
1 

Building the Gist of a Scene:  

The Role of Global Image Features in Recognition  

Aude Oliva (1) and Antonio Torralba (2) 

(1) Department of Brain and Cognitive Sciences, MIT, Cambridge, USA 

(2) Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, USA 

In press, 2006. Progress in Brain Research 

Running head: Scene Gist from Global Features 

Keywords: scene recognition, gist, spatial envelope, global image feature, spatial 

frequency, natural image 

Abstract 

Humans can recognize the gist of a novel image in a single glance, independent of its 

complexity. How is this remarkable feat accomplished? Based on behavioral and 

computational evidence, this paper describes a formal approach to the representation and 

the mechanism of scene gist understanding, based on scenecentered, rather than object

centered primitives. We show that the structure of a scene image can be estimated by the 

mean of global image features, providing a statistical summary of the spatial layout 

properties (Spatial Envelope representation) of the scene. Global features are based on 

configurations of spatial scales and are estimated without invoking segmentation or 

grouping operations. The scenecentered approach is not an alternative to local image 

analysis but would serve as a feedforward and parallel pathway of visual processing, able 

to quickly constrain local feature analysis and enhance object recognition in cluttered 

natural scenes.  
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Introduction 

One remarkable aspect of human visual perception is that we are able to understand the 

meaning of a complex novel scene very quickly even when the image is blurred (Schyns & 

Oliva, 1994), or presented for only 20 msec (Thorpe et al., 1996).  Mary Potter (1975, 1976, 

see also Potter et al., 2004) demonstrated that during a rapid presentation of a stream of 

images, observers were able to identify the semantic category of each image as well as a 

few objects and their attributes. This rapid understanding phenomenon can be experienced 

while looking at modern movie trailers which utilize many fast cuts between scenes: with a 

mere glimpse of each picture, you can identify each shot’s meaning, the actors and the 

emotion depicted in each scene (Maljkovic and Martini, 2005) even though you will not 

necessarily remember the details of the trailer. The amount of perceptual and semantic 

information that observers comprehend within a glance (about 200 msec) refers to the gist 

of the scene (for a review, Oliva, 2005). In this paper, we discuss two main questions 

related to rapid visual scene understanding: what visual information is perceived during the 

course of a glance, and which mechanisms could account for the efficiency of scene gist 

recognition. 

Figure 1: Illustration of the effect of a coarse layout (at a resolution of 8 cycles per image) on scene 

identification and object recognition. Despite the lack of local details in the left blurred scene, viewers are 

confident in describing the spatial layout of a street. However, the high resolution image reveals that the 

buildings are in fact furniture. This misinterpretation is not an error of the visual system. Instead, it illustrates 

the strength of the global spatial layout in constraining the identities of the local image structures (Navon, 

1977). 

Research in scene understanding has traditionally treated objects as the atoms of 

recognition. However, behavioral experiments on fast scene perception suggest an 

alternative view: that we do not need to perceive the objects in a scene to identify its 

semantic category. The semantic category of most real world scenes can be inferred from 
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their spatial layout (e.g. an arrangement of basic geometrical forms such as simple Geons 

clusters, Biederman, 1995; the spatial relationships between regions or blobs of particular 

size and aspect ratio, Oliva and Schyns, 2000; Sanocki & Epstein, 1997; Schyns & Oliva, 

1994). Figure 1 illustrates the importance of the spatial arrangement of regions for scene 

and object recognition. When looking at the image on the left, viewers describe the scene as 

a street with cars, buildings and the sky. Despite the fact that the local information available 

in the image is insufficient for reliable object recognition, viewers are confident and highly 

consistent in their descriptions. Indeed, the blurred scene has the spatial layout of a street. 

When the image is shown in high resolution, new details reveal that the image has been 

manipulated and that the buildings are in fact pieces of furniture. Almost 30% of the image 

pixels correspond to an indoor scene. The misinterpretation of the lowresolution image is 

not a defect of the visual system. Instead, it illustrates the strength of spatial layout 

information in constraining the identity of the objects in normal conditions, which is 

especially evident in degraded conditions in which object identities cannot be inferred based 

only on local information (Schyns and Oliva, 1994).  

In this paper, we examine what is the initial representation of a complex, real world scene 

image that allows for its rapid recognition.  According to the global precedent hypothesis 

advocated by Navon (1977) and validated in numerous studies since (for a review see 

Kimchi, 1992), the processing of the global structure and the spatial relationships between 

components, precede the analysis of local details. The global precedence effect is 

particularly strong for images constituted of many element patterns (Kimchi, 1998), as it is 

the case of most real world scene pictures. 

