
10560 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Building the Semantic Web of Things

Through a Dynamic Ontology
Francesco Antoniazzi , Member, IEEE, and Fabio Viola , Member, IEEE

Abstract—The Web of Things (WoT) has recently appeared as
the latest evolution of the Internet of Things and, as the name
suggests, requires that devices interoperate through the Internet
using Web protocols and standards. Currently, only a few theoret-
ical approaches have been presented by researchers and industry,
to fight the fragmentation of the IoT world through the adoption
of semantics. This further evolution is known as Semantic WoT
and relies on a WoT implementation crafted on the technolo-
gies proposed by the Semantic Web stack. This article presents
a working implementation of the WoT declined in its Semantic
flavor through the adoption of a shared ontology for describing
devices. In addition to that, the ontology includes patterns for
dynamic interactions between devices, and therefore we define it
as dynamic ontology. A practical example will give a proof of
concept and overall evaluation, showing how the dynamic setup
proposed can foster interoperability at information level allow-
ing on the one hand smart discovery, enabling on the other hand
orchestration and automatic interaction through the semantic
information available.

Index Terms—Internet of Things (IoT), linked data, ontology,
Semantic Web, Web of Things (WoT).

I. INTRODUCTION

C
OINED in 1999 by Ashton [1], the Internet of

Things (IoT) is characterized by the pervasive pres-

ence of smart co-operating devices that fulfill tasks belonging

to very different application domains (Asin and Gascon [2]

counted more than 50). Everyday objects, indeed, are now

increasingly enhanced with computational power and connec-

tivity (e.g., watches, televisions, and cars, just to mention a

few of them).

The collected data coming from IoT, together with all avail-

able information, contributes to the definition of IoT context.

The usage of this data to provide new aggregated information

and/or new services is the so called context-aware comput-

ing [3]. A variety of working implementations have been

Manuscript received February 21, 2019; revised May 13, 2019; accepted
August 30, 2019. Date of publication September 6, 2019; date of current
version December 11, 2019. This work was supported by the SWAMP
Project through the European Union’s Horizon 2020 Research and Innovation
Programme (Call: H2020-EUB-2-2017 - IoT Pilots) under Grant 777112.
(Corresponding author: Francesco Antoniazzi.)

F. Antoniazzi is with the Advanced Research Center on Electronic Systems
and the Department of Computer Science and Engineering, University of
Bologna, 40125 Bologna, Italy (e-mail: francesco.antoniazzi@unibo.it).

F. Viola is with the Centro Nazionale per la Ricerca e Sviluppo
nelle Tecnologie Informatiche e Telematiche (INFN CNAF), 40127
Bologna, Italy, and also with the Department of Computer Science
and Engineering, University of Bologna, 40125 Bologna, Italy (e-mail:
fabio.viola@cnaf.infn.it).

Digital Object Identifier 10.1109/JIOT.2019.2939882

suggested to this extent, depending on where the calculation

is made, giving birth to the fog [4] and cloud computing [5]

paradigms. In this area, as well as in the more general IoT, all

the involved entities and applications pivot on a shared con-

text whose definition has been clarified by Abowd et al. [6]

as: any information that can be used to characterize the situa-

tion of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an

application, including the user and applications themselves.

However, the IoT is not the last step of this long evolution

started at the end of the eighties. In fact, two partially over-

lapping branches are now emerging from the IoT: 1) the Web

of Things (WoT) and 2) the Semantic WoT (SWoT). They

both aim to overcome the layered verticality of IoT systems

by using the Web protocols to access and use a new kind

of Web resource: the thing. Although the names are similar,

their approaches to the problem of fragmentation are slightly

different.

The WoT [7] pushes on the need for Web standards to solve

the issues that hinder interoperability among systems because

of the high heterogeneity of the technologies involved in IoT

applications. It was first introduced by Guinard and Trifa [8]

and is now attracting the interest of the W3C1 and enterprises

member of its Working Group (e.g., Siemens [9]). Building

blocks of WoT applications are standard protocols like JSON,

HTTP, and Websocket and paradigms like REST.

The WoT advises to access things through those protocols,

and defines a vocabulary to set a uniform naming to the most

important concepts that an IoT environment designer might

need to use. The main drawback is that thing resources must

be known a priori: discovery is possible only through spe-

cific local protocols, that may not be implemented in every

device.

The SWoT [10], on the other hand, includes in its vision

the adoption of the standards coming from the Semantic

Web [11], a movement born to redesign the Web as a machine-

understandable repository of data. To achieve this scope, a

set of standards to identify resources (i.e., Unicode [12] and

URI [13]), to encode information (i.e., RDF [14]) and to bind

a meaning to every information atom (i.e., RDFS [15] and

OWL [16]) were introduced. RDFS and OWL permit the defi-

nition of ontologies, formal explicit description of concepts in

a domain of discourse, properties of each concept describing

various features and attributes of the concept, and restrictions

on slots [17].

1https://www.w3.org/WoT/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8173-8044
https://orcid.org/0000-0002-1381-3807


ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10561

Leveraging the SWoT consists in setting up an ontology

to regulate the relations among the Web resources, and there-

fore their differentiation based on their reciprocal connections.

With this in mind, the SWoT ends up as in the WoT in a

Web resource collection: that collection, however, is consis-

tently enriched by the additional semantic content given by

any ontology used to describe the things and the context.

Such additional semantic meaning that resources obtain

breaks the isolation of existing applications in vertical

silos [18]. The information on the environments, regard-

less to their realizing technology, is uniformly generated and

organized and, the most important, any discovery intent can

be reached by querying the semantic uniform abstraction

(i.e., a triple store), rather than passing through discovery

mechanisms available at the lower levels of the ISO-OSI stack.

In this article, we propose an ontology for the SWoT. This

ontology, named SWOT, realizes a high-level abstraction of the

devices taking part in a smart application and of their capabil-

ities leveraging the concept of thing description proposed for

the WoT by Charpenay et al. [9].

In addition to that, this article also addresses one of the main

limitations that apply to the SWoT: ontologies and semantic-

formatted data are considered to be static, while any real

context is continuously evolving dynamically. To do so, the

ontology presented here offers the tools to build a static

description of the things along with a set of concepts that reg-

ulate the dynamic interaction. We include in the knowledge

pattern a prototype of what the actual thing behavior looks

like both when an actuation is triggered, or when a sensor is

required to communicate its current measurement.

As already said, through the presented ontology we suggest

a solution to the problem of discoverability [19] of devices.

Along with the main contribution we propose also a frame-

work, named Cocktail, which is a practical realization of both

static and dynamic ontological concepts. It is made for the fast

and automatic prototyping of software agents, and will allow

us to provide a proof of concept of how it is possible to build a

SWoT environment and orchestrate it. The ontology, together

with its applications and capabilities, will be evaluated.

The SWoT ontology can be employed with any of the avail-

able standard SPARQL endpoints. Nonetheless, due to the

dynamic nature of IoT applications, and therefore of SWoT

applications, the whole study considers and takes advantage of

the SPARQL processing event architecture (SEPA) [20], [21]

as reference architecture. SEPA aims to enhance triple stores

with a publish-subscribe layer on top the SPARQL 1.1 pro-

tocol. SEPA clients, then, by using SPARQL 1.1 subscribe2

and update languages can, respectively, subscribe to and pub-

lish semantic data. This means that with SEPA it is possible

to easily create a semantic representation of the context and

keep it coherent with the physical environment as time passes.

The authors consider that the usage of semantics to enable

interactions within devices defines the concept of dynamic

ontology as it is intended in the title of this research. In par-

ticular, the SWOT ontology includes the concepts devoted to

a static representation of devices, as well as their interaction

2http://mml.arces.unibo.it/TR/sparql11-subscribe.html

with other things, which is of course characterized by a high

mutability. By binding this article to publish/subscribe seman-

tic endpoints like SEPA, we allow the knowledge base to be

constantly up to date with the context. The dynamic ontol-

ogy not only describes the abstract context, but also permits

following its real-time evolution.

Before going in the details of this article, we propose a

summary of the contributions achieved through our approach.

1) Representation of the W3C’s Thing Description model

(Charpenay et al. [9]) through Semantic Web standards

(i.e., OWL). The main outcome of this activity is an easy,

high-level, and general ontology for the formalization of

Web Thing profiles.

2) Such representation, carefully refined after a compari-

son with the ontology proposed by Serena et al. [22],

was then extended to support the Semantic Web Thing

interaction (see Section IV) in addition to discovery.

3) Concerning the last point, as shown in Sections IV-A

and IV-B, the discovery mechanism based on the

proposed ontology is flexible and fully customizable

(e.g., by further extending the semantic descriptions with

other ontologies).

4) Development of an intuitive framework (i.e., Cocktail)

providing high-level APIs enabling an even easier

approach to the adoption of the ontology.

5) Formalization of a domain-agnostic methodology and a

framework supporting the device interaction by means of

any standard SPARQL endpoint. In particular, we sug-

gest the adoption of SEPA which provides the ability to

develop a responsive system based on its subscription

mechanism.

In Section II, an overview of the current state of the

art is presented, leading to a motivation for the ontology

presented in this article. Then, the following sections focus

their attention on the whole ontology. Section III introduces the

concept of Semantic Web Thing. Section IV instead presents

the property-action-event pattern in the static and dynamic

description. Section V describes how to deal with data format-

ting. Section VI provides evaluation and a proof of concept of

the research on a real life simulated scenario. Eventually, in

Section VII, the conclusions are drawn.

The ontology will be presented in the following sections

through a set of pictures (Figs. 1–4) focusing on specific

subsets of concepts. A full view may be appreciated in

Appendix A. To enhance readability of the tables, listings, and

figures, the SPARQL prefixes used in this article are reported

in Appendix C.

II. RELATED WORK

In the past 20 years, several works have introduced and

explained the Semantic Web view. Going back to 2001,

Berners-Lee et al. [11] discussed the driving ideas and con-

cepts of a still prototypical Semantic Web through some

practical examples. This article’s focus was to highlight in

a few examples the situations in which the currently available

Web is either insufficient, or insufficiently exploited.



10562 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 1. swot:Thing and swot:ThingDescription partial ontology and a practical example of instances and some suggestions of extensibility with
other ontologies.

Fig. 2. swot:InteractionPattern subset of the ontology. Actions, events, and properties are IPs, receiving inputs, and giving outputs according to a
data schema (see Section V).

Following this research stream, Shadbolt et al. [23] studied

the meaning of the term ontology in the Semantic Web. The

concept of ontology seems to offer a (at least partial) solution,

to the great information disorder that is an inner consequence

of the Internet decentralization. Far from the philosophical

meaning of the term, i.e., the absolute and unique reality of

the being, an ontology is a set of relationships between some

well-identified entities, listed in a machine understandable

way (namely, the RDF format). The challenges foreseen in

Shadbolt’s paper, and that effectively we are facing nowadays,



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10563

Fig. 3. swot:Instance subset of the ontology, i.e., how the subgraph for an action request must be formatted, as well as how an event notification is thrown.

Fig. 4. swot:DataSchema and swot:FieldSchema ontology subgraph, together with an example of a simple xsd:string data schema inclusion.

are the reuse of available ontologies to produce data [24]–[26],

the alignment of ontologies exposing the same concepts [27],

and the effective exploration and visualization of the data

graph [28], [29].

All those concepts apply also to the IoT, whenever an

attempt is made to semantically describe its contents. For

instance, ontologies modeling the physical-digital interface

are, among all, the sensor, observation, sample, and actuator

(SOSA) and the semantic sensor network (SSN) ontolo-

gies.3 Although being largely documented, SSN and SOSA

still offer a complex approach to description of hardware,

observation of physical entities and actuation, that may be

particularly cumbersome if the aim of the work is the for-

mal semantic expression of any IoT service. For this reason,

3https://www.w3.org/TR/vocab-ssn/

using an ISO-OSI stack metaphor, the ontology presented

in this article acts as upper ontology located at application

level, while SOSA and SSN are at physical and data-link

levels.

In addition to this aspect, IoT presents also another facet,

which is the time-related evolution of its context [30]. The

time ontology,4 and the event ontology5 have been developed

to this extent, in order to categorize both flow of time and

asynchronous behaviors in the RDF graph. Their design, how-

ever, was made for the static description a posteriori of a

sequence of events, while the SWOT ontology targets real-time

awareness of context evolution.

4https://www.w3.org/TR/owl-time/
5https://semanticweb.cs.vu.nl/2009/11/sem/



10564 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Other works, e.g., OpenIoT [31], IoT-O [32],

and IoT-Lite [33], either use one of the previously cited

ontologies like SSN, either design a lower level description

of devices almost at hardware level. This is something that in

this research we want to avoid, to provide to the developer

only high level interfaces.

Different works in literature propose IoT architectures

enhanced with semantics. The following lines report an

overview of these works, starting from those having seman-

tics in a limited set of components and concluding with those

oriented at a semantic description of things. Puiu et al. [34]

presented an IoT framework for smart cities named CityPulse.

This framework adopts semantics in two of its components

(i.e., namely, data wrapper and data federation). The first pro-

vides semantic annotations based on the stream annotation

ontology (SAO) and the quality ontology (QO) as well as

on the information models developed on top of the above-

mentioned SSN ontology, PROV-O, and OWL-S. The second

module is instead used to answer users’ queries that are trans-

lated into RDF stream processing (RSP) requests. Then, the

overall role of semantics in this framework is limited to dis-

covery, data analytics, and interpretation of large-scale data.

As in our case, semantics has been adopted to foster interop-

erability among heterogeneous entities. Moreover, CityPulse,

is constrained to the domain of smart city applications.

The same domain is addressed by Kamilaris et al. [35].

In this article, semantics is the glue among the IoT/WoT ele-

ments and is used to annotate sensory data streams. Annotation

is achieved through an information model based, once again

on SSN and OWL-S and the adoption of ontologies like

the above-mentioned SAO, the complex event ontology, and

PROV (just to name a few).

Kamilaris et al. [36] also proposed Agri-IoT, a semantic

framework for IoT-based smart farming applications sup-

porting multiple heterogeneous sensor data streams. The

framework provides a complete semantic processing pipeline,

offering a common framework for smart farming applications.

It reuses a set of components of the CityPulse framework [34]

as well as modules from FIWARE, ThingSpeak, and OpenIoT.

Devices are handled by the device manager module borrowed

from FIWARE IoT Backend that is based on NSGI-LD. In this

article, we adopt the Web Thing abstraction to describe devices

in terms of properties, events and actions and we applied this

model to a SEPA-based ecosystem. SEPA and NGSI-LD are

not conflicting, as demonstrated by our research work [37].

All the ontologies mentioned in the previous lines, and many

others available for research and usage in the World Wide Web,

have the common goal of overcoming a fragmented world,

where every solution cannot easily communicate with the one

developed in the nearby office [38]. This well known night-

mare of IoT researchers is analyzed in [39], for instance, listing

the causes of fragmentation of IoT (e.g., the coexistence of

resource constrained and rich devices in environments). Many

researches suggest the usage of a gateway to solve this problem

(e.g., [40] and [41]), while Zachariah et al. [42] highlighted

the limitations of such kind of approach, though proposing,

as for today’s state of the art, a rather difficult to realize

smartphones-as-a-gateway solution.

Semantic Web was also included in this discussion: for

instance, to foster the horizontal communication of vertical

silos, Desai et al. [18] proposed a semantic approach, stud-

ied developing a protocol translation gateway. This idea of

enhancing IoT by unification and translation at information

level, rather than at lower protocols, is also followed by

Gangemi et al. [43], where they proposed the IoT applica-

tion profile (IoT-AP) ontology with the aim of representing

and modeling the knowledge in the IoT. In [44], as well, an

ontology is suggested and associated with the tasks of discov-

ery and dynamic composition: this article differs from ours,

as the ontology there is neither designed with the purpose of

context evolution, nor targets the SWoT, but the plain IoT.

The interest of the IoT community in what the Semantic

Web has to offer is also demonstrated by ontology repos-

itories for IoT and smart cities [e.g., Ready4SmartCities,

OpenSensingCity, linked open vocabularies (LOVs) [45],

and LOV4IoT [46]] and their impressive growth [47]. As

an example, LOV, standing at the analysis proposed by

Gyrard et al. [47], stepped from less than one hundred to

more than five hundred ontologies in the period between

March 2011 and June 2015 (and more than 650 are avail-

able as of December 2018). As already said, discovery and

orchestration of resources are killer applications of semantics

applied to the IoT.

The problem of discovering available resources in a network

(i.e., the discoverability problem [19]) is well known in

research [48] and several solutions have been provided over

the years. It can be also addressed through ad-hoc protocols

(like the one proposed in [49], focused on privacy require-

ments), protocol-specific tools (e.g., CoAP-based discovery

was proposed by Djamaa et al. [50] and Viola et al. [51],

while XMPP-based solution is proposed in [52]) and gateway-

based approaches [53]. Semantics in this scenario has been

proposed in several research contributions [18], [54]–[57].

Kamilaris et al. [58] presented WOT2SE, a search engine for

the WoT based on Web crawlers that scan linked data end-

points. In this article instead, we rely on a central broker, i.e.,

SEPA, where discovery can be made by means of SPARQL

queries/subscriptions either directly or indirectly (e.g., through

high-level tools like the WoT store [59]).

On the other hand, orchestration/choreography [60] refers

to the centralized/decentralized composition of services to

perform complex tasks exploiting multiple elementary com-

ponents. The creation of a seamless flow of information

through IoT devices and services turns out to be a chal-

lenging task due to the: 1) heterogeneity of devices; 2) the

heterogeneity of data; and 3) the unpredictability of the avail-

ability of devices and information. Heterogeneity of shared

information can be overcome only through an agreed under-

standing of its composition, while the latter issue can be

addressed through an effective discovery mechanism. It is

then clear how semantics may help the development of ser-

vice composition functionalities in large-scale scenarios. In

this sense, it is important to keep track of the provenance of

the information and, again, this can be achieved through a well

established ontology, like PROV-O [61]. Several approaches

to orchestration/choreography have been proposed over the



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10565

years. Tzortzis and Spyrou [62] presented a semi-automatic

approach to service composition. Viola et al. [63] proposed

an example of orchestration of virtual things applied to the

Semantic Audio research area. Song et al. [64] proposed a

middleware based on Semantic Web technologies aimed at the

automatic configuration of an heterogeneous network with ser-

vice composition functionalities. In literature it is also common

to find approaches based on large IoT frameworks and archi-

tectures supporting service composition like arrowhead [65],

OpenIoT [66], and IoT-A [67].

As highlighted by Barnaghi et al. [68], the heterogeneity of

devices makes interoperability a challenging problem, which

prevents generic solutions from being adopted on a global

scale. Due to the key role of Semantic Web technologies in fos-

tering interoperability in the IoT, a new research area pivoting

on them is born: the SWoT.

Unfortunately, the application of semantic technologies to

the IoT is not straightforward due to the nature of IoT

requirements (e.g., constrained devices and unreliable connec-

tions) [68] and this motivates the birth of this new research

area.

One of the first research works mentioning the SWoT is

the one by Pfisterer et al. [69]. The authors propose a ser-

vice infrastructure to make information produced by sensors

available to all the possible users through the linked open

data cloud, and not just to a single application. While we

propose a high-level abstraction of sensors and actuators,

Pfisterer et al. [69] focused on the nature of sensors. In both

cases tools for the automatic representation of information are

provided: in SPITFIRE, knowledge about sensors is inferred

and eventually confirmed by the user, while in Cocktail the

developer is required to declare properties, events and actions.

As regards the discovery mechanism, Pfisterer et al. [69]

declared that an important functionality is searching for enti-

ties with a certain state at the time of the query. Due to the

high dynamicity of IoT scenarios, SPARQL is not applicable

and they developed a heuristic-based system. In our architec-

ture, SEPA (through its subscription mechanism) allows using

SPARQL to perform this task also in IoT scenarios.

Ruta et al. [70] defined the SWoT as the adoption of

Semantic Web technologies in IoT application. That said, the

purpose of their research is rather different from the work dis-

closed in this article. In fact, Ruta et al. [70] mostly focused on

one of the common criticisms to the Semantic Web protocols:

their efficiency. The formats adopted in the Semantic Web

are generally considered too verbose to allow efficient data

storage and management in IoT applications and this moti-

vates their work on efficient compression methods. Despite the

different topic, it is interesting to compare the system architec-

tures: the project by Ruta et al. [70] is based on layer named

ubiquitous knowledge base (u-KB), providing access to the

information embedded into semantic-enhanced micro-devices.

It is a fully decentralized system, in contrast with SEPA, where

the information is always available thanks to a central broker

hosting data. In both architectures, devices are fully decou-

pled, but SEPA hosting the knowledge base allows: 1) reducing

the number of accesses to devices, important with constrained

devices or when the network is not reliable and 2) hosting

the whole knowledge base in a powerful node granting faster

access and inference.

As mentioned in Section I, the W3C founded a working

and an interest group dedicated to the WoT, whose challenges

are depicted by Raggett [71]. Among the various contri-

butions proposed by these groups, it is worth mentioning

again Charpenay et al. [9]. Within their research, the authors

describe a vocabulary specifically built for the WoT. Their

main objective, with such vocabulary, is the alignment with the

pre-existing W3C achievements on IoT semantic reordering.

The cited work relies on the identifier, resource, entity (IRE)

ontological pattern, which states that Web resources may act

as proxies for real world entities. From this article, we borrow

the concept of thing description as semantic resource formally

describing a unique WoT Thing that a software agent can

interact with, and the concepts of property, action, and event

[the interaction patterns (IPs) of Web Things]. For all those

borrowed concepts, however, the SWOT ontology creates the

semantic background that in W3C approach is limited to the

JSON-LD availability for the thing description. In addition to

that, we introduce the ontological view of real-time instances

for actions and events. The framework proposed in Section VI

leverages these concepts to provide a practical implementation

of all the tools needed to create a full environment.

Ontologies for the so-called (Semantic) WoT have been

proposed also by other authors. For instance, Serena et al. [22]

proposed an ontology for the discovery of devices in the

SWoT. With respect to this article, again, our research

goes beyond the pure discovery of devices, enabling the

interaction through the semantic broker. The ontology by

Serena et al. [22] is also used by Noura et al. [72] that propose

a framework for the goal-oriented description of Web Thing

interactions. A framework for semantic interoperability in the

WoT is presented also in [73] which combines an extension of

the SSN ontology and machine learning techniques. No details

are provided regarding the way subscriptions can be defined.

III. SEMANTIC WEB THINGS

The core concept of SWoT ontology is the swot:Thing

class representing Web Things. Any software, any real-world

item connected to the Internet with a semantic representa-

tion of its capabilities can be considered an instance of this

class. In the next sections, the precise patterns that are used

in the ontology to describe the Web Thing capabilities will be

discussed.

Such definition of Semantic Web Thing is indeed unrelated

to the technology realizing it. We might also argue that even

the human body can be considered as a connected Web Thing

in some situations: applications in healthcare [74], of course,

but also research on wearable IoT for everyday life [75], [76]

and music [77] are valid examples.

The collection of Web Things acting and interacting in a

semantic context will be referred to as the Semantic Web Thing

environment (SWTE). Querying the SWTE will eventually

result in an inner context-awareness. In the next sections, in

fact, we will see that the evolution of the context is taken into

account by the architecture, and therefore the actual physical



10566 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Listing 1. SPARQL subscribe to list all Web Things available in the RDF
store.

environment is represented on-the-go in the stored RDF repre-

sentation. So, in a very simplified example, we may need to be

notified of any new device entering in our environment. This

can be done with the subscription in Listing 1. As outlined in

the Introduction, this research exploits the SEPA subscription

mechanism (whose description is out of the scope of this arti-

cle). As opposed to MQTT protocol,6 where notifications are

topic-based and not specifically focused on RDF knowledge

bases, SEPA natively allows SPARQL queries to differentially

follow their subgraph over time.

In a slightly more complex situation we may need to be

notified of a temperature overcoming a threshold. This will be

possible by subscribing to an event once, in Section IV, the

IPs will be explained.

The whole ontology, both in the static and dynamic descrip-

tion, is designed to support and easy respond to enquiries on

the control of the dynamic evolution of the context, provid-

ing a SPARQL-based context awareness. Through the Cocktail

framework, presented in Section VI, examples on how to code

and use the controls and the ontological description of evolving

SWTEs will be provided.

In the RDF representation, a Web Thing’s URI can be

a dereferenceable resource or, in any case, it should be an

appropriately formatted address. A standard compliant WoT

ecosystem would rely on HTTP(S) addresses over TCP/IP as

URIs.

As already proposed by Guinard and Trifa [19], Web Things

can be declared to act as proxies for other Web Things. This

may be useful in case of constrained devices (see [78] for a

complete definition of the term) that are not directly reachable

at application level, and/or unable to declare themselves in the

SWTE. The proxy Web Thing receives and forwards requests

in the right format to the proxied Web Things.

Semantic Web Thing discovery is not limited to the

SPARQL example provided in Listing 1. Exactly as in the IoT,

the number of possible ways in which things can be described

is almost unlimited. Even the same object, in two different

environments, can be described in different ways leveraging,

for instance, on other ontologies targeting other descriptive

aspects. For this reason, the Semantic Web Thing discovery

is tightly connected to the semantic feature description of the

object: the basic features of a Web Thing are contained in the

thing description, while an example including other ontologies

is given in Section VI.

In the ontology, the swot:Thing is bound to the

swot:ThingDescription through the predicate

swot:hasThingDescription. While the former,

as already said, is not necessarily a Web resource but must

be unique for each Web Thing, the second should be. In

particular, any HTTP GET to the thing description resource

should respond with a full JSON-LD description of the

6http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

features of the Web Thing (i.e., the IPs: actions, properties,

and events, as it is described in the next sections). This is a

useful feature, especially for devices that must be available

both from inside the SWTE, and from outside (i.e., the World

Wide Web).

To give an example on how to use this first ontology subset,

consider Fig. 1, where the color code is defined and used

in Protégé.7 In the red box, that is only for suggestion and

does not belong to the ontology presented in this article, we

added a few straight-forward connections to other ontologies,

like PROV-O [61], DUL,8 and FOAF,9 proving that SWOT

ontology integration with other ontologies is possible as well

as its usage with DBpedia resources.

IV. INTERACTION PATTERNS: THE PAE PARADIGM

When an explanation is needed on what an object is? peo-

ple often tend to answer to a different question, which is

in fact what is it made for? This is in general a reasonable

topic change, especially from the engineer’s point of view, as

the real matter of discussion are the possibilities that can be

explored through the usage of the object.

IoT, WoT, and indeed SWoT, comply with this vision: users,

both machines and humans, will be discovering the SWTE

looking for Web Things because they want to use them in order

to achieve something. There is, for this reason, the need of a

semantic unified description of the capabilities of objects. Such

description has to be both machine and human understandable,

as we would like to enable people and AI to choose the right

device [79].

Within this section, a full description of Semantic Web

Thing interactive framework is provided, as explanation of

the ontology. As already discussed, the ontology presented

in this article borrows some concepts from other works, and

extends them with an original contribution. For instance,

Charpenay et al. [9], on behalf of the considerable work

of W3C interest and working group, introduced the thing

description object, while Serena et al. [22] defined the con-

cepts of property, action, and event which in this article we

call the PAE paradigm. On April 5, 2018, the W3C released

the Thing Description Draft,10 that leverages the two works

aforementioned. Our research takes its origins in such draft.

A. Static Interaction

The static interaction is the abstract description of a con-

nected device feature: in our context the feature is basically

the need we have to fulfil when using the device. Properties,

actions, and events have been identified by W3C as the best

way to represent that concept of feature.

1) Properties address the need of storing, fixing, and defin-

ing a device’s current state: for example, a smart car’s

property may be the percentage of gas remaining in its

reservoir.

7https://protege.stanford.edu/
8https://lov.linkeddata.es/dataset/lov/vocabs/dul
9http://xmlns.com/foaf/spec/
10https://www.w3.org/TR/2018/WD-wot-thing-description-20180405/



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10567

2) Actions are the active interactions with the world

(i.e., the need to produce, sooner or later and in a finite

amount of time, an effect on the environment): a smart

car’s action may be to switch on the radio.

3) Events, which implement the inner asynchronous nature

of any agent oriented environment (i.e., the need to be

aware of changes in the environment): a smart car’s

event may notify the driver that the rear seatbelt is

detached, or call for help in case of accident.

In this article, these three entities are represented

as the classes swot:Property, swot:Action, and

swot:Event, which are all subclasses of the IP concept

swot:InteractionPattern. In Fig. 2, the ontology sub-

graph for the IP is shown: it can be noticed that all IPs

have a friendly name, and they all can refer to one or more

wot:DataSchema to format their data (see Section V),

which can be input data for actions, output for actions and

events, or property data for properties. While for properties

the data is an essential part, and therefore the connection with

the DataSchema is compulsory, this is not the case for actions

and events. They both may produce some output, and actions

may need some input: the choice of including input or output

is left to the specific needs of the Web Thing designer.

The property, in particular, is slightly different from actions

and events, representing a current state of the device. We

then semantically describe it with a friendly name (inherited

from the swot:InteractionPattern), a stability and

writability flag. The stability’s xsd:unsignedLong value

identifies in milliseconds the average time that the property is

expected to remain constant. The writability’s xsd:boolean

flag indicates if the property is software-definable or not.

If yes, it is possible that: 1) an action exists able to allow

such software modification or 2) an external physical action

is required to modify the value (e.g., a mechanical toggle

position).

Actions and events, on their side, apart from inherited object

and data properties offer the dynamic interaction which will be

treated in the next section pointing to the swot:Instance

concept (see Fig. 3). In addition to that, both actions and

events can also refer to the swot:Property they may

have effect on (i.e., through the swot:forProperty

object property).

B. Dynamic Interaction: Interaction Pattern Instances

The core discussion of this section is how the dynamicity

of interaction is achieved within the SWTE, through the

usage of the ontology proposed. In fact, the semantic descrip-

tion of the interaction among Web Things plays a key

role for the discussion of the contributions presented in

this article. The evolution of a WoT environment cannot

be observed through the immutable characters of the con-

text. The ability to represent also the interactions among the

agents is why we attributed the dynamic adjective to the our

ontology.

To render a mutable environment like the Web Thing

environment over a semantic platform, the latter has to be

enriched with a subscription engine. Therefore, to handle

such dynamic interaction, we will consider a RDF knowledge

base on top of which we add a publish-subscribe architec-

ture like the SEPA, proposed by Roffia et al. [20]. SEPA

has been designed to be communication-protocol agnostic. In

this article, HTTP(S) protocols for query and update, plus

WebSocket(S) for subscriptions will be considered. There

would be, of course, no difference if other choices were made:

for instance, a CoAP oriented SEPA engine called C minor

is being developed for time-constrained musical applications

in [51].

Once the Semantic Web Thing description has been given,

we expect at run time two possible situations: 1) the request for

the execution of an action, which we call ActionInstance, and

define through the swot:ActionInstance class and 2) an

event notification, which we call EventInstance, and define in

the swot:EventInstance class. They both are subclasses

of swot:Instance.

See Fig. 3 for the subset of ontology related to dynamic

evolution of instances.

Let us first consider an event instance. In Table I, the

triples that a Semantic Web Thing must insert in the RDF

store to notify the occurrence of an event with its output

content can be observed. Among these triples there is the

xsd:dateTimeStamp of occurrence, that is essential to

keep a timeline for notifications, and the output of the notifica-

tion itself. As it will be better explained in the last paragraph

of this section, the exchange of inputs and outputs is another

of the sources of dynamicity in the WoT that requires the

publish-subscribe mechanism.

In Table II, on the other hand, are shown the triples that

concern the swot:ActionInstance. Action instances are

inserted into the RDF store by any entity requiring the execu-

tion of an action. Among them, the authorship of the request

is shown by the swot:requestedBy predicate, and the

timestamp of the request.

The two examples available have either an input given,

either an output. As already discussed, actions can have both,

or none of them. Events, on their side, can have an output

or just be empty. What is interesting, here, is the timings

with which those pieces of information are inserted into the

knowledge base.

Let us consider first actions. A common definition for them,

according to W3C WoT working group, is a kind of interaction

taking a finite amount of time to reach an end. It is there-

fore reasonable to consider that the outputs of an action, if

available, will be given after that amount of time. So, while

inputs need to be given immediately together with the action

instance to trigger the execution, we definitely run into an

asynchronous behavior whenever we expect an output as result

of the execution.

Events, instead, are by definition asynchronous. So, when

they happen, they should carry all the information they need

(i.e., their output if they have one). A different reasoning has

to be done concerning properties: they are, in fact, the refer-

ence for information specific to the Semantic Web Thing and

therefore they exist because of the information itself. So they

have no input nor output, but they just supply their property

data.



10568 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

TABLE I
SWOT:EVENTINSTANCE TRIPLES TO BE INSERTED IN THE RDF STORE TO TRIGGER AN EVENT NOTIFICATION TO ALL INTERESTED ENTITIES.

NOTICE THAT THE CONCEPT OF DATA SCHEMA IS EXPLAINED IN SECTION V, WHILE THE TRIPLES NEEDED FOR THE DEFINITION OF

SWOT:MYSTRINGDATASCHEMA ARE AVAILABLE IN THE HIGHLIGHTED ROWS OF TABLE III

TABLE II
SWOT:ACTIONINSTANCE TRIPLES TO BE INSERTED IN THE RDF STORE TO TRIGGER THE ACTION PERFORMANCE. NOTICE THAT THE CONCEPT OF

DATA SCHEMA IS EXPLAINED IN SECTION V, WHILE THE TRIPLES NEEDED FOR THE DEFINITION OF SWOT:MYSTRINGDATASCHEMA

ARE AVAILABLE IN THE HIGHLIGHTED ROWS OF TABLE III

The input or output resource, of course, needs to be filled

out with actual information. Within the ontology inputs and

outputs belong to the class swot:Data when given by

user or retrieved from execution. In our vision, however,

there is no sensible difference between swot:Data and

the DUL class dul:InformationObject as the piece of

information is here collected, citing DUL rdfs:comment

of dul:InformationObject, independently of how it is

concretely realized.

Eventually, as it can be seen, all swot:Data instances

refer to a swot:DataSchema. This is necessary, as an IP

might accept as input different formats, or release its output in

different formats: connecting the information with the actual

interpretation statement is therefore essential. For a complete

tractation of the swot:DataSchema concept, see Section V.

V. DATASCHEMA AND FIELDSCHEMA

As it was told in the previous sections, swot:Thing

is an abstraction for connected objects in a SWoT environ-

ment. Similarly to any object in the real world, the Semantic

Web Thing instance needs several connections with the virtu-

alized semantic environment. Those connections enable all the

interactions that things may have in their own context. Hence,

they are very important because they permit a dynamic flow

of information from thing to thing, as well as from user to

thing and vice versa. Actions, then, will be able to receive

information on how they are expected to perform their task: the

parameters. According to such information the performance

may change dramatically: just consider the difference between

asking a printer to make 2 or 200 copies of the same file!

Similar interfaces, moreover, are needed when actions or

events have to produce some kind of output. And eventually,

as we already said, also properties may need one, as they store

status information.

Formatting parameters is not a negligible problem.

Furthermore, when discovering the available Web Things in

a SWTE, it may be of great interest to query for actions that

require an input formatted in a specific way (e.g., a thermostat

where the target temperature is expressed in Celsius degrees in

an XML file), or for events that generate outputs with a partic-

ular syntax (e.g., a temperature sensor with output expressed

in Fahrenheit degrees in a JSON file).

Within the SWOT ontology this problem is addressed

by the swot:DataSchema and the swot:FieldSchema

classes. In Fig. 4, the relationships between these two classes

and the ones introduced in the previous sections, as well as a

simple example are shown.

To better understand the meaning and the usage of data

schemas and field schemas, it is useful to distinguish the basic

situations that can occur within a Semantic Web Thing data

interaction. All the following cases can happen either in inputs

and outputs of any of the swot:InteractionPattern

subtypes, i.e., actions, events, and properties.

1) The data exchanged (or stored, in the case of a property)

is a basic data type, that fulfils the definition of any of

the types in XML schema,11 like xsd:integer and

xsd:string.

2) The data exchanged is a complex data type collecting in

various ways a cluster of basic data types: this might be

(but not limited to) the case of a JSON or an XML file.

3) The data exchanged is a resource: a text file, audio,

video, and so on.

11https://www.w3.org/TR/xmlschema-2/



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10569

TABLE III
EXAMPLES OF BASIC DATATYPES. WHITE LINES REFER TO THE FIRST EXAMPLE. GRAY LINES

HAVE TO BE ADDED TO REALIZE THE SECOND EXAMPLE DISCUSSED IN SECTION V-A

TABLE IV
COMPLEX DATATYPE TRIPLE DESCRIPTION EXAMPLE. NOTICE THAT NS:MYSTRINGDATASCHEMA DEFINITION IS NOT INCLUDED

IN THE TABLE, AS IT IS ALREADY AVAILABLE IN TABLE III, GRAY-COLORED LINES

4) The data exchanged is a Semantic graph formatted

according to a specific ontology.

The following sections will demonstrate their usage giving

practical examples.

A. Basic and Complex Datatype

In this section, the complex and basic datatypes are

examined. Tables III and IV are provided to exemplify

the meaning and the usage of swot:DataSchema and

swot:FieldSchema classes.

In particular, Table III (first example) reports the triples

needed by an action requiring as input information a unique

xsd:integer, and outputting the square root of that number

as xsd:double.

In a smarter Web Thing, the same action might be able to

read also an xsd:string, and parse it independently toward

the integer. In that case, there would be no difference with the

previous situation except that, as in Table III (second example),

the gray-colored entries are included.

The complex datatype is slightly more challenging and is

represented in Table IV. The table contains the triples neces-

sary for an action that requires as input an xsd:string, α,

and outputs a JSON object having an entry for every distinct

character of α, and value the number of times such character

appears in α.

The two examples provided come in help to explain the

concepts of data schema and field schema.

First of all, it is important to observe that an instance

of swot:DataSchema should not be considered thing-

specific. Therefore, we expect that numerous actions,

events, and properties (no matter the Web Thing they

belong to) share the same data schema, like is done for

ns:MyStringDataSchema. This is an essential point, to

guarantee interoperability as well as to reduce the amount of

data in the knowledge base. Besides, it has to be highlighted

that any swot:DataSchema should neither be bound to a

role of fixed and immutable input or output: action A may

need data schema D as input, while event E as output. The

data schema must be a Web resource to be easily identified.

As a matter of fact, it should be reachable from the Web, and

should reply to requests with a JSON-LD describing the data

format.

Second, having a closer look to the tables, we can outline

the usage of the swot:FieldSchema entity. As it can be

seen, the field schema closely depends on the data schema. It

is a semantic resource that acts similarly to a collection point

for data formats. Field schemas can be provided in the SWTE

as blank nodes and as resources, depending on the needs of

the IP: in the basic data case, the field schema is a blank node

typed as an xsd resource. There should be no need for further

format description and interpretation support, as xsd refers to

a well-known standard.

Inversely, in the complex data case, the field schema is a

full resource typed as a generic xsd:Literal. The field

schema resource URI, now, should be a reachable resource on

the Web (i.e., a blank node here is not acceptable), containing

all the needed information to interpret the literal entity. That

is, in the case of Table IV, we intend the resource to answer to

an HTTP GET with a JSON Schema according to Listing 2.

Multiple field schemas can be connected to a data schema,

signifying that the IP is able to use (or expecting) data

formatted in more than one way.



10570 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Listing 2. JSON schema expected in response to an HTTP GET to
ns:MyJSONFieldSchema as in Table IV referring to the complex datatype
example in Section V-A.

Once this answer reaches the client, there is a global

understanding of how the data should be formatted and/or

interpreted. Notice that a DataSchema may point to more than

one FieldSchema, meaning that all of them will be given (if

it is an output), or all of them are required (if it is an input).

B. Web Resource Datatype

It is not rare for a device to need a file to perform an action:

especially (but not limited to that case) if the device is vir-

tual. While a generic and maybe small textual file can be

treated as in the previous section as an xsd:Literal, a

more complex situation is here considered of actions, events,

and properties dealing with generic resources located on

the Web.

The most important point, when the Semantic Web Thing

is parameterized with Web resources, is to define the semantic

description in order to allow a correct usage of the given item.

This task belongs to the data schema and the field schema. As

a first example, let us consider Table V, containing the triples

necessary for an action that is capable of playing an audio file

by using a generic audio player (which will be referred to as

play). In such case, the Web Thing’s inner logic would be

parameterized so that the parameter URI is interpreted as a link

to music file. Once the resource URI is received, its usage is

fully dependent on the device purpose. In general, we consider

two possibilities: 1) the resource is downloaded and used and

2) the resource is not directly downloadable (i.e., a database

access point, a streaming resource). Cocktail framework (see

Section VI) can implement such audio player in both ways,

either if the logic is equivalent to

A second example of this same kind might be a database

access action. In this case, we consider the action to expect

as input an xsd:string containing the SQL query, and

a swot:ResourceURI, Web address of the database.

Consider Table VI for the triples. Given those inputs, the

software logic would probably be something similar to the

command

Of course, there is no difference in the case of an out-

put resource: an upload is to be expected toward the resource

address, or the creation of the server itself, responding to

queries on that resource. This may also be a powerful solution,

to be combined with a REST architecture.

C. Semantic Resource Datatype

Eventually, we refer to the possible occurrence of a

swot:InteractionPattern designed to produce or to

consume a semantic graph. It is important to say that there

is not such a big difference with the previous case expos-

ing an action querying a database. In fact, as it is shown

in Table VII, the difference is that the field schema is now

given by a complete resource instead of a blank node, and

of course it is not a swot:ResourceURI but a specialized

swot:OntologyURI. With this data/field schema construc-

tion, the user can download or explore the ontology given by

the field schema, and use the patterns there described either

to format a triple graph, if it is an input graph, or to query

the triple graph, if it is an output. The gray lines in Table VII

include the triples to be added in order to perform an action

request.

It might be useful, in other scenarios, to join the usage of

the swot:ResourceURI with the swot:OntologyURI,

for more complex situations. For instance, let us consider the

same input DataSchema of Table VII, and an action whose

task is to perform a SPARQL query like.

Let us consider, also in this case, that the FieldSchema is

foaf. Then, the actual swot:Data parameter expected here

is the Web location of a graph resource which we know is

formatted according to foaf, so that the query will be able

to be performed successfully. To make things more complex,

let us add a line to the query:

If we include a swot:ResourceURI as second

FieldSchema as we did for the case in Section V-B, it will be

possible to give as a parameter also the graph_resource

variable.



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10571

TABLE V
WEB RESOURCE DATATYPE TRIPLE DESCRIPTION EXAMPLE

TABLE VI
WEB RESOURCE DATATYPE TRIPLE DESCRIPTION FOR A DATABASE QUERY SWOT:ACTION CLIENT. NOTICE THAT

NS:MYSTRINGDATASCHEMA IS NOT INCLUDED, AS IT IS ALREADY AVAILABLE IN TABLE III

TABLE VII
GRAPH RESOURCE DATATYPE TRIPLE DESCRIPTION

VI. CASE STUDIES AND EVALUATION

This section contains the discussion over the SWOT ontol-

ogy and its conceptualization into the Cocktail framework. To

do so, the first section will describe Cocktail and show how

the ontology can be easily employed to build interoperable

applications. Afterwards, an overall evaluation of the SWOT

ontology will be provided, according to a set of literature

metrics.

A. Cocktail Framework

Once the SWoT ontology is given and both its static and

dynamic parts have been addressed, we have the ingredients to

setup a SWoT environment. As already stated in the previous

sections, in our implementation the SEPA has been adopted to

dispatch events and notifications to control the dynamic evolu-

tion of the SWTE. On the other hand, the Web Things will use

instances of the static subset of the SWOT ontology to declare

themselves and to discover their context. In a broader view,

starting from here, the SEPA may act as a Semantic Cloud

engine for a generalized SWoT over the SWOT ontology.

To do so, the SEPA implementation available on GitHub12

will be used together with the baseline APIs developed for it.13

12https://github.com/arces-wot/SEPA
13https://github.com/arces-wot/SEPA-python3-APIs (branch dev-0.9.5)

On top of them the SWoT SEPA APIs are built as a complete

framework named Cocktail. The Cocktail framework is also

freely available on GitHub14 with its documentation and the

explanation of the reasons behind its name.

Cocktail contains high level functions and classes to:

1) declare the things, assign them a friendly name, an URI,

and a thing description resource;

2) append to the thing description resource all the IPs

needed, i.e., actions, events, and properties, with their

friendly names, URIs, data as described in Section IV;

3) define, if needed, new data schemas;

4) query the SWTE for things, IPs, and basic discovery

mechanisms;

5) request the execution of an action, post its output and

wait for it if necessary, together with all the needed

timestamps;

6) throw, and wait for event notifications;

7) delete those instances.

All these functions, indeed, share a common point. They

perform specific requests to SEPA: either SPARQL updates,

or SPARQL queries, or SPARQL subscriptions. Cocktail uses

SPARQL updates to spawn new things, actions, events, prop-

erties and data schemas and their internal relationships; in

14https://github.com/fr4ncidir/SemanticWoT



10572 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 5. Example of SWTE.

Listing 3. Smart discovery for Web Things with an action acting on
temperature and requiring a ψ-formatted input.

addition to that, they are needed also to inject in the graph

new action or event instances and output data. Those triples,

once inserted in the knowledge base, will be captured by the

SEPA subscriptions engine, that will trigger an action execu-

tion, or notify that an event has occurred or that an output is

available. Eventually clients, humans, or Web Things, will be

allowed to perform SPARQL queries looking for all kinds of

information in the graph: e.g., we expect standard requests like

“list all Web Things in the SWTE” along with more complex

ones, like “what IPs give as output mp3 files?” or “what Web

Things have at least an action which is described through the

pizza ontology?” or also “how can I format my data so that

a specific action can use it as input?”

It is therefore clear that Cocktail is composed by two facets:

1) the SPARQL code, that interacts with triples in the knowl-

edge base and 2) the thing business logic, that takes care of

performing the main tasks of the device, and the communica-

tion with SEPA. In our implementation, targeting a proof of

concept rather than a full realization of the platform, Python3

has been adopted to address the thing business logic. Indeed,

equivalent APIs will be developed for other languages in the

future, to be used also in more constrained devices, like the

Arduino family and so on.

It is worth noticing that the SPARQL code remains the same

in all those implementations. As already said, it is available

in Cocktail repository, to be used within our Python3 setup or

to be called directly from others services.

B. Cocktail: In-Use Analysis

Cocktail’s collection of SPARQL updates, queries, and

subscriptions on the top of SEPA proves that a SWoT imple-

mentation is achievable in an overall limited amount of lines

of code.

Nevertheless, an evaluation is required, both of the frame-

work’s usability and of the ontology itself. Notice that an

Listing 4. Smart discovery for Web Things that are ns:Temperature

sensors triggering events with λ-formatted output.

evaluation of the SEPA and its processing units is not within

this article’s scope.

Let us start by analyzing the usage of the framework. To do

so, the following small SWTE composed by three Semantic

Web Things (depicted in Fig. 5) and a few additional triples

has been developed.

1) ns:Thermostat is a smart thermostat also declared

as a sosa:Sensor observing the special resource

ns:Temperature (two additional triples). This smart

Web Thing has an action called ThresholdAction,

and an event called TemperatureEvent. By calling the

ThresholdAction, the user can define Tlow and Thigh,

and therefore setup his/her desired temperature interval.

The thermostat performs also a smart discovery: it

looks for Web Things acting on ns:Temperature,

and providing an action that requires some input for-

matted with a specific data schema ψ . The SPARQL

code used for discovery is available in Listing 3.

If there are available actions of this kind, and the

temperature t �∈ [Tlow, Thigh], the thermostat triggers

ThresholdAction. Every 5 s, also, the thermostat throws

a TemperatureEvent with the current temperature value

(data schema λ).

2) ns:HotCold is a smart air conditioner and heater. It

is also typed as sosa:Actuator acting on resource

ns:Temperature (two additional triples). It has an

action that can be triggered with input formatted accord-

ing to dataschema ψ . The device performs a different

smart discovery, available in Listing 4, searching for

ns:Temperature sensors and subscribing to their

temperature-change event formatted as λ dataschema.

3) ns:Clock is a smart clock with an action that, when

requested, replies with the current timestamp (data

schema ξ ), and an action that replies with the cur-

rent temperature (data schema λ). Also, ns:Clock is

a sosa:Sensor observing ns:Temperature (two

additional triples). It is worth saying that this is a dummy

device that proves the effectiveness of smart discover-

ies. Listing 3 discovery will not match with ns:Clock,

because it is not a sosa:Actuator, and Listing 4

because there is no corresponding event.

4) Other triples are related to the resource

ns:Temperature and to the data schemas. In

order to allow the more complex discovery meth-

ods previously cited, two rdf:type references

are added to the temperature resource using the

SOSA ontology, sosa:ActuatableProperty



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10573

and sosa:ObservableProperty (two additional

triples).

As stated in Section V-A, all the dataschemas ψ, λ, and ξ

are considered to be already available in the SWTE. Given

that, if we imagine that temperature is t = 3 ◦C and Tlow =

18 ◦C, what happens in this environment is that:

1) if the thermostat is declared first it will only notify the

temperature event until the smart discovery is becomes

effective. Once ns:HotCold is available, the thermo-

stat is notified that an action formatted as requested is

now present in the SWTE. The action is therefore imme-

diately triggered, and will continue until a temperature

event is notified so that Tlow ≤ t ≤ Thigh;

2) if ns:HotCold is declared first, it will just start

waiting normally for its action to be triggered. No tem-

perature event from sensors is available, as ns:Clock

generates temperature through an action. Once, finally,

the thermostat is available the action is triggered upon its

request and the temperature starts rising, until it reaches

a level between the thresholds.

As it can be seen, Cocktail on its own is enough to build

an environment in which Semantic Web Things are totally

independent, and basic environmental discoveries are avail-

able. Cocktail allowed to concentrate on the basic mechanisms

of the SWTE.

Cocktail alone, however, would have been insufficient to

help the thermostat decide the best action to trigger. To make

the decision, if the action in ns:HotCold or in ns:Clock,

we need to introduce the 8 SOSA-related triples. Those addi-

tional triples allowed us to identify the Web Thing needed,

the action to be requested and the events to which we have to

subscribe.

This result, in particular, proves that our ontology is eas-

ily extensible, and that even a small addition to it can lead

to interesting autonomous behaviors, by expanding context

awareness.

The code realizing the SWTE is available in Cocktail’s

GitHub repository, and shows that the realization of the soft-

ware modules is rather simple and based on a schema that can

be summarized as follows.

1) Identification and description of IPs.

2) Posting to the SWTE the triples.

3) Definition of actions’ and events’ behavior.

4) Device loop: business logic, and events’ throwing.

5) Optional small Web server dedicated to JSON-LD thing

description.

C. Ontology Evaluation

The task of evaluating an ontology is rather complex due

to the fact that it has to be performed as a balance between

expressiveness and effective usage. Although the ontology may

address various abstraction levels, the target applications must

be taken into account in order to distinguish pros and cons.

Philosophical ontologies will be mostly evaluated by their

expressiveness, while the engineered ones will need also a

contact with real applications.

In this article, furthermore, the target is an even different

concept, which is in fact a quite new situation in the panorama:

the ontology has been defined as dynamic to highlight the fact

that it is built up of a descriptive and static part, and of a

context-evolutionary part. While proceeding with an empirical

evaluation of the work presented in this article this factor, that

has strong relevance in the realization of the whole application,

will be taken into account.

Fernández et al. [80] defined a set of 12 metrics to mea-

sure the quality of an ontology. In this article, those metrics

are partially adopted and partially rearranged to be reasonably

applied to the work. In fact, the authors believe that in this spe-

cific case, due to the small dimension of this SWOT ontology,

not every metric among the ones suggested in origin would be

completely appropriate. Keeping this in mind, the evaluation

is hereby reported.

1) Number of Classes: The number of classes in the

SWOT ontology. The overall value, for the ontology,

is 14: among these, ten are used for the static SWTE

description, and the remaining four have a dynamic role.

2) Number of Properties: Number of (datatype or object)

properties in the ontology. The datatype properties are

overall nine, four of which allow the static description,

and five the dynamic one. The object properties, instead,

are nine static, seven dynamic, and four belonging to

both sets, 20 in total. Eventually, 20 more (inverse) prop-

erties can be added. Being redundant elements, they will

not be considered from now on.

3) Number of Individuals: Number of individuals defined

in the presented ontology. At present, the SWOT ontol-

ogy does not include any individuals: however, as it

has been already said, swot:DataSchema and the

swot:FieldSchema instances are a kind of entity

that may be considered similar to the concept of individ-

ual, since they should be available in the SWTE before

the setup of things, and in general they should not be

removed.

Those first three points have a considerable impact on the

overall composition of a Cocktail-based SWTE because their

values affect the complexity of the needed SPARQL enquiries.

Being the ontology composition almost equally bipartite, with

27 entries belonging to the static description and 20 belonging

to the dynamic evolution, in fact the SPARQL obtained for the

complete Cocktail setup appears to be unexpectedly simple.

Another metric that can help understanding the SWOT

ontology capabilities is the number and the sequence of

SPARQL interactions (updates, queries, and subscriptions) that

are required to have a running Cocktail-based SWTE. The

metric, similarly, outlines an evaluation of the computational

resources necessary for a working SWTE setup, identifying

the minimal requirements for a running Web Thing. To give

an example, let us consider the same example of Section VI-B,

considering Web Things as is, out of the general application

logic.

1) ns:Thermostat requires six SPARQL updates to

globally post the Web Thing (1), its action (1) and event

plus its notifications (2). In addition to that, there is

also the update for the additional background (1) and,

eventually, the external action request, that is also a

SPARQL update. Concerning subscriptions, one permits

to be notified of external requests toward the thermostat



10574 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 6. Number of triples for every IP, and their DvS ratio value maximum and minimum.

action, and one is required for the smart discovery

mechanism, as already described in the previous section.

2) ns:HotCold similarly requires five updates and

three subscriptions.

3) ns:Clock requires four updates and two subscriptions.

In the end, this three-Web Thing SWTE requires 15 updates

(some of which are performed into a loop according to the

application logic), and to keep seven subscriptions opened. Not

to mention, moreover, the deletion of resources, once they are

no more needed. Most the times (namely, the ones related to

the dynamic part of the ontology), the deletion is embedded

in the same SPARQL update that performs triple addition. So,

it has been already counted in the previous discussion. The

deletion of static resources, on the contrary, is more rare, and

we do not count it, as it has to be made on explicit request

by the system maintainer.

Indeed, this is an interesting result, even though no

graph level security and privacy mechanisms have yet been

implemented. For now, by extrapolation from this example,

one can notice that the SWOT ontology requires from the

device the capability of dealing with U updates, linearly

increasing with the number of IPs; and with S subscrip-

tions, whose minimum number increases also linearly on

IPs, and whose actual number depends on the application

logic involved. In this performance evaluation, eventually, it

is important to mention that a great impact is related to sub-

scriptions. They imply, with the SEPA compliant Cocktail

implementation, the capability of the device’s hardware to

keep a WebSocket opened over a long period of time, which

is not always possible because of restricted computational or

energetic constraints. A complementary solution would be the

usage of queries instead, resulting in devices explicit request

of the contents of the knowledge base at specific instants. This

implementation is not available in Cocktail, but is possible and

is scheduled for a future work.

1) Maximum and Minimum Web Thing Triple Count T:

How many triples are needed to setup a Semantic Web

Thing? As it has been already said, this calculation

depends on the IPs that the Web Thing has to implement.

However, by parsing the SPARQL updates we get a

total of

T = 4 + 9Aio + 7(Ai + Ao + Eo) + 5(Ae + Ee)

+ 13Pv + 12Pe + f + C (1)

where four triples are dedicated to swot:Thing and

swot:ThingDescription, nine to a number Aio

of input–output actions, seven to input, output actions

and output events, five to empty actions and events,

and 13 (or 12) to properties. To be precise, Pe is

the number of properties that have data formatted as

swot:ResourceURI or swot:OntologyURI, and

Pv the ones that have data as a literal). A constant f

is related to swot:forProperty connections, and C

includes connections to third parties ontologies. Notice

that f cannot be greater that the number of actions

and events times the number of properties. Given this,

concerning the static description of Web Things, it is

possible to outline that four triples is the absolute mini-

mum reachable for a special Web Thing without IPs, and

that properties are the pattern that requires the greatest

number of triples, due to the fact that they store also

data.

2) Triple Count for Interactions and Dynamic Versus Static

(DvS) Ratio: How many triples are inserted when a new

action request is made, or when a new event notification

is triggered? Similar to 1, it is possible to obtain the

number of triples required for the dynamic control of

event and action instances. Refer to Fig. 6 to observe in

each situation what are the requirements.



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10575

Fig. 7. Full view of the SWoT ontology. swot: prefix is omitted from the items shown.

Fig. 6 also introduces the DvS ratio (i.e., the triple count

for static description over the triple count for dynamic

interaction). DvS depends on the kind of IP only and

is bound to the Web Thing functionality within its con-

text. It is therefore a metric that is obtainable only once

its description according to Section IV has been defined

by the programmer. DvS ratio can be applied to a real

Web Thing with all its setup: the greater the ratio, the

higher the Web Thing requirements in term of real-time

interactions.

3) Data Format Influence on Triple Dimension: As

explained in Section V, the format of data exchange

is of great importance. The complexity of the descrip-

tion of any SWoT device, however, does not depend on

that of exchanged data, nor on its dimension or type.

The possible alternatives have been fully described and

exemplified in Tables I and II, which show that the

number of triples exchanged is the same.

In order to make a more complete evaluation of SWOT

ontology, some additional considerations can be made thanks

to the usage of online tools like PerfectO15 and OOPS!16

By performing a scan of SWOT ontology through the tools

listed in those Websites, we were able to make relevant

enhancements to SWOT ontology.

OOPS! tool, however, provides only a formal check of the

.owl file, while a global view is also needed. This kind of

evaluation is possible by examining this article through a set

of criteria globally accepted by the research community. As

an example, the guidelines for submission to the well-known

ISWC Conference17 are very helpful. Most of the suggested

points were largely covered in the previous sections and/or in

Appendix B. See Tables VIII and IX. What has to be noticed

globally is that SWOT ontology addresses a relevant topic of

current research that targets a fusion of Semantic Web and IoT

and provides tool for a working implementation. Moreover, it

is documented and freely available on GitHub, GNU GPL

15http://perfectsemanticweb.appspot.com/?p=ontologyValidation
16http://oops.linkeddata.es/
17http://iswc2018.semanticweb.org/call-for-resources-track-papers/#



10576 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

TABLE VIII
MIRO REPORT OF THE SWOT ONTOLOGY—PART I

licensed, but, as a work in progress, still not submitted to

community registries like LOV.

VII. CONCLUSION

In this article, a complete setup for the new panorama of

a more interoperable IoT has been presented, analyzed, and

implemented. This contribution is framed in the area known

as WoT, inflected here in its SWoT flavor. The rationale behind

the work here presented is to exploit the power of semantics

in a research field that is evolving very quickly, but still is

constrained by devices and systems unable to share all the

knowledge they collect in a really interoperable way. The



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10577

TABLE IX
MIRO REPORT OF THE SWOT ONTOLOGY—PART II

TABLE X
EXPANDED SPARQL PREFIXES

resulting verticality is no more acceptable as the IoT targets

the big data, and therefore aims at providing a uniform access

to resources, in one hand, and to their information, in the other.

More in detail, this article proposed the SWoT ontol-

ogy that leverages previous work by Charpenay et al. [9],

Serena et al. [22], and the W3C and pushes toward the ability

to control and orchestrate Web Things, more than just dis-

covering them. While attempting to provide a solution to the

above-mentioned issues of interoperability, it still needs to be

extensively tested in new more and more complex systems, to

determine with a higher accuracy its performance and applica-

tion limits: this is, in fact, the future direction that spans from

this article.

APPENDIX A

SWOT ONTOLOGY VIEW

Fig. 7 proposes a full glimpse of SWOT ontology. The pre-

fix (i.e., swot:) has been omitted in the image to maximize

reading clarity.

APPENDIX B

SWOT ONTOLOGY DOCUMENTATION ACCORDING TO

MIRO GUIDELINES

This section reports the documenting information of the

SWoT ontology written according to the MIRO guide-

lines [81]. See Tables VIII and IX.

APPENDIX C

SPARQL PREFIXES TABLE

In Table X, the prefixes used in this article and their

expanded identifiers, as a reference for better interpretation

of contents are listed.

ACKNOWLEDGMENT

The authors would like to thank L. Turchet (University of

Trento) and L. Roffia (University of Bologna) for their valu-

able hints and support. The work presented in this article has

being developed in collaboration with the Advanced Research

Center on Electronic Systems Ercole De Castro, University of

Bologna, Bologna, Italy, and the INFN Research Center Centro

per la ricerca e lo sviluppo nelle tecnologie informatiche e

telematiche, Bologna, Italy.

REFERENCES

[1] K. Ashton, “That ‘Internet of Things’ thing,” RFID J., vol. 22, no. 7,
pp. 97–114, 2009.

[2] A. Asin and D. Gascon, “50 sensor applications for a smarter world,”
Libelium Comunicaciones Distribuidas, Zaragoza, Spain, Rep., 2012.

[3] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the Internet of Things: A survey,” IEEE Commun.

Surveys Tuts., vol. 16, no. 1, pp. 414–454, 1st Quart., 2014.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. ACM 1st Ed. MCC Workshop

Mobile Cloud Comput., 2012, pp. 13–16.

[5] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[6] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Proc. Int. Symp. Handheld Ubiquitous Comput., 1999,
pp. 304–307.

[7] J. Heuer, J. Hund, and O. Pfaff, “Toward the Web of Things: Applying
Web technologies to the physical world,” Computer, vol. 48, no. 5,
pp. 34–42, May 2015.

[8] D. Guinard and V. Trifa, “Towards the Web of Things: Web mashups
for embedded devices,” in Proc. Workshop Mashups Enterprise Mashups

Lightweight Composition Web (MEM), vol. 15. Madrid, Spain, 2009.

[9] V. Charpenay, S. Käbisch, and H. Kosch, “Introducing thing descriptions
and interactions: An ontology for the Web of Things,” in Proc. SR SWIT

ISWC, 2016, pp. 55–66.



10578 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

[10] F. Scioscia and M. Ruta, “Building a semantic Web of Things: Issues
and perspectives in information compression,” in Proc. IEEE Int. Conf.

Semantic Comput. (ICSC), 2009, pp. 589–594.

[11] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic Web,” Sci.

Amer., vol. 284, no. 5, pp. 34–43, 2001.

[12] J. Klensin and M. Padlipsky, “Unicode format for network interchange,”
IETF, Fremont, CA, USA, Rep. RFC 5198, 2008.

[13] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource iden-
tifier (URI): Generic syntax,” RFC 3986, 2005. [Online]. Available:
https://www.ietf.org/rfc/rfc3986.txt

[14] O. Lassila and R. R. Swick, “W3C resource description framework
(RDF) model and syntax specification,” 1998.

[15] D. Brickley, R. V. Guha, and B. McBride, “RDF schema 1.1,” W3C
Recommendation, Feb. 2014.

[16] D. L. McGuinness et al., “Owl Web ontology language overview,” W3C
Recommendation, Oct. 2004.

[17] N. Noy and D. Mcguinness, Ontology Development 101: A Guide to

Creating Your First Ontology, Knowl. Syst. Lab., 2001.

[18] P. Desai, A. P. Sheth, and P. Anantharam, “Semantic gateway as a service
architecture for IoT interoperability,” in Proc. IEEE Int. Conf. Mobile

Services (MS), 2015, pp. 313–319.

[19] D. Guinard and V. Trifa, Building the Web of Things: With Examples in

Node. JS and Raspberry Pi. Shelter Island, NY, USA: Manning, 2016.

[20] L. Roffia et al., “A semantic publish-subscribe architecture for
the Internet of Things,” IEEE Internet Things J., vol. 3, no. 6,
pp. 1274–1296, Dec. 2016.

[21] L. Roffia, P. Azzoni, C. Aguzzi, F. Viola, F. Antoniazzi, and T. S. Cinotti,
“Dynamic linked data: A SPARQL event processing architecture,”
Future Internet, vol. 10, no. 4, p. 36, 2018.

[22] F. Serena, M. Poveda-Villalón, and R. García-Castro, “Semantic dis-
covery in the Web of Things,” in Proc. Int. Conf. Web Eng., 2017,
pp. 19–31.

[23] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic Web revisited,”
IEEE Intell. Syst., vol. 21, no. 3, pp. 96–101, Jan./Feb. 2006.

[24] M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods,
“Ontology reuse and application,” in Formal Ontology in Information

Systems, vol. 179. Amsterdam, The Netherlands: IOS Press, 1998,
p. 192.

[25] E. P. Bontas, M. Mochól, and R. Tolksdorf, “Case studies on ontology
reuse,” in Proc. Int. Conf. Knowl. Manag. (IKNOW), vol. 74, 2005,
p. 345.

[26] J. Z. Pan, L. Serafini, and Y. Zhao, “Semantic import: An approach for
partial ontology reuse,” in Proc. 1st Int. Conf. Modular Ontol., vol. 232,
2006, pp. 71–84.

[27] S. Karim, K. Latif, and A. M. Tjoa, “Providing universal accessibility
using connecting ontologies: A holistic approach,” in Proc. Int. Conf.

Univ. Access Human–Comput. Interact., 2007, pp. 637–646.

[28] F. Antoniazzi and F. Viola, “RDF graph visualization tools: A
survey,” in Proc. 23rd Conf. Open Innov. Assoc. (FRUCT),
Helsinki, Finland, 2018, pp. 27–38. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3299905.3299909

[29] N. Bikakis and T. Sellis, “Exploration and visualization in the Web
of big linked data: A survey of the state of the art,” arXiv preprint

arXiv:1601.08059, 2016.

[30] M. Rinne, E. Blomqvist, R. Keskisärkkä, and E. Nuutila, “Event
processing in RDF,” in Proc. WOP, 2013, pp. 52–64.

[31] J. Soldatos et al., “OpenIoT: Open source Internet-of-Things in the
cloud,” in Interoperability and Open-Source Solutions for the Internet

of Things. Cham, Switzerland: Springer, 2015, pp. 13–25.

[32] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil, “IoT-O, a core-
domain IoT ontology to represent connected devices networks,” in Proc.

Eur. Knowl. Acquisition Workshop, 2016, pp. 561–576.

[33] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-Lite:
A lightweight semantic model for the Internet of Things and its use
with dynamic semantics,” Pers. Ubiquitous Comput., vol. 21, no. 3,
pp. 475–487, 2017.

[34] D. Puiu et al., “CityPulse: Large scale data analytics framework for
smart cities,” IEEE Access, vol. 4, pp. 1086–1108, 2016.

[35] A. Kamilaris, A. Pitsillides, F. X. Prenafeta-Bold, and M. I. Ali, “A
Web of Things based eco-system for urban computing-towards smarter
cities,” in Proc. IEEE 24th Int. Conf. Telecommun. (ICT), 2017, pp. 1–7.

[36] A. Kamilaris, F. Gao, F. X. Prenafeta-Boldú, and M. I. Ali, “Agri-IoT:
A semantic framework for Internet of Things-enabled smart farming
applications,” in Proc. IEEE 3rd World Forum Internet Things (WF-IoT),
2016, pp. 442–447.

[37] F. Viola, F. Antoniazzi, C. Aguzzi, C. Kamienski, and L. Roffia,
“Mapping the NGSI-LD context model on top of a SPARQL event pro-
cessing architecture: Implementation guidelines,” in Proc. 24th Conf.

Open Innov. Assoc. (FRUCT), 2019, pp. 493–501.

[38] R. Tommasini, P. Bonte, E. D. Valle, E. Mannens, F. De Turck,
and F. Ongenae, “Towards ontology-based event processing,” in OWL:

Experiences and Directions–Reasoner Evaluation. Cham, Switzerland:
Springer, 2016, pp. 115–127.

[39] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and
M. Mohammadi, “Toward better horizontal integration among IoT
services,” IEEE Commun. Mag., vol. 53, no. 9, pp. 72–79, Sep. 2015.

[40] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IoT gateway:
BridgingWireless sensor networks into Internet of Things,” in Proc.

IEEE/IFIP 8th Int. Conf. Embedded Ubiquitous Comput. (EUC), 2010,
pp. 347–352.

[41] S. K. Datta, C. Bonnet, and N. Nikaein, “An IoT gateway centric archi-
tecture to provide novel M2M services,” in Proc. IEEE World Forum

Internet Things (WF-IoT), 2014, pp. 514–519.

[42] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, and
P. Dutta, