robot lands

when the battery is discharged (this is a low-level safety

mechanism independent of the executive system).

These tests show that the majority of these errors are

detected and avoided with the help of the executive system,

which provides an important protection against wrong and

dangerous behaviors. However, it would be desirable that

the executive system would detect all these errors when the

operator specifies the plan, before the mission is executed.

To assess fault tolerance, we constructed a testsite with a

representative set of unexpected events. Tests are divided

into the following categories: (C) software errors (D),

hardware faults, and (E) interruptions caused by the oper-

ator or the safety monitor (e.g. caused by unexpected situa-

tions in the environment). Tables 8 and 9 show samples of

tests corresponding to this testsite. In the majority of the

cases, the execution of these tests show that the executive

system is able to avoid a generalized failure, maintaining a

limited functionality. Most of the problems are detected

and the failure is correctly reported.

Concerning events of category C, which are software

errors that affect components of the control architecture,

behavior execution controllers detect correctly events 1–4

and the mission continues normally to perform the next

task. However, the response to events 5 and 6 is not satis-

factory because the events are not detected and the mission

execution is blocked. This is because these errors affect

directly to the components of the executive system. In this

case, an additional separate solution should be used to

monitor and verify the correct the execution of the execu-

tive system.

Events of category D (hardware faults) are correctly

detected by behavior execution controllers (events 7 and

8). However, hardware faults that require a rapid reaction

Table 8. Sample of tests performed to analyze fault tolerance (software and hardware faults).

No. Category Unexpected event during execution How is the event detected?
How does the robot
behave?

How does the
mission continue?

1 C Behavior GO_TO_POINT is executed
with a bug error in motion planning
(infinite loop)

The execution controller
detects timeout and
terminates the behavior
reporting failure

Robot does not perform
what is expected
(remains still in the
same position)

Mission continues
to perform next
task

2 C The timeout specified for the behavior
ROTATE is too sort

The execution controller
detects timeout and
terminates the behavior
reporting failure

Robot does not perform
what is expected (it
does not complete the
motion)

Mission continues
to perform next
task

3 C The ROS node for motion control
terminates unexpectedly while the
behavior GO_TO_POINT is active

The execution controller
detects process failure
and terminates the
behavior reporting failure

Robot does not perform
what is expected (it
keeps moving without
stopping)

Mission continues
to perform next
task

4 C ROS node for motion planning
terminates unexpectedly while the
behavior GO_TO_POINT is active

The execution controller
detects process failure
and terminates the
behavior reporting failure

Robot performs what is
expected

Mission continues
to perform next
task

5 C Behavior execution controller of
GO_TO_POINT is blocked (executes
an infinite loop) while the behavior
GO_TO_POINT is active

This event is not detected.
The execution controller

does not inform that the
behavior has finished

Robot performs what is
expected

Mission is blocked

6 C The behavior coordinator is blocked
(executes an infinite loop) and, then,
behavior GO_TO_POINT is
requested to be active

This event is not detected.
Behavior GO_TO_POINT is

not activated

Robot does not perform
what is expected
(remains still in the
same position)

Mission is blocked

7 D The camera is broken while the
behavior GO_TO_POINT is active

The execution controller
detects process failure
and terminates the
behavior reporting failure

Robot does not perform
what is expected
(uncontrolled
movement)

Mission continues
to perform next
task

8 D A rotor is broken while the behavior
GO_TO_POINT is active

The execution controller
detects wrong progress
and terminates the
behavior reporting failure

Robot does not perform
what is expected
(uncontrolled
movement)

Mission continues
to perform next
task
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(e.g. event 8) should be managed by lower level processes

operating at high frequencies to avoid or mitigate danger-

ous effects of uncontrolled behaviors.

Events of category E (interruptions) are also correctly

managed by the behavior coordinator (events 9–14) to

avoid the execution of incompatible behaviors. The beha-

vior tree interpreter was used here (event number 10) to

stop and continue the mission execution in a different point

(the Python-based mission interpreter does not provide this

functionality).

Interpretation of evaluation results

The evaluation results show the costs and benefits of using

Aerostack for building the executive system of an aerial

robotic system. The main conclusions of this evaluation can

be summarized as follows:

� A large amount of Aerostack code was reused com-

pared to the new code programmed. The size of the

code reused to develop the executive system of an

aerial robot was 15,434 lines and the size of the new

code programmed was 2839 lines, which is a high

percentage of code reused (84%).

� The performance efficiency of the methods provided

by Aerostack for mission plan execution was accep-

table in aerial missions. The use of the executive

system generates an average delay of 48.1 ms/beha-

vior (using the behavior tree interpreter) and 98.4

ms/behavior (using the Python-based mission inter-

preter). In missions that activate behaviors at low

frequencies (less than 0.2 Hz, as it happens in mis-

sions used in our experiments) we consider that a

delay of less than 100 ms/behavior is admissible,

since it would increase the total time to complete

the mission in less than 1% (in the case of a Python

mission, this increase is around 2%). This is partic-

ularly acceptable in missions where time is not crit-

ical and high degrees of usability and reliability are

required (e.g. inventory missions, inspection mis-

sions, etc.).

