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Precision medicine has the potential to profoundly improve the practice of medicine. 

However, the advances required will take time to implement. Genetics is already being used 

to direct clinical decision-making and its contribution is likely to increase. To accelerate 

these advances, fundamental changes are needed in the infrastructure and mechanisms for 

data collection, storage and sharing. This will create a continuously learning health-care 

system with seamless cycling between clinical care and research. Patients must be educated 

about the benefits of sharing data. The building blocks for such a system are already forming 

and they will accelerate the adoption of precision medicine.

The practice of medicine is an inexact science. The clinician assesses the patient’s symptoms 

and decides which tests to perform to gather more data. They must determine the cause of 

the symptoms and the patient’s prognosis, whether clinical intervention is warranted and, if 

so, which intervention to prescribe. To do this effectively, the clinician might need to assess 

several potential courses of action and incorporate all that is known about the patient into his 

or her decision. Human physiology is complex. In some cases, the cause of the patient’s 

symptoms cannot be ascertained. In other cases, clinicians cannot gather enough data to 

make a fully informed decision. The guesswork inherent in the practice of medicine reduces 

the efficacy of the interventions that are prescribed.

Genetics is an important contributor to this complexity. Distinct genetic variants cause 

conditions that respond to different treatments yet share a similar set of symptoms. Without 

a mechanism to determine the underlying genetic cause of a set of symptoms, it might not be 

possible to determine which treatment will be most effective a priori. For instance, although 

there are many causes of lung cancer, only people who have an alteration in the gene EGFR 

respond to treatment with tyrosine kinase inhibitors1,2. Similarly, many genetic lesions lead 

to a thickened heart and an increased risk of sudden cardiac death, but only people with 
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mutations in the gene GLA respond to enzyme replacement therapy3. Even when the cause 

of a condition is known, unrelated genetic variants can affect treatment efficacy by altering 

the way in which drugs are metabolized or by increasing the likelihood of adverse events. 

For example, patients who are treated with conventional doses of the immunosuppressive 

drug azathioprine for an extended period are at risk of developing life-threatening 

myelosuppression if they harbour genetic variants that prevent the drug from being properly 

metabolized4. And approximately 6% of European populations carry HLA-B alleles that 

predispose them to potentially life-threatening hypersensitivity reactions if they are treated 

with the antiretroviral drug abacavir5.

Understanding the patient’s genetic make-up is crucial for providing optimal care for many 

diseases. Clinicians now have access to an increasing array of tests that allow them to 

determine which genetic variants exist in their patients. These include: genotyping tests that 

look at variants in a patient’s DNA sequence that are known to associate strongly with 

important clinical effects; panel-based gene sequencing, which looks at many genes related 

to a specific indication to detect known and new variants; sequencing of the exome — all 

known protein-coding genes; and whole-genome analysis that attempts to sequence a 

patient’s genome. However, simply determining which variants are present is insufficient. 

The implications of these variants must also be determined for each clinical indication. This 

genetic understanding must then be considered in conjunction with other clinical data to 

decide the path that will produce the best results for the patient.

The precision-medicine ecosystem

The goal of precision medicine is to enable clinicians to quickly, efficiently and accurately 

predict the most appropriate course of action for a patient. To achieve this, clinicians are 

given tools — in the form of tests and information-technology support — that are both 

compatible with their clinical workflow and economically feasible to deploy in the modern 

health-care environment. These tools help to simplify the process of managing the extreme 

biological complexity that underlies human disease. To support the creation and refinement 

of these tools, a precision-medicine ‘ecosystem’ is developing. This ecosystem is beginning 

to link clinicians, laboratories, research enterprises and clinical-information-system 

developers together in new ways. There is increasing hope that these efforts will create the 

foundation of a continuously learning health-care system that is capable of fundamentally 

accelerating the advance of precision-medicine techniques.

Interpretation is key to the precision-medicine ecosystem. It occurs at several levels. 

Individual variants can be interpreted in relation to specific indications. Sets of variants can 

be assessed in relation to their collective impact on patients. Genetic and clinical data can be 

combined to determine the best course of action for a patient. The quality of these 

interpretations is highly dependent on the data on which they are based. For this reason, 

research and clinical databases provide the foundation for precision medicine. Continuous 

learning in health care is in many ways driven by improvements to the content and structure 

of these resources. For example, the highly collaborative Clinical and Functional Translation 

of CFTR (CFTR2) project brought together researchers from around the world to share 

extensive patient data on CFTR variants to distinguish between pathogenic and benign 
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lesions. This work is leading to more effective treatments for patients with cystic fibrosis6. 

Similarly, the Evidence-based Network for the Interpretation of Germline Mutant Alleles 

(ENIGMA) consortium has engaged a large collaborative network to share data on the 

BRCA1 and BRCA2 genes that predispose patients to breast and ovarian cancer7. Patients 

with pathogenic variants in these genes can now take preventive action through monitoring 

and prophylactic surgical procedures8 and those with active breast cancer are candidates for 

targeted treatments9,10. In addition, large collaborative programmes led by the US National 

Institutes of Health (NIH)-supported Clinical Genome (ClinGen) Resource11 and the Global 

Alliance for Genomics and Health have begun to tackle the development of reliable 

resources for systematically defining the pathogenicity of all human variation through broad 

and targeted efforts. When optimized, the infrastructure that supports the precision-medicine 

ecosystem efficiently manages and integrates the flow of material, knowledge and data 

needed to generate, validate, store, refine and apply clinical interpretations (Fig. 1). 