To clarify the terminology we will be using in this article, in the same way that “red” and 

“vertical” are local feature values of an object (Treisman & Gelade, 1980), a specific 

configuration of local features define a global feature value of a scene or an object. For 

instance, an image composed of vertical contours on the right side and horizontal contours 

on the left side could be estimated by one global feature receptive field tuned to respond to 

that specific “Horizontal Vertical “ configuration. Global feature inputs are estimated by 

summations of local feature values but they have holistic properties of the scene as they 

encode the spatial relationships between components. Based on behavioral and 

computational experiments, we show the relevance of using a low dimensional code of the 

spatial layout of a scene, termed global image features, to represent the meaning of a scene. 

Global features capture the diagnostic structure of the image, giving an impoverished and 

coarse version of the principal contours and textures of the image that is still detailed 

enough to recognize the image’s gist. One of the principal advantages of the global image 

coding described here lies in its computational efficiency: there is no need to parse the 

image or group its components in order to represent the spatial configuration of the scene.  

In this paper, we examine (1) the possible content of the global structure of a natural 

scene image, based on experimental results from the scene recognition literature; (2) how 

the global scene structure can be modeled and (3) how the global features could participate 

to real world scene categorization. 
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1 The role of global image features on scene perception: experimental evidence 

Figure 2: A The two original images used to build the hybrid scenes shown above –B A hybrid image 

combining the high spatial frequency (HSF, 24 cycles per image) of the beach and the low spatial frequency 

(LSF, 8 cycles per image) of the street scene. If you squint, blink, or defocus, the street scene should replace 

the beach scene (if this demonstration fails, step back from the image until your perception changes).  B) The 

complementary hybrid image, with the street scene in HSF and the beach scene in LSF (cf. Oliva and Schyns, 

1997; Schyns and Oliva, 1994).  

There is considerable evidence visual input is processed at different spatial scales (from 

low to high spatial frequency), and psychophysical and computational studies have shown 

that different spatial scales offer different qualities of information for recognition purpose. 

On the one hand, the shape of an object is more precisely defined at high spatial frequencies 

but the object boundaries are interleaved by considerable noise, which requires extensive 

processing to be filtered out (among others, Marr and Hildreth, 1980; Shashua and Ullman, 

1988). On the other hand, low scale resolution is more contrasted and might be privileged in 

terms of temporal processing than finer scale (Navon, 1977; Sugase, 1999), but this 

perceptual advantage might be offset by higher uncertainty about the identity of the blobs. 

In a series of behavioral experiments, Oliva and Schyns evaluated the role that different 

spatial frequencies play in fast scene recognition. They created a novel kind of stimuli, 

termed hybrid images (see Figure 2), by superimposing two images at two different spatial 

scales: the lowspatial scale is obtained by filtering one image with a lowpass filter 

(keeping spatial frequencies up to 8 cycles/image), the high spatial scale is obtained by 

filtering a second image with a highpass filter (frequencies above 24 cycles/image). The 

final hybrid image is composed by adding these two different filtered images (the filters are 

designed in such a way that there is no overlapping between the two images in the 

frequency domain).  The examples in figure 2 show hybrid images combining a beach scene 

and a street scene. 



5 

The experimental results using hybrid stimuli showed that for short presentation time (30 

ms, followed by a mask, Schyns & Oliva, 1994), observers used the low spatial frequency 

part of hybrids (street in figure 2B) when solving a scene recognition task, whereas for 

longer (150 ms) durations of the same image, observers categorized the image based on the 

high spatial frequencies (e.g. beach in figure 2B). In both cases, participants were unaware 

that the stimuli had two interpretations. It is important to stress that this result is not a 

evidence for a preference of the lowspatial frequencies in the early stages of visual 

processing: additional experiments (Oliva and Schyns, 1997; Schyns and Oliva, 1999) 

showed that, in fact, the visual system can select which spatial scale to process depending 

on task constraints (e.g., if the task is determining the type of emotion of a face, participants 

will preferentially select the low spatial frequencies, but when the task is determining the 

gender of the same set of faces, participants used either low, either high spatial frequencies). 

Furthermore, priming studies showed that within a 30 msec exposure, both low and high 

spatial frequency bands from a hybrid image were registered by the visual system 
1
 (Oliva 

& Schyns, 1997, Exp.1; Parker et al., 1992, 1996) but that the requirements of the task 

determined which scale, coarse or fine, was preferentially selected for covert processing. 

This suggests that the full range of spatial frequency scales is available with only 30 msec 

of image exposure, although the resolution at which the local features are analyzed and pre

attentively combined, when embedded in cluttered natural images, is unknown.  

However, hybrid images break one important statistical property of realworld natural 

images, i.e., the spatial scale contiguity. To the contrary of hybrid images, contours of a 

natural image are correlated across scale space: a contour existing at low spatial frequency 

exists also at high spatial frequency. Moreover, statistical analysis of the distributions of 

orientations in natural images has shown that adjacent contours tend to have similar 

orientations whereas segments of the same contour that are further apart tend to have more 

disparate orientations (Geisler et al., 2001). The visual system could take advantage of 

spatial and spectral contiguities of contours to rapidly construct a sketch of the image 

structure. Boundary edges that would persist across the scale space are likely to be 

important structures of the image (Linderberg, 1993), and would define an initial skeleton 

of the image, fleshed out later by finer structures existing at higher spatial frequency scales 

(Linderberg, 1993; Watt, 1987; Yu, 2005). Most of the contours in natural scenes need 

selective attention to be bound together to form a shape of  higher complexity (Treisman 

and Gelade, 1980; Wolfe and Bennet, 1997; Wolfe et al., 2002), but contours persistent 

through the scale space might need fewer attentional (or computational) resources to be 

represented early on. Therefore, one cannot dismiss the possibility that the analysis of fine 

contours and texture characteristics could be performed at the very early stage of scene 

perception, either because low spatial frequency luminance boundaries bootstrap the 

perceptual organization of finer contours (Lindeberg, 1993), or because the sparse detection 

of a few contours is sufficient to predict the orientation of the neighborhood edges (Geisler 

1 A hybrid scene presented for 30 ms and then masked would prime the recognition of a subsequent related 

scene,matching either the low or the high spatial scale of the hybrid (Oliva and Schyns, 1997, Exp. 1). 
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et al., 2001), or because selective attention was attending to information at a finer scale 

(Oliva & Schyns, 1997). 

Within this framework, the analysis of visual information for fast scene understanding 

proceeds in a global to local manner (Navon, 1977; Treisman and Gelade, 1980), but not 

necessarily from low to high spatial frequencies. In other words, when we say “global and 

local” we do not mean “low and high” spatial frequencies. All spatial frequencies contribute 

to an early global analysis of the scene layout information, but organized at a rather coarse 

layout. Fine image edges, like long contours, are available, but their spatial organization is 

not encoded in a precise way. In the rest of this section we discuss some of the possible 

mechanisms used for performing the global analysis of the scene. 

A simple and reliable global image feature for scene recognition is obtained by encoding 

the organization of color blobs in the image (under this representation a view of a landscape 

corresponds to a blue blob on the top, a green blob on the bottom and a brownish blob in the 

center. e.g., Carson et al., 2002; Lipson et al., 1997; Oliva & Schyns, 2000). Despite the 

simplicity of such a representation, it is remarkable to note the reliability of scene 

recognition achieved by human observers when shown a very lowresolution scene picture. 

Human observers are able to identify most of real world scene categories based on a 

resolution as low as 4 cycles/images, but only when the blurred image is in color. If the 

images are presented in gray levels performance drop and participants need to see higher 

resolution images before achieving the same recognition performance: the same 

performance than a with a color image with 4 cycles/image  is achieved at a resolution of 8 

cycles/image for a gray scale image (Oliva & Schyns, 2000, Exp. 3).  

However, color blobs are not equally important for all the scenes. The diagnosticity of 

colored surfaces in an image seems to be a key element of fast scene recognition (Goffaux 

et al., 2005; Oliva & Schyns, 2000). In order to study the importance of color information, 

color images were altered by transforming their colors modes (e.g red surfaces became 

green, yellow surfaces became blue). This provides a way of understanding if color is 

helping as a grouping cue (and therefore the specific color is not important) or if it is 

diagnostic for the recognition (the color is specific to the category). For presentation time as 

short as 30 msec, Oliva & Schyns (2000) observed that altering colors impaired scene 

recognition when color was a diagnostic feature of the scene category  (e.g. forests are 

greenish, coasts are bluish) but it had no detrimental effect for the recognition of scenes for 

which color was no diagnostic (e.g., some categories of urban scenes). The naming of a 

colored scene, relative to a grey scale scene image, was faster if it belonged to a category 

from which the colors distributions did not vary greatly across exemplars (for natural scenes 

like forest, coast, canyons), than for scene categories where color distribution varied (for 

indoors scenes, urban environments, see also Rousselet et al., 2005). Colored surfaces, in 

addition to providing useful segmentation cues for parsing the image (Carson et al., 2003), 

also informs about semantic properties of a place, such as its probable temperature (Greene 

& Oliva, 2005). The neural correlates of the role of color layout has been recently 

investigated by Goffaux et al (2005), who have observed an ERP frontal signal 150 msec 
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after image onset (a well documented temporal marker of image categorization, Thorpe et 

al., 1996; Van Rullen & Thorpe, 2001), when observers identified normally colored scene 

pictures (e.g., a green forest, a red canyon) compared to their grayscale or abnormally 

colored version (e.g., a purple forest, a bluish canyon). In a similar vein, Steeves et al. 

(2004) have shown that an individual with a profound visual form agnosia (i.e., incapable of 

recognizing objects based on their shape) could still identify scene pictures from colors and 

texture information only. Their fMRI study revealed higher activity in the parahippocampal 

place area (Epstein & Kanwisher, 1997) when the agnostic patient was viewing normally 

colored scenes pictures than when she was viewing black and white pictures.  

In addition to color, research has shown that the configuration of contours is also a key 

diagnostic cue of scene categories (Baddeley, 1997; McCotter et al., 2005; Oliva & 

Torralba, 2001; Torralba & Oliva, 2003) and can help to predict the presence or absence of 

objects in natural images (Torralba, 2003a; Torralba & Oliva, 2003). Basiclevel classes of 

environmental scenes (forest, street, highway, coast, etc.) as well as global properties of the 

3D space (e.g. in perspective, cluttered) can be determined with a high probability, from a 

diagnostic set of low level image features (Fei Fei & Perona, 2005; Oliva & Torralba, 2001; 

Walker Renninger & Malik, 2004). For instance in urban environments, an estimation of the 

volume that a scene subtends is well predicted by the layout of oriented contours and 

texture properties.  As the volume of scene space increases, the perceived image on the 

retina changes from large surfaces to smaller pieces, increasing the high spatial frequency 

content (Torralba & Oliva, 2002). A different pattern is observed when looking at a natural 

scene: with increasing distance from the observer, natural surfaces becomes larger and 

smoother, so for a given region in the image, the texture becomes coarser. 

In the following section, we suggest an operational definition of global image features. 

The global features proposed encode a coarse representation of the organization of low and 

high spatial frequencies in the image. 

2- Building a scene representation from global image features 

Highlevel properties of a scene such as the degree of perspective or the mean depth of 

the space that the scene subtends have been found to be correlated with the configuration of 

lowlevel image features (Torralba & Oliva, 2002, 2003). Evidence from the psychophysics 

literature suggest that our visual system analyzes global statistical summary of the image in 

a preselective stage of visual processing or at least, with minimal attentional resources 

(mean orientation, Parkes et al., 2001; mean of set of objects, Ariely, 2001; Chong and 

Treisman, 2003). By pooling together the activity of local lowlevel feature detectors across 

large regions of the visual field, we can build a holistic and lowdimensional representation 

of the structure of a scene that does not require explicit segmentation of image regions and 

objects (as in Oliva & Torralba, 2001) and therefore, require very low computational (or 

attentional) ressources. This suggests that a reliable scene representation can be built, in a 

feedforward manner, from the same lowlevel features used for local neural representations 

of an image (receptive fields of early visual areas, Hubel & Wiesel, 1968).   
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Figure 3: Illustration of a local receptive field and a global receptive field (RF). A local RF is tuned to a 

specific orientation and spatial scale, at a particular position in the image. A global RF is tuned to a spatial 

pattern of orientations and scales across the entire image. A global RF can be generated as a combination of 

local RFs and can, in theory, be implemented from a population of local RFs like the ones found in the early 

visual areas. Larger RFs, which can be selective to global scene properties, could be found in higher cortical 

areas (V4 or IT). The global feature illustrated in this figure is tuned to images with vertical structures at the 

top part and horizontal component at the bottom part, and will reply strongly to the scene street image. 