� The processing times of methods provided by Aero-

stack for mission plan specification are different.

The processing time for executing missions plans

Table 9. Sample of tests performed to analyze fault tolerance (interruptions).

No. Category Interruption How is the interruption managed?
How does the robot
behave?

How does the
mission continue?

9 E The operator stops the execution of
a mission plan when the drone is
executing the behavior
GO_TO_POINT requested by the
mission interpreter

The behavior coordinator
deactivates behavior
GO_TO_POINT and activates
KEEP_HOVERING (by default)

Robot performs what
is expected
(finishes the
movement and
keeps hovering)

Mission is stopped
correctly

10 E While the mission is paused, the
operator forces to continue the
execution in another point of the
mission plan

The behavior coordinator
deactivates behavior
KEEP_HOVERING

Robot performs what
is expected

Mission continues
to perform next
task

11 E The operator requests to activate
behavior GO_TO_POINT with
destination A while the drone is
executing the behavior
GO_TO_POINT with destination
B requested by the mission planer

The behavior coordinator
deactivates behavior
GO_TO_POINT with destination
B and activates correctly the
other behavior

Robot performs what
is expected

Mission is stopped
correctly

12 E The safety monitor requests to
activate behavior
KEEP_HOVERING (because the
visibility decreases considerably)
while the drone is executing the
behavior GO_TO_POINT

requested by the mission planer

The behavior coordinator
deactivates behavior
GO_TO_POINT and activates
correctly behavior
KEEP_HOVERING

Robot performs what
is expected
(finishes the
movement and
keeps hovering)

Mission is stopped
correctly

13 E The operator requests to activate
behavior ROTATE while the
drone is executing the behavior
GO_TO_POINT requested by the
safety monitor

The behavior coordinator rejects
the request from the operator
because the request from the
safety monitor has more priority

Robot performs what
is expected

The emergency
plan continues
its execution

14 E The operator requests to deactivate
behavior SELF_LOCALIZE while
the drone is executing the
behavior GO_TO_POINT

requested by the safety monitor

The behavior coordinator rejects
the request from the operator
because SELF_LOCALIZE is
precedence of GO_TO_POINT

Robot performs what
is expected

The emergency
plan continues
its execution
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is different for the behavior tree interpreter and the

Python-based mission interpreter. The time spent is

4.4 ms/behavior using the behavior tree and 54.8 ms/

behavior using Python. As it was mentioned, this

difference may be explained by the fact that Python

missions use the general interpreter of the Python

language, which requires additional computation

(the behavior tree interpreter is programmed in

Cþþ).

� The behavior tree editor increases user error pro-

tection during specification time. The behavior tree

editor is able to avoid user errors corresponding to

syntax errors and certain semantic errors (wrong

names and wrong types of values) during specifica-

tion time, using information provided by the beha-

vior coordinator. In contrast, the Python-based

mission interpreter does not detect the presence of

these errors before the mission is executed.

� The executive system increases user error protection

about errors related to global consistency during

execution time. User errors related to global consis-

tency are detected by the executive system during

the mission execution, which is useful to improve

usability and avoid dangerous behaviors. However,

in order to avoid starting the execution of mission

plans that have specification errors, these errors

should be detected in advance, when the developer

specifies the plan.

� The executive system increases fault tolerance. The

executive system detects the presence of problems

produced by unexpected events (e.g. software errors,

hardware faults, and interruptions) and continues the

normal execution of the mission. However, there are

certain kind of events (e.g. some hardware faults or

software errors that affect directly the executive sys-

tem) that need additional mechanisms for fault

tolerance.

� The executive system facilitates preemptive interac-

tion between the user and robot. Interruptions are

correctly managed by the system with the help of

the behavior coordinator and mission plan inter-

preters. The behavior tree interpreter is more flexible

than the Python-based mission interpreter because

the user can stop and continue the mission execution

in a different point of the behavior tree. This func-

tionality is not provided by the Python-based mis-

sion interpreter.

Related work

This section analyzes the similarities and differences of the

solution described in this article with existing tools. The

analysis has focused mainly on available open-source tools.

One of the distinctive characteristics of the tool described

in this article is the way it separates the execution control of

a mission plan into simpler processes that run concurrently.

For example, the mission plan interpreter is executed sep-

arately from the safety monitor and the combination of both

methods is handled by a behavior coordination process that

also accepts operator interruptions.

Part of the functionality provided by our coordination

method is similar to the functionality of Request and

Resource Checker (R2C)24 based on the LAAS architec-

ture.17 Both methods verify execution requests before they

are accepted, which is useful to facilitate reliability. How-

ever, R2C does not manage multiple execution requesters

and it uses a different verification algorithm. Besides, we

have not found its implementation in an open-source soft-

ware tool that is available for developers.

To translate a mission plan into low-level commands, a

usual approach followed by the executive system is to have

a uniform interface to operate with the multiple robot func-

tions necessary for autonomous behavior (e.g. feature

extraction, SLAM, motion control, etc.). The way this uni-

form interface is implemented varies in different software

tools.