Biobanks link samples with patient data to support discovery. Research databases record the 

data, calculations and results that provide evidence for clinical interpretations. Clinical-

knowledge-sharing networks enable the refinement of interpretations. Clinical laboratories 

and their information systems facilitate the consolidation of interpretations into reports and 

alerts. Electronic health records (EHRs) and associated systems help clinicians to apply 

results, both when they are received and as the patient’s condition and knowledge of the 

variants evolve. Patient-facing infrastructure or ‘portals’ provide individuals with access to 

their genetic data and — if appropriate — the ability to decide how they should be used, 

including whether to participate in research. At present, much of this infrastructure is at a 

very early stage of development. However, the infrastructural foundation for precision 

medicine is beginning to emerge. In this Review, we explore its crucial components.

The patient viewpoint

The role of the patient in supporting precision medicine is becoming increasingly important. 

Patients are obtaining a growing number of genetic results in the course of their care. 

Typically, clinicians involved in their treatment order such tests for them. However, patients 

are also now able to access direct-to-consumer testing, sometimes through the help of 

someone who is not directly involved in their care. To ensure that precision medicine is 

tailored to the unique genetic make-up of each patient, we must gather as much information 

as possible from individual patients. Yet there are risks associated with widespread sharing 

of patient data. To gain access to these data, researchers must actively engage patients, teach 

them about the benefits of data sharing and help them to weigh up the risks and benefits. 

This can be done by making the process of obtaining consent more effective.

There are two major forms of consent that are relevant: consent for receiving medical 

treatment or procedures; and consent for releasing data or samples for use in research. In 

both cases, the risks and benefits must be conveyed to the patient. However, the conventional 

distinction is that obtaining consent for treatment focuses on benefits to the individual 

whereas obtaining consent for research focuses on generalizable knowledge12. Increasingly, 

the line between clinical care and research is blurring; participation in research studies can 

lead to a direct improvement in outcome for the patient13,14, and the continuous capture of 

clinical-care data has been proved an effective way to inform generalizable knowledge15. As 
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a result, efforts are under way to ask all patients who enter the clinical-care setting to sign a 

form that permits their data to be used in research16-19. In addition, those signing clinical 

genetic-testing consent forms now commonly agree to share their data broadly to help 

advance knowledge11. Nevertheless, there is still a need for more uniform consenting 

processes. It is difficult to generate consent forms in language that is both easy to understand 

and robustly conveys the main issues associated with genetic testing. Sharing such language 

across institutions could be helpful in this context. Harmonizing consent language across 

providers, laboratories and biobanks would make it easier to administer and adhere to those 

agreements. Recently, the Regulatory and Ethics Working Group of the Global Alliance for 

Genomics and Health published a framework for the responsible sharing of genomic and 

health-related data20. The group has also created consent tools and policies to aid the 

development of standardized approaches to obtaining consent and that support data sharing 

in the global community. Consistent with the Global Alliance for Genomics and Health 

framework, ClinGen has developed standardized consenting approaches (http://

clinicalgenome.org/data-sharing/) for use in the clinical-care setting, which will enable 

sharing of genetic-test results and accompanying phenotypic data in the absence of research-

study enrolment.

Some patients are extremely interested in supporting research and are willing to take 

proactive steps to facilitate the sharing of genetic information. The Global Network of 

Personal Genome Projects recruits volunteers who are prepared to share their genomic data 

and medical histories publicly. ClinGen manages the GenomeConnect patient portal, built on 

the Patient Crossroads platform, which allows individuals to share health and genetic 

information to form communities. The Platform for Engaging Everyone Responsibly 

(PEER), supported by the Genetic Alliance, enables individuals to control sharing, privacy 

and access preferences for their health and genomic data with a high degree of precision.

The clinician viewpoint

Clinicians gain access to patients’ genetic information through tests. Tests have two 

components: a technical component that focuses on identifying which variants are present in 

the patient; and an interpretive component in which the implications of identified variants 

are assessed. In most scenarios, genetic testing is performed to determine either the cause of 

a specific indication or the most appropriate treatment21. However, exome and genome data 

can be reused to perform multiple assessments over time. This opens up the possibility of 

obtaining and storing genome and exome sequences before disease manifests, with the 

intention that they will be interpreted and reinterpreted as indications arise. Irrespective of 

when the sequence is obtained, the interpretation step is crucial.

Clinical interpretation is a multiple-component process (Fig. 2). After a pool of variants have 

been identified, step 1 determines which of those variants should be assessed further. In step 

2, the clinical impact of each of those variants is assessed. In step 3, the relevance of the 

combination of variants identified in step 2 are considered in relation to the patient’s 

indication. Finally, in step 4, the test results are placed within the context of all known 

information about the patient to determine clinical care. Many laboratories base their reports 

on steps 1–3, although some simply report the variants they have identified. The patient’s 
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clinician often reviews the laboratory analysis and completes any remaining steps. These 

processes can be time consuming and therefore expensive. They also involve a considerable 

amount of professional judgement, which makes them subject to human error and 

differences of opinion. The quality and efficiency of these processes is highly dependent on 

the data available in clinical and research databases. For this reason, these databases are in 

many ways the core of the ecosystem that is needed to advance the practice of precision 

medicine. In addition, more standardized ways to evaluate evidence, such as those released 

by the American College of Medical Genetics and Genomics22, will be crucial for 

interpreting human genetic variation in a more consistent way. Finally, the open sharing of 

clinical interpretations to distribute the labour of variant assessment, to identify and resolve 

differences in interpretation, and to catalogue variation for research studies is essential for 

improving the care of patients with genetic-based conditions11.

In each patient encounter, clinicians must address several questions that relate to precision 

medicine. First, they must assess whether genetics could be relevant — and if so, order the 

appropriate tests. Once the test results are received, the clinician must determine how to 

apply them. Then they must manage the results over time. Information-technology support is 

needed to manage the large amount of patient data and other information that are required to 

execute these processes optimally. EHRs and their associated systems are the main means of 

providing such support to clinicians.

Electronic health records

EHRs are well positioned to be the apex of genetic information-technology support. They 

should serve as the clinician’s gateway to all of the patient’s information, including any 

genetic data. Information should be organized and displayed in a way that integrates with the 

clinician’s workflow and facilitates diagnostic and treatment decisions. EHR and related 

systems can also provide clinicians with electronic clinical-decision support (CDS) that 

provides extra information about a genetic test or result through an e-resource or 

InfoButton23,24 that links to electronic resources such as websites or databases. They can 

also issue pre-test and post-test pharmacogenomic warnings that highlight potentially 

adverse interactions between drugs and specific genetic variants. Pre-test warnings are 

triggered when a clinician takes an action that should be informed by a genetic assessment 

but there is no record of the assessment being performed. Post-test alerts are triggered when 

an action is taken that may be contraindicated by a patient’s genetic profile. An example is 

ordering a high dose of azathioprine for a patient with a thiopurine methyltransferase 

deficiency4. CDS systems can also alert clinicians when important information emerges on a 

patient’s previously reported variant25. In the future, CDS systems might be able to guide 

clinicians through complex scenarios that take into account multiple types of patient data, 

including genetics. Evolving such CDS is essential for the formation of a learning health-

care system.

Genetic information and CDS do not necessarily have to be implemented directly into the 

EHR — it is possible to integrate EHRs with external systems25,26. Such integration can be 

seamless so that clinicians need never know that they are working with multiple systems. 

Providing genetic support through the EHR is complex27 and it is currently unclear how 
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much genetic functionality EHR vendors will build into their systems. Some have indicated 

that they are unlikely to store full genomic sequencing in the EHR, instead choosing to link 

to external genomic data stores and focus their internal functionality on managing test 

results that have been interpreted at a higher level. Irrespective of whether patient genetic 

profiles are stored in the EHR, a constellation of systems will need to be tightly integrated 

with the EHR to provide optimal support to clinicians.

Displays of genetic information and CDS are often impossible to provide without robust 

access to the patient’s genetic results and reports. The EHR and related clinician-facing 

systems must obtain genetic results from laboratory systems. This requires interfaces 

between the EHR provider and the laboratory. Creating these interfaces often involves 

establishing electronic connections that span multiple organizations and integrate systems 

from competing vendors. Relatively few such interfaces exist, largely because of the expense 

associated with creating them. Generally, results are transmitted from the laboratory to the 

provider by fax, which makes it difficult to keep the results organized in the EHR. CDS 

usually relies on access to structured electronic data that cannot be reliably extracted from a 

fax. Even if a genetic result is recorded in a structured format, this structure is often lost 

when the result is transferred to clinicians involved in the patient’s care who operate out of 

different institutions. Any results from direct-to-consumer testing are also unlikely to be 

transferred in a structured format.

Several groups are working to promote interconnectivity that would enable CDS systems 

that incorporate genetic information. The Institute of Medicine Roundtable on Translating 

Genomic-Based Research for Health established the Displaying and Integrating Genetics 

Information Through the EHR Action Collaborative (DIGITizE AC). DIGITizE AC brings 

together clinicians, laboratories, vendors, standards organizations, government agencies and 

patient representatives to increase support for genetics in the EHR. The group has defined a 

set of genetics-based CDS rules that it seeks to roll out widely. This will involve leveraging 

the frameworks of standards bodies, such as Health Level Seven (HL7) International, and the 

Logical Observation Identifiers Names and Codes (LOINC) database, as well as ontology 

and rule creators such as the Clinical Pharmacogenomics Implementation Consortium 

(CPIC). The National Human Genome Research Institute (NHGRI) has also established 

several consortia with EHR working groups to investigate how genetics can be supported in 

the EHR. These include: the Electronic Medical Records and Genomics (eMERGE) 

Network28, Clinical Sequencing Exploratory Research (CSER) and ClinGen11.

However, the problem that these organizations are trying to solve is very difficult. 

Standardized message formats and ontologies are the best way to reduce the cost of 

establishing the laboratory–provider and provider–provider interfaces needed to underlie 

precision medicine. However, these standards are helpful only if they robustly account for 

the different real-world scenarios they are intended to support and are broadly implemented 

by the vendor community (Fig. 3). Developing such standards requires an enormous amount 

of input from groups that combine deep clinical, laboratory, vendor and information-

technology expertise. The DIGITizE AC has found that even defining the specific 

requirements for its initial set of narrow-use cases entailed a considerable amount of 
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interdisciplinary effort. Much more work is needed to build truly robust, general-purpose 

standards.

The clinical laboratory viewpoint

Clinical laboratories sit at the core of the interpretative process. Ideally, they provide both 

the evidence for individual variants as well as a case-level report that places all potentially 

relevant variants in the context of the patient’s presentation. Laboratories that perform 

genome sequencing often discover variants that they have never seen before, which must 

then be assessed. Similarly, variants that have been seen before might need to be reassessed 

as new knowledge emerges. Variant assessment is becoming an important factor in the cost 

of genetic tests. It must be performed by skilled individuals because errors could result in 

inappropriate patient care. Yet we know that variants can be interpreted differently. As of 11 

September 2015, 369 organizations had submitted a total of 158,668 variants to ClinVar, a 

National Center for Biotechnology Information (NCBI) database that acts as a single 

centralized public repository to which institutions can submit their interpreted variants as 

well as retrieve data from others29. At least 2,000 of these have been interpreted differently 

by submitters11.

Laboratories and clinicians can be assisted in two ways: better access to variant assessments 

performed by other institutions using consistent approaches, and tools to improve and 

standardize the variant assessment process.

Building clinical genomic knowledge

Sharing variant- and gene-level assessments between laboratories and clinicians can increase 

the quality and efficiency of the variant assessment process. Multiple efforts are under way 

to increase the sharing of such knowledge30-34. The ClinGen programme is building an 

authoritative central resource that defines the clinical relevance of genomic variants for use 

in precision medicine and research. The programme aims are to increase the rate of 

submission to ClinVar and to improve the content of ClinVar and other genomic resources 

through expert curation. ClinGen has worked together with ClinVar to create a ‘star system’ 

that defines the level of review for each variant that is submitted to ClinVar11. ClinGen 

working groups have been established in multiple clinical domains to curate gene–disease 

relationships and to interpret variants through expert consensus.

Centralized knowledge repositories can also be created by linking together the infrastructure 

that supports different laboratories. For example, laboratories that use the GeneInsight Lab 

application35 are able to use the system to communicate and share knowledge in real time. 

This functionality has been used to create a network called VariantWire and also supports 

the Canadian Open Genetics Repository (COGR)36 network of Canadian labs. Importantly, 

an organization can both participate in a knowledge-sharing network and contribute their 

data to ClinVar. By adopting a standardized infrastructure that helps to structure data for 

submission to ClinVar, public sharing becomes cheaper, more efficient and more 

comprehensive with respect to supplying the supporting evidence.
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Case repositories and biobanks

An important driver of improvements to variant assessment processes is the collection and 

analysis of case data. Clinical and research laboratories often develop case repositories. The 

power of these repositories is a function of the number of cases that they contain. Therefore 

sharing cases across institutions is beneficial. However, it is difficult to combine data that 

have been stored in information systems developed by different groups. Trade-offs must be 

made when deciding what data to capture and how deeply to standardize and structure them. 

The amount of data in a case repository can be increased by allowing contributors to deposit 

heterogeneous data that are incomplete or inconsistently validated and may therefore be 

difficult to process downstream37. If repository developers insist on the submission of 

complete, validated and consistent data, many cases will have to be excluded.

Several databases have been launched that share case-level data across broad disease areas. 

The NCBI’s database of Genotypes and Phenotypes (dbGaP)38 places minimal restrictions 

on the types of case data that can be submitted and therefore serves as a generalized 

repository. However, because phenotypic data are often limited, making informative use of 

the information is difficult. Similarly, the European Bioinformatics Institute (EBI) maintains 

the European Genome-phenome Archive for storing case-level genomic data. The 

International Cancer Genome Consortium (ICGC)39 and The Cancer Genome Atlas 

(TCGA)40 have each set up large repositories of somatic cancer sequencing data. The 

American Society of Clinical Oncology (ASCO) is looking to incorporate the tracking of 

patient outcomes to enable a learning health-care system in its CancerLinQ platform41. 

Repositories have also been developed through direct patient participation and span non-

profit, academic and commercial activities.

Access to clinical specimens associated with patient data is often necessary to fully inform 

discovery and continuous learning. The costs associated with collecting samples 

prospectively for research studies are enormous. However, when samples are collected in 

bulk and then placed into biobanks, which allows their reuse across studies, the costs 

decrease considerably. One of the keys to success is ensuring that strong consent processes 

are in place. Biobanks are moving from repositories of de-identified, unconsented specimens 

towards fully consented models that allow association with longitudinal health records. This 

is another area in which universal consent language would simplify the infrastructure 

development process. Direct engagement of patients in this type of sharing can help 

participants to balance the risks and benefits. Patients must fully understand the scope of 

their consent and be actively informed and engaged as participants in the advancement of 

knowledge. The return to patients of clinically relevant results from research studies should 

also be supported because this allows patients to benefit directly from their data sharing.

In addition to supporting individual case-level repositories and biobanks, efforts are being 

made to connect divergent databases. Launched in 2015, the Matchmaker Exchange is a 

centralized network for sharing case-level data within an international set of case-level 

repositories focused on gene discovery42. Although each database has its own data schema, 

the development of a common application programming interface43 means that users can 

query genomic and phenotypic data across multiple systems. This has encouraged the 
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member databases to move towards implementing a common set of fields to facilitate 

effective data exchange for gene discovery.

There is no doubt that other such efforts will emerge, particularly as the Genomics England 

and Precision Medicine Initiative programmes develop. Furthermore, the data-

standardization efforts that help to establish interfaces between laboratories and providers 

could assist the development of these case repositories. Organizations that supply patient 

data to these efforts must develop mechanisms for collecting data more uniformly and for 

sharing them consistently. By enabling patients to contribute their data directly, the 

collection of phenotype data can be accelerated and broadened44.

Knowledge resources and tools

In addition to clinical-knowledge and case-sharing networks, many laboratories and 

clinicians use research-grade knowledge resources and tools. Many types of tools and 

resources are used daily in the clinical workflow, even if they are not intended for direct 

clinical usage. In silico assessment tools use computational algorithms to assess the likely 

effects of DNA variation45-47. Genome browsers can display multiple tracks of information, 

including species conservation data, the location of gene transcripts and regulatory elements, 

and population genetic variation. A number of allele-frequency databases, such as dbSNP 

Short Genetic Variations, the National Heart, Lung, and Blood Institute (NHLBI) Grand 

Opportunity Exome Sequencing Project’s Exome Variant Server, the Exome Aggregation 

Consortium (ExAC) Browser and the 1000 Genomes Project48, provide data that are used by 

clinical laboratories to define variation that is unlikely to cause Mendelian disorders. The 

NCBI’s PubMed database provides access to published biomedical literature, and public and 

commercialized efforts exist to curate and present the data contained in such literature in a 

more useful format, such as Online Mendelian Inheritance in Man (OMIM) and The Human 

Gene Mutation Database49. To define the role of these knowledge resources, users must 

assess which resources are useful, how their quality is controlled and how best they can be 

integrated into clinical workflows50. ClinGen maintains a list (http://clinicalgenome.org/

tools/web-resources/) of web-based tools that members of its community have found useful. 

This resource has also been designed to serve as an e-resource that can be accessed through 

EHRs.

The researcher viewpoint

The advent of precision medicine and its supporting infrastructure has given researchers the 

ability to influence clinical care directly. The release of innovative research tools and the 

addition of new information in the form of knowledge bases can immediately influence 

patient care by changing how genomic variants are assessed. Although data obtained through 

clinical settings typically require processing in specific ways, those obtained from research 

tend to be more flexible. This means that researchers can often tolerate more variability and 

inconsistency in their data sources than clinicians. For this reason, new infrastructure is 

usually released to the research community before it is optimized for clinical use.
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Clinical knowledge-sharing infrastructure and case repositories, especially when combined 

with EHR-derived content, can provide clinicians and clinical laboratories not only with 

unprecedented access to clinical data, but also make this information accessible to 

researchers. New models are emerging for the broad sharing of data for discovery purposes. 

For example, the crowd-sourced approach to solving complex biological problems taken by 

the DREAM Challenges is now being applied to clinical-trial data in the hope of advancing 

precision medicine51,52. Such challenges pair the brightest computer scientists with 

unprecedented open access to data to allow the development of highly informative models 

for predicting patient outcomes. To support this era of open data and discovery, it is crucial 

that appropriate consent approaches are established to allow clinical data to be used in these 

ways. Opportunities for discovery are also being created as the cost of sequencing falls and 

the processing capabilities of ‘big data’ become increasingly accessible53. All these factors 

could contribute further to the formation of a continuously learning health-care system that 

simultaneously engages clinical-care providers and researchers and is necessary to support 

the development of precision medicine.

Realizing continuously learning health care

Ideally, continuous learning in health care would involve the capture of all incremental data, 

knowledge and experience gained through each patient interaction. This information would 

then be used in real time to improve the care of current and future patients. The ability to 

stratify patients, understand scenarios and optimize decision-making would consistently 

improve based on the myriad data obtained during the care-delivery process. This would be 

the ultimate expression of precision medicine. The infrastructure we discuss in this Review 

represents initial steps in this direction. We have already seen evidence to show that 

continuous-learning processes are achievable. Figure 4 depicts an example of a continuous-

learning system in which hypothetical historical patient data from breast-cancer testing are 

accessed to determine the pathogenicity of a new BRCA1 variant as ‘likely benign’. The 

variant would otherwise be considered of ‘uncertain significance’. Clinical laboratories often 

classify variants on the basis of historical clinical case histories. Because each laboratory has 

access to only a fraction of patients tested, optimal learning can only happen when data are 

shared broadly between organizations. ClinGen has made advances in clinical-laboratory 

genetic-data sharing through the use of the ClinVar database11. However, this level of 

sharing is more likely to lead to therapeutic development and improved outcomes if the 

results of genetic testing are accompanied by greater amounts of patient health data. This 

will require the emerging genetic infrastructure to be extended, such that it can integrate 

with as many other forms of patient data as possible.

Addressing barriers to precision medicine

Multiple issues must be overcome for personalized medicine to reach its potential, as 

summarized by Joyner and Paneth in seven key questions54. Although some doubt has been 

expressed that personalized medicine will reach its full potential for common diseases, the 

recent shift in emphasis to studies of the genetic basis of rare diseases and somatic cancer 

could provide tangible success in this field. For example, mechanistic understanding of rare 

disease and cancer pathways might inform the understanding of common diseases and 
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approaches to reducing risk more effectively than has been achieved through genome-wide 

association studies. However, to ensure that we can learn from our evolving experience in 

the diagnosis and treatment of all types of disease, continuously learning health-care systems 

and broad data-sharing approaches must be supported. The absence of such systems is likely 

to be responsible for the limited success of personalized medicine to date. The continuous-

learning infrastructure could be used to add a testing methodology for new hypotheses, in 

which real-time evaluation is repeatedly conducted against a limited set of treatment 

decisions for a given condition to determine which treatments provide the best results for 

different patient subgroups. Improved decision-making — at present, based on access to 

more up-to-date knowledge, and in the future, based on real-time evaluation techniques — 

has the potential to partially offset cost concerns by reducing expenditures associated with 

unnecessary or ineffective care. These improvements are also likely to generate public-

health benefits. Improved infrastructure to capture both test results and patient outcomes 

should enable the measurement of such benefits.

The type and quality of patient data stored in EHRs are clearly issues that need to be 

addressed to support a continuously learning health-care system. In our experience, the 

investment required to capture higher-quality and more clinically relevant data is made only 

when a near-term financial return on those investments can be established. An improved 

foundational infrastructure provides an expanded basis for innovation and thereby facilitates 

the development of tools and analysis that are capable of justifying these foundational 

investments.

Open data-sharing resources, as well as the principle of open data itself, can help to reduce 

the cost of conducting genetic research. They can also limit the number of conflict-of-

interest problems that occur as academic medical centres increasingly partner with 

commercial activities. Although this infrastructure does not help to solve generalized 

funding issues, it does set a precedent for sharing data rather than keeping it proprietary. In 

doing so, it reduces the scope and impact of potential conflicts and helps to ensure that 

commercial relationships are based on open principles.

Future directions

Despite compelling examples of the use of genomics to support precision medicine, the core 

building blocks that will be necessary to scale up the field are still in a very primitive state. 

However, as the community works to improve these building blocks and link them up, 

transformations are beginning to occur. Clinicians, researchers, laboratories and vendors are 

working together to build the tools that will close the distance between each stakeholder. It is 

becoming easier to move, compare, apply and reproduce knowledge, data and samples. The 

basic infrastructure required to support a continuously learning health-care system has 

started to evolve spontaneously in many different areas. Furthermore, a cultural change is 

emerging as researchers, clinicians and patients embrace the open sharing of data to 

facilitate scientific advancement. Although it is unclear how long it will take to build an 

infrastructure that fully supports the widespread sharing and effective use of genomic and 

health data, the ultimate result will be a transformation of health care that allows continuous 
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advances in medicine to occur within a clinical-care system that is less dependent on 

externally funded research endeavours.

Acknowledgments

H.L.R. was supported in part by NIH grants U41HG006834, U01HG006500 and U19HD077671. S.J.A. was 
supported in part by U41HG006834.

References

1. Lynch TJ, et al. Activating mutations in the epidermal growth factor receptor underlying 
responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350:2129–2139. 
[PubMed: 15118073] 

2. Paez JG, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib 
therapy. Science. 2004; 304:1497–1500. [PubMed: 15118125] 

3. Morel CF, Clarke JT. The use of agalsidase alfa enzyme replacement therapy in the treatment of 
Fabry disease. Expert Opin Biol Ther. 2009; 9:631–639. [PubMed: 19368525] 

4. Relling MV, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine 
methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther. 2013; 
93:324–325. [PubMed: 23422873] 

5. Martin MA, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B 
genotype and abacavir dosing: 2014 update. Clin Pharmacol Ther. 2014; 95:499–500. [PubMed: 
24561393] 

6. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature 
Rev Genet. 2015; 16:45–56. [PubMed: 25404111] 

7. Spurdle AB, et al. ENIGMA—evidence-based network for the interpretation of germline mutant 
alleles: an international initiative to evaluate risk and clinical significance associated with sequence 
variation in BRCA1 and BRCA2 genes. Hum Mutat. 2012; 33:2–7. [PubMed: 21990146] 

8. Domchek SM, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers 
with cancer risk and mortality. J Am Med Assoc. 2010; 304:967–975.

9. Audeh MW, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or 
BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010; 376:245–
251. [PubMed: 20609468] 

10. Tutt A, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or 
BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010; 376:235–
244. [PubMed: 20609467] 

11. Rehm HL, et al. ClinGen — The Clinical Genome Resource. N Engl J Med. 2015; 372:2235–2242. 
This article describes ClinGen, an NIH-supported programme to build an authoritative central 
resource that defines the clinical relevance of genomic variants for use in precision medicine and 
research, employing systematic sharing of clinical knowledge and expert curation. [PubMed: 
26014595] 

12. US Department of Veterans Affairs Office of Research & Development. Informed Consent for 
Human Subjects Research: a Primer. VA Boston Health Care System. 2002. http://
www.research.va.gov/resources/pubs/docs/consent_primer_final.pdf

13. Jameson E, Jones S, Wraith JE. Enzyme replacement therapy with laronidase (Aldurazyme®) for 
treating mucopolysaccharidosis type I. Cochrane Database Syst Rev. 2013; 11 CD009354. 

14. Hacein-Bey Abina S, et al. Outcomes following gene therapy in patients with severe Wiskott–
Aldrich syndrome. J Am Med Assoc. 2015; 313:1550–1563.

15. Murphy SN, et al. High throughput tools to access images from clinical archives for research. J 
Digit Imaging. 2015; 28:194–204. [PubMed: 25316195] 

16. McCarty CA, et al. The eMERGE Network: a consortium of biorepositories linked to electronic 
medical records data for conducting genomic studies. BMC Med Genomics. 2011; 4:13. [PubMed: 
21269473] 

Aronson and Rehm Page 12

Nature. Author manuscript; available in PMC 2017 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.research.va.gov/resources/pubs/docs/consent_primer_final.pdf
http://www.research.va.gov/resources/pubs/docs/consent_primer_final.pdf


17. Allen NL, et al. Biobank participants’ preferences for disclosure of genetic research results: 
perspectives from the OurGenes, OurHealth, OurCommunity project. Mayo Clin Proc. 2014; 
89:738–746. [PubMed: 24943692] 

18. Toledo JB, et al. A platform for discovery: The University of Pennsylvania Integrated 
Neurodegenerative Disease Biobank. Alzheimers Dement. 2014; 10:477–484. [PubMed: 
23978324] 

19. Milani L, Leitsalu L, Metspalu A. An epidemiological perspective of personalized medicine: the 
Estonian experience. J Intern Med. 2015; 277:188–200. [PubMed: 25339628] 

20. Knoppers BM. Framework for responsible sharing of genomic and health-related data. HUGO J. 
2014; 8:3. [PubMed: 27090251] 

21. Korf BR, Rehm HL. New approaches to molecular diagnosis. J Am Med Assoc. 2013; 309:1511–
1521.

22. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint 
consensus recommendation of the American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genet Med. 2015; 17:405–423. These guidelines provide a 
standardized approach to the interpretation of genetic variants for monogenic disease. [PubMed: 
25741868] 

23. Hoffman MA, Williams MS. Electronic medical records and personalized medicine. Hum Genet. 
2011; 130:33–39. [PubMed: 21519832] 

24. Del Fiol G, et al. Integrating genetic information resources with an EHR. AMIA Annu Symp Proc 
2006. 2006:904.

25. Aronson SJ, et al. Communicating new knowledge on previously reported genetic variants. Genet 
Med. 2012; 14:713–719.

26. Starren J, Williams MS, Bottinger EP. Crossing the omic chasm: a time for omic ancillary systems. 
J Am Med Assoc. 2013; 309:1237–1238.

27. Kho AN, et al. Practical challenges in integrating genomic data into the electronic health record. 
Genet Med. 2013; 15:772–778. This review summarizes challenges that the eMERGE consortium 
has encountered when integrating genetics into the EHR and suggests approaches for addressing 
these challenges. [PubMed: 24071798] 

28. Gottesman O, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, 
present, and future. Genet Med. 2013; 15:761–771. [PubMed: 23743551] 

29. Landrum MJ, et al. ClinVar: public archive of relationships among sequence variation and human 
phenotype. Nucleic Acids Res. 2014; 42:D980–D985. [PubMed: 24234437] 

30. Béroud C, Collod-Béroud G, Boileau C, Soussi T, Junien C. UMD (Universal Mutation Database): 
a generic software to build and analyze locus-specific databases. Hum Mutat. 2000; 15:86–94. 
[PubMed: 10612827] 

31. Sosnay PR, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane 
conductance regulator gene. Nature Genet. 2013; 45:1160–1167. [PubMed: 23974870] 

32. Firth HV, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans 
Using Ensembl Resources. Am J Hum Genet. 2009; 84:524–533. [PubMed: 19344873] 

33. Miller DT, et al. Consensus statement: chromosomal microarray is a first tier clinical diagnostic 
test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 
2010; 86:749–764. [PubMed: 20466091] 

34. Thompson BA, et al. Application of a 5-tiered scheme for standardized classification of 2,360 
unique mismatch repair gene variants in the InSiGHT locus-specific database. Nature Genet. 2014; 
46:107–115. [PubMed: 24362816] 

35. Aronson SJ, et al. The GeneInsight Suite: a platform to support laboratory and provider use of 
DNA-based genetic testing. Hum Mutat. 2011; 32:532–536. [PubMed: 21432942] 

36. Lerner-Ellis J, Wang M, White S, Lebo MS. Canadian Open Genetics Repository Group. Canadian 
Open Genetics Repository (COGR): a unified clinical genomics database as a community resource 
for standardising and sharing genetic interpretations. J Med Genet. 2015; 52:438–445. [PubMed: 
25904639] 

Aronson and Rehm Page 13

Nature. Author manuscript; available in PMC 2017 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Riggs ER, Jackson L, Miller DT, Van Vooren S. Phenotypic information in genomic variant 
databases enhances clinical care and research: the International Standards for Cytogenomic Arrays 
Consortium experience. Hum Mutat. 2012; 33:787–796. [PubMed: 22331816] 

38. Tryka KA, et al. NCBI’s Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res. 2014; 
42:D975–D979. [PubMed: 24297256] 

39. Zhang J, et al. International Cancer Genome Consortium Data Portal—a one-stop shop for cancer 
genomics data. Database (Oxford). 2011; 2011:bar026. [PubMed: 21930502] 

40. The Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis 
project. Nature Genet. 2013; 45:1113–1120. [PubMed: 24071849] 

41. Schilsky RL, Michels DL, Kearbey AH, Yu PP, Hudis CA. Building a rapid learning health care 
system for oncology: the regulatory framework of CancerLinQ. J Clin Oncol. 2014; 32:2373–
2379. This article provides an overview of the challenges of applying precision medicine 
techniques to cancer and then describes the CancerLinQ system and the regulatory framework 
under which it operates. [PubMed: 24912897] 

42. Philippakis, AA., et al. The matchmaker exchange: a platform for rare disease gene discovery. 
Hum Mutat. 2015. http://dx.doi.org/10.1002/humu.22858. This paper describes an international 
system for sharing genomic cases to aid in gene discovery

43. Buske, OJ., et al. The matchmaker exchange API: automating patient matching through the 
exchange of structured phenotypic and genotypic profiles. Hum Mutat. 2015. http://dx.doi.org/
10.1002/humu.22850

44. Almalki M, Gray K, Sanchez FM. The use of self-quantification systems for personal health 
information: big data management activities and prospects. Health Inf Sci Syst. 2015; 3(suppl):S1. 
[PubMed: 26019809] 

45. Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods 
on missense variants. Hum Mutat. 2011; 32:358–368. [PubMed: 21412949] 

46. Kircher M, et al. A general framework for estimating the relative pathogenicity of human genetic 
variants. Nature Genet. 2014; 46:310–315. [PubMed: 24487276] 

47. Jian X, Boerwinkle E, Liu X. In silico tools for splicing defect prediction: a survey from the 
viewpoint of end users. Genet Med. 2014; 16:497–503. [PubMed: 24263461] 

48. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale 
sequencing. Nature. 2010; 467:1061–1073. erratum 473, 544 (2011). [PubMed: 20981092] 

49. Stenson PD, et al. The Human Gene Mutation Database: building a comprehensive mutation 
repository for clinical and molecular genetics, diagnostic testing and personalized genomic 
medicine. Hum Genet. 2014; 133:1–9. [PubMed: 24077912] 

50. Gargis AS, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. 
Nature Biotechnol. 2012; 30:1033–1036. [PubMed: 23138292] 

51. Jarchum I, Jones S. DREAMing of benchmarks. Nature Biotechnol. 2015; 33:49–50. [PubMed: 
25574639] 

52. Abdallah K, Hugh-Jones C, Norman T, Friend S, Stolovitzky G. The Prostate Cancer DREAM 
Challenge: A community-wide effort to use open clinical trial data for the quantitative prediction 
of outcomes in metastatic prostate cancer. Oncologist. 2015; 20:459–460. [PubMed: 25777346] 

53. O’Driscoll A, Daugelaite J, Sleator RD. ‘Big data’, Hadoop and cloud computing in genomics. J 
Biomed Inform. 2013; 46:774–781. [PubMed: 23872175] 

54. Joyner, MJ., Paneth, N. Seven questions for personalized medicine. J Am Med Assoc. 2015. http://
dx.doi.org/10.1001/jama.2015.7725. This review discusses cloud computing and big data concepts 
and their application to the field of genomics

Aronson and Rehm Page 14

Nature. Author manuscript; available in PMC 2017 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1002/humu.22858
http://dx.doi.org/10.1002/humu.22850
http://dx.doi.org/10.1002/humu.22850
http://dx.doi.org/10.1001/jama.2015.7725
http://dx.doi.org/10.1001/jama.2015.7725


Figure 1. 
The precision-medicine ecosystem. The precision-medicine ecosystem contains building 

blocks that optimally connect patients, clinicians, researchers and clinical laboratories to one 

another. Patients and clinicians access information through portals or EHRs. The ecosystem 

can include displays or CDS augmented by curated knowledge that is supplied and shared by 

multiple stakeholders. Case-level databases and biobanks receive case data and samples 

from clinical and research workflows. Researchers benefit from all of these information 

sources and also contribute to knowledge sources. Clinical laboratories leverage data and 

inform the clinical community as they assess genomic variation and its impact on human 

health
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Figure 2. 
Stages of the genetic interpretation process. Once genetic variants have been identified, they 

are filtered to select those of interest (step 1). Next, the evidence for each variant is assessed 

to determine the variant’s clinical impact (step 2). One or more assessed variants are then 

interpreted with respect to the specific condition for which the patient is being investigated 

(step 3). Last, the overall genetic assessment is placed into the patient’s clinical and personal 

context to inform the clinical-care decision-making process (step 4)
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Figure 3. 
Creating and implementing robust standards for the description and structuring of data in 

laboratory processing and patient-care systems. Professionals with diverse expertise interact 

with vendors of laboratory-information systems and EHR systems to iteratively design and 

implement standards that effectively enable techniques to be used in the clinic.
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Figure 4. 
Example of a learning health-care system. Case data can be shared between laboratories to 

support variant assessment. In this example, the BRCA2 p.Glu1593Asp variant in case D is 

classified initially as being of ‘uncertain significance’. After accessing genetic and 

phenotypic patient data from cases A, B and C, in which there are other genetic explanations 

for the clinical phenotype, the necessary evidence becomes available to classify the BRCA2 

p.Glu1593Asp variant as ‘likely benign’
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