For instance, in a forest scene picture, the shape of a leaf can be estimated by a set of 

local receptive fields (encoding oriented edges). The shape of the whole forest picture can 

be summarized by the configuration of many small oriented contours, distributed 

everywhere in the image. In the case of the forest scene, a global features encoding "fine-

grained texture everywhere in the image" will provide a good summary of the texture 

qualities found in the image. In the case of a street scene, we will need a variety of global 

features encoding the perspective, the level of clutter, etc. Figure 3 illustrates a global 

receptive field which would respond maximally to scenes with vertical structures at the top 

part and horizontal components at the bottom part (as in the case of a street scene).  

Given the variability of layout and feature distribution in the visual world, and given the 

variability of viewpoints that an observer can have on any given scene, most real world 

scene structures will need to be estimated not only by one, but by a collection of global 

features. The number of global features that can be computed is quite high. The most 

effective global features will be those that reflect the global structures of the visual world. 

Several methods of image analysis can be used to learn a suitable basis of global features 

(Fei Fei & Perona, 2005; Oliva & Torralba, 2001; Vailaya et al., 1998; Vogel et al, 2004) 

which capture the statistical regularities of natural scene images. In the modeling presented 

here, we only consider global features of receptive fields measuring orientations and spatial 
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frequencies of image components that have a spatial resolution between 1 and 8 

cycles/image (see Figure 5). We employed a basis derived by principal component analysis 

perform on a database of thousands of realworld images. 

We summarize here the steps performed for learning a set of global features 

corresponding to the statistical configuration of orientation and spatial frequencies existing 

in the real world.  Each global feature value is a weighted combination of the output 

magnitude of a bank of multiscale oriented filters. In order to set the weights, we use 

principal components analysis (PCA).  Due to the highdimensionality of images, applying 

PCA directly to the vector composed by the concatenation of the output magnitudes of all 

the filters will be very computationally expensive. Several regularization techniques can be 

used. Here, we decided to reduce the dimensionality of the vector of features by first 

downsampling each filter output to a size NxN (with N ranging from 2 to 16 in the 

computation performed here). All the filter outputs were downsampled to the same image 

size, independently of the scale of the filter. As a result, each image was represented by a 

vector of NxNxK values (K is the number of different orientation and scales, and NxN is 

the number of samples used to encode, in lowresolution, the output magnitude of each 

filter). This gives, for each image, a vector with a relatively small dimensionality (few 

hundreds of elements). The dimensionality of this vector space is then reduced by applying 

PCA to a collection of 22000 images (the image collection includes scenes at all ranges of 

views, from closeup to panoramic, for both manmade and natural environments, similar to 

Oliva & Torralba, 2001). 

Figure 4.  The Principal components of natural image statistics define the weights used to compute the global 

features. The set of weights are obtained by applying principal component analysis (PCA) to the responses of 

multiscale oriented filters to a large collection of natural images. The top row shows the 2nd to the 8th 

principal components for a spatial resolution of 2 cycles/image (4 x 4 regions). The first component behaves 

as a global average of the output of all orientations and scales and therefore it is not shown. The bottom row 

shows the PCs for a resolution of 4 cycles/image (8 x 8 regions). For each PC, each subimage shows, in a 

polar plot (low spatial frequencies are in the center of the plot), how the spatial scale and orientations are 

weighted at each spatial location. The white corresponds to positive value and the black to negative value. 

Here we refer to the PCs as global feature templates. 
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Figure 4 shows the first principal components of the output magnitude of multiscale 

oriented filters for the luminance channel for a spatial resolution of 2 and 4 cycles per image 

(this resolution refers to the resolution at which the magnitude of each filter output is 

reduced before applying the PCA. 4 cycles/image corresponds to averaging the output of 

each filter over NxN=8x8 nonoverlapping windows, and 2 cycles/image corresponds to 

NxN = 4x4). Each principal component defines the weights used to compute each global 

feature. At each spatial location on the image, the polar plot shows the weighing of the 

spatial frequency at each orientation, with the lowest spatial frequencies in the center and 

the highest spatial frequencies along the maximum radius. In the following, we will refer to 

this visualization of the principal component weights (shown in figure 4) as a global feature 

template. In Figure 4, the first template responds positively for images with more texture 

(seen in the mid and high frequency range) in the bottom half than in the upper half of the 

image and responds negatively for images with more texture in the upper half than in the 

bottom (e.g. a landscape with trees in the background, with no view of the sky and snow on 

the ground). Beyond the first component, the global feature templates increase in 

complexity and cannot be easily described.  Note that principal components are used here as 

an illustration of an orthogonal basis for generating global features, but they are not the only 

possibility. For instance, other bases could be obtained by applying independent component 

analysis (Bell and Sejnowski, 1997) or searching for sparse codes (Olshausen and Field, 

1997). 

Figure 5. This figure illustrates the information preserved by the global features for two images. Fig. b) shows, 

on a polar plot, the average of the output magnitude of the multiscale oriented filters. Each average is 

computed locally by splitting the image into 4x4 nonoverlapping windows. Fig. c) shows the coefficients 

(global features) obtained by projecting the averaged output filters into the first 20 principal components. In 

order to illustrate the amount of information preserved by this representation, Fig. d) shows noise images that 

are coerced to have the same color blobs and the same global features (N=100) than the target image. The very 

low frequency components (colored blobs) of the synthetic images are the same as from the original image. 

The highspatial frequencies are obtained by adding noise with the constraint that the resulting image should 

have the same global features than the target image (this only affects the luminance channel). This constraint 

is imposed by an iterative algorithm. The algorithm starts from white noise. At each iteration, the noise is 

decomposed using the bank of multiscale oriented filters and the magnitude output of the filters is modified to 

match the global features of the target image. From left to right, the spatial resolution (number of windows 

used to average the filter outputs and the resolution of the color blobs) increases from 2x2, 4x4, 8x8, and 
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16x16. Note that despite the fact that the 2x2 image provides a poor reconstruction of the detailed structure of 

the original image, the texture contained in this representation is still relevant for scene categorization (e.g. 

open, closed, indoor, outdoor, natural or urban scenes). 

Figure 5c shows the values of the 20 first global features (according to the ordering of 

principal components) for coding the structure of the street and the mountain scene. By 

varying the spatial resolution of the global features, we can manipulate the degree to which 

local features will be appropriately localized in the image. In order to illustrate the amount 

of information preserved by a set of global features at various resolution, Figure 5d shows 

noise images that are coerced to have the same color blobs (here the color information is 

added by projecting the image into the principal components of the color channels, and 

retaining only the first 32 coefficients) and the same global features (N=100) as the street 

and the mountain scenes. The global feature scene representation looks like a sketch version 

of the scene in which most of the contours and spatial frequencies from the original image 

have been conserved, but their spatial organization is only loosely preserved: a sketch at a 

resolution of 1 cycle/image (pulling local features from a 2 x 2 grid applied on image) is not 

informative of the spatial configuration of the image, but keeps the texture characteristics of 

the original scene so that we could probably decide whether the scene is a natural or man

made environment (Oliva & Torralba, 2001). For higher resolution, we can define the 

layout of the image and identify regions with different texture qualities, and recognize the 

probable semantic category of the scene (Oliva and Torralba, 2001, 2002).   

3- Building the gist of the scene from global features: the Spatial Envelope model 

How can we infer the semantic gist of a scene from the representation generated by the 

global image features? The gist refers to the meaningful information that an observer can 

identify from a glimpse at a scene (Oliva, 2005; Potter, 1975). The gist description usually 

includes the semantic label of the scene (e.g. a kitchen), a few objects and their surface 

characteristics (Rensink, 2000), as well as the spatial layout (e.g. the volume the scene 

subtends, its level of clutter, perspective) and the semantic properties related to the function 

of the scene. Therefore, a model of scene gist should go beyond representing the principal 

contours or objects of the image or classifying an image into a category: it should include a 

description of semantic information that human observers comprehend and infer about the 

scene (Oliva, 2005). 

In Oliva and Torralba (2001), we introduced a holistic approach to scene recognition 

permitting to categorize the scene in its superordinate (e.g. urban, natural scene) and basic 

level categories (e.g. street, mountain), but also describing its spatial layout in a meaningful 

way. There are many interesting properties of a real world scene that can be defined 

independently of the objects. For instance, a forest scene can be described in terms of the 

degree of roughness and homogeneity of its textural components. These properties are in 

fact meaningful to a human observer who may use them for comparing similarities between 
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two forest images (cf. Heaps and Hendel, 1999; Rao and Lohse, 1993 for a similar account 

in the domain of textures). 

Because a scene is inherently a three dimensional entity, Oliva & Torralba (2001) 

proposed that fast scene recognition mechanisms might initially be based on global 

properties diagnostic of the space that the scene subtends and not necessarily the objects 

that the scene contains. A variety of spatial properties like “openness” or “perspective” 

(e.g., a coast is an "open" environment) have indeed a direct transposition into global 

features of twodimensional surfaces (e.g., a coast has a long horizon line). This permits to 

evaluate the degree of openness or mean depth of an image by measuring the distribution of 

local image features (Torralba & Oliva, 2002, 2003).  To determine a vocabulary of spatial 

layout properties useful for scene recognition, we asked observers to describe real world 

scene images according to spatial layout and global appearance characteristics. The 

vocabulary given by observers (naturalness, openness, expansion, depth, roughness, 

complexity, ruggedness, symmetry) served to establish an initial scene-centered description 

of the image (based on spatial layout properties, Oliva and Torralba, 2002) offering an 

alternative to objectcentered description (where a scene is identified from labeling the 

objects or regions, Barnard and Forsyth, 2001; Carson et al., 2002). Similar to the 

vocabulary used in architecture to portray the spatial properties of a place, we proposed to 

term the scenecentered description the Spatial Envelope of a scene. 

Figure 6: Schematic representation of the Spatial Envelope model as in Oliva and Torralba (2001). A Spatial 

envelope properties can be classified into properties of boundaries and properties of content. For simplicity, 

only four properties are represented. B Illustration of a scene as a single surface, with different “roughness” 

qualities. The spatial envelope does not explicitly represent objects; therefore “roughness” refers to the surface 

quality of the whole scene. C Projection of ~1,200 pictures of typical urban scenes onto three spatial envelope 

axes (openness, roughness, expansion) as in Oliva & Torralba (2001). Semantic categories emerge, showing 



13 

that the spatial envelope representation carries information about the semantic class of a scene. D Illustration 

of an implementation of the Spatial Envelope model in the form of “scene filters” applied onto the image. A 

complex “scene filter” can be computed as a linear combination of Gaborlike filters, and as a combination of 

global feature templates. Features of openness are shown in black and features of closedness are shown in 

white.  

Figure 6 illustrates the framework of the Spatial Envelope model (details can be found in 

Oliva & Torralba, 2001). For simplicity, the Spatial Envelope model is presented here as a 

combination of four global scene properties (Fig. 6A). Object identities are not represented 

in the model. Within this framework, the structure of a scene is characterized by the 

properties of the boundaries of the space (e.g. the size of the space, its degree of openness 

and perspective) and the properties of its content (e.g. the style of the surface, natural or 

manmade, the roughness of these surfaces). Any scene image can be described by the 

values it takes along each spatial envelope property. For instance, to describe the degree of 

openness of a given environment, we could refer to a “panoramic”, “open”, “closed” or 

“enclosed” scene.  A forest would be described as “an enclosed environment, with a dense 

isotropic texture” and a street scene would be a “manman outdoor scene, with perspective, 

and medium level of clutter” (Oliva & Torralba, 2001, 2002).  This level of description is 

meaningful to observers who can infer the probable semantic category of the scene, by 

providing a conceptual summary of the gist of the scene. 

Computational modeling demonstrated that each spatial envelope property (naturalness, 

openness, expansion, etc.) could be estimated from a collection of global features templates 

(Figure 4) measuring each how natural, open, expanded, rough, the scene image is (Oliva 

and Torralba, 2001). The principal structure of a scene image is initially represented by a 

combination of global features, on the basis of which the spatial envelope properties can be 

estimated: each scene is described as a vector of meaningful values indicating the image’s 

degree of naturalness, openness, roughness, expansion, mean depth, etc. This description 

refers to the spatial envelope representation of the scene image. Therefore, if spatial 

envelope properties capture the diagnostic structure of a scene, two images with similar 

spatial envelopes should also belong to the same scene semantic categories. Indeed, Oliva & 

Torralba observed that scenes images judged by observers to have the same categorical 

membership (street, highway, forest, coastline, etc.) were projected close together in a 

multidimensional space whose axes correspond to the Spatial Envelope dimensions (Fig. 

6c). Neighborhood images in the spatial envelope space corresponded to images with 

similar spatial layout and similar conceptual description (cf. Figure 7 for exemplars of 

scenes and their nearest neighbors in a spatial envelope space of urban environments. Note 

that the spatial envelope properties (e.g. openness, naturalness, expansion, symmetry) are 

implemented here as a weighted combination of global features, but spatial envelope 

properties could also be derived from other basis of low or intermediate level features 

(Ullman et al., 2002). By providing semantic classification at both superordinate (e.g. open, 

natural scene) and basic levels (e.g. beach, forest) of description, the Spatial Envelope 

model provides a theoretical and computational framework for the representation of a 
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meaningful global scene structure, and a step towards understanding the representation and 

mechanisms of the gist of a scene. 

Figure 7: Examples of urban scenes sharing the same spatial envelope representation (for a resolution of 

global features of 2 c/i). Similar scenes were retrieved as the nearest neighbors of the first image of each row, 

in a 5 dimensional spatial envelope representation (naturalness, openness, mean depth, expansion and 

roughness). On the left, the scenes on each row pertain clearly to the same semantic category. On the right, the 

spatial envelope similarities are less representative of basic level categories per se, however the global 

structure of the image (coarse layout organization and levels of details) is very similar. There are other 

important global scene properties that are not shown here (for instance, visual complexity is not represented 

here, Oliva et al, 2004) and color is not taken into account neither. 

Conclusion 

Research over the last decade has made substantial progress toward understanding the 

brain mechanisms underlying human object recognition (GrillSpector and Malach, 2004; 

Kanwisher, 2003) and its modeling (Reisenhuber and Poggio, 1999; Serre et al. 2005; 

Torralba et al., 2004; Ullman et al., 2002). Converging evidence from behavioral, imaging 

and computational studies suggest that, at least in early stages of processing, mechanisms 

involved in natural scene recognition may be independent from those involved in 

recognizing objects (Fei Fei & Perona, 2004; Li et al., 2002; Marois et al., 2004; McCotter 

et al., 2005; Oliva & Torralba, 2001; Schyns & Oliva, 1994). Based on a review of 

behavioral and computational work, we argue that fast scene recognition does not need to 

be built on top of the processing of objects, but can be analyzed in parallel by scene

centered mechanisms. In our framework, a scene image is initially processed as a single 

entity and local information about objects and parts comes into play at a later stage of visual 

processing. We propose a formal basis of global features permitting to estimate quickly and 

in a feedforward manner, a meaningful representation of the scene structure.  Global image 

feature values provide a summary of the layout of real world images that may precede and 
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constrain the analysis of features of higher complexity. Based on a global spatial 

representation of the image, the Spatial Envelope model (Oliva and Torralba, 2001) 

provides a conceptual framework for the representation and the mechanisms of fast scene 

gist interpretation. Global image features and the spatial envelope representation are not 

meant to be an alternative to local image analysis but serve as a parallel pathway that can, 

on the one hand, quickly constrain local analysis, narrowing down the search for object in 

cluttered, real world scenes (global contextual priming, Torralba 2003a) and, on the other 

hand, provide a formal instance of a feedforward mechanism for scene context evaluation, 

for the guidance of attention and eye movements in the scene (Oliva et al., 2003; Torralba et 

al., submitted; Torralba, 2003a,b). 

Evidence in favor of distinct neural mechanisms supporting scene and object recognition, 

at least at an earlier stage of visual processing, comes from the pioneer work of Epstein and 

Kanwisher (1998). They found a region of cortex referred as the parahippocampal place 

area (PPA) that responds more strongly to pictures of intact scenes (indoors, outdoors, 

closeup views), than to objects alone (Epstein et al., 2000). Furthermore, the PPA seems to 

be sensitive to holistic properties of the scene layout, but not to its complexity in terms of 

quantity of objects (Epstein and Kanwisher, 1998). The neural independence between 

scenes and object recognition mechanisms was recently strengthened by Goh and 

collaborators (2004). They observed activation of different parahippocampal regions when 

pictures of scenes were processed alone compared to pictures containing a prominent 

object, consistent within that scene. In a related vein, Bar (2004; Bar and Aminoff, 2003) 

found specific cortical regions (a network relating regions in the parahippocampal region 

and the retrosplenial cortex) involved in the analysis of the context of objects. The neural 

underpinnings of the global features, the spatial envelope properties or the gist of a scene, 

remain open issues: the global features are originally built as combinations of local low

level filters of the type found in early visual areas. Lateral and/or feedback connections 

could combine this information locally to be read out by higher visual areas. Receptive 

fields in the inferior temporal cortex and parahippocampal region cover most of the useful 

visual field (2040 degrees) thus are also capable, in theory, of encoding scene layout 

information like the global features and the spatial envelope properties. Clearly, the 

mechanisms by which scene understanding occurs in the brain remain to be found.  
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