For example, FlexBE5 uses the concept of state and

implements the uniform interface as a state with a life cycle

(http://wiki.ros.org/flexbe/Tutorials/The%20Sta-

te%20Lifecycle) using a Python class (called EventState)

with common functions. The software toolbox CRAM8

uses process modules implemented as Lisp programs that

encapsulate functions executing ROS nodes. The tool ROS-

Plan7 uses actions that are implemented with the help of a

Cþþ class (called RPActionInterfaceClass). The software

tool Genom25 uses modules that are generated automati-

cally (in language C) for control architectures based on the

LAAS architecture.

In contrast to these tools, our method uses the notion of

behavior that has been commonly used in behavior-based

systems in robotics26,27 and as a basic concept for specify-

ing mission plans.28,29 In our case, a mission plan is

expressed with operations that activate and deactivate

behaviors. The uniform interface is implemented with a

behavior execution controller which is similar to other

solutions to manage the life cycle execution of a process.

For example, ROS 2 uses managed nodes (https://design.

ros2.org/articles/node_lifecycle.html), that is, nodes with a

managed life cycle and FlexBE uses a similar idea although

it is applied to the concept of state. The main difference

with these solutions is that a behavior execution controller

is specialized in the execution of a behavior, instead of a

general process or a general state, and includes specialized

functions to verify its correct execution.

Our mission plans can also use operations to access a

belief memory that stores relevant facts generated during

the execution. The belief management system has been

designed to work as a working memory, paying attention

to the efficiency in consumption of computational

resources, as required in aerial robotics. Therefore, it does

not include complex reasoning capabilities related to logic
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representation (e.g. automated deduction) that are provided

by other approaches in robotics such as KnowRob.30

Concerning the representation language used to specify

mission plans, software tools use different methods. For

instance, there are tools that formulate mission plans using

representations based on finite state machines such as

SMACH,2 rFSM,3 RAFCON,4 and FlexBE.5 Some tools

use behavior trees such as the ROS behavior_tree package6

and BehaviorTree.CPP (MOOD2Be Project). The previous

version of Aerostack (version 2.0) included a task-based

approach to represent mission plans represented using the

TML language.31 An imperative language like Python is

used by PyRobots32 to formulate mission plans.

In the method presented in this article, mission plans can

be formulated as a Python program using a Python API that

provides functions to activate/deactivate behaviors and

access the belief memory. The mission plan can also be

formulated using a Cþþ program using ROS services.

Alternatively, the mission plan can be specified as a beha-

vior tree. Our behavior tree representation is similar to the

representation used by other tools although, as a main dif-

ference, our method is integrated with the executive sys-

tem, so that it can perform queries to a belief memory

(using variables that communicate information between

tree nodes) and it includes operations to activate and deac-

tivate behaviors that operate concurrently.

The method presented in this document assumes that the

mission plan is provided as input, that is, the mission plan is

either specified by a human developer or generated by an

external automated planner, not included in our model of

executive system. For this reason, our work has paid atten-

tion to include protection methods against specification

errors. Other software tools use automated reasoners and

symbolic languages that are useful to generate mission

plans. For example, CRAM8 uses Lisp language and,

among other components, includes an automated reasoner

based on Prolog. ROSPlan7 uses PDDL language and an

automated planner to generate mission plans.

Conclusions

This article has presented results of recent advances in the

Aerostack software framework to address issues related to

safety and efficiency, which may be critical in the case of

aerial robots. The article has described a solution to help

developers build the executive system of an autonomous

robot. The solution is presented as a model of executive

system formulated as a general software architecture and a

set of reusable open-source components that perform exec-

utive functions. The architecture uses an original design

that divides the execution control of a mission plan into

different processes with separate functions (plan interpre-

tation, safety monitoring, behavior coordination, belief

management, etc.). This model is now part of the Aerostack

it is publicly available as open-source software.

The article presents the evaluation of the solution with

an aerial robotic system analyzing the trade-off between

benefits (about usability and reliability) and costs (about

development effort and performance efficiency). As it is

shown by the results, our solution improves the final

robotic system in terms of better user error protection and

fault tolerance. The evaluation shows that these benefits are

obtained with acceptable development effort and computa-

tional cost.

The evaluation also shows that there are issues related to

usability and reliability that are not fully covered by our

solution. For example, our method detects critical errors

about global consistency during the mission execution, but

it would be better to detect these errors in advance, when

the developer specifies the plan. Part of our future research

work is oriented to give an answer to this issue by repre-

senting explicitly semantic properties of mission plans that

are used by automatic validation methods, considering also

the practical costs of its use.

Another issue that is not covered by the solution pre-

sented in this article is a protection mechanism against

errors that affect directly the executive system. In this case,

additional protection methods should be considered. For

example, a possible solution would be to add a new func-

tionality to the behavior coordinator (which is a stable

component with low probability of failure) to supervise the

execution of the behavior execution controllers (which

have higher probability of failure since they are dependent

on the final application).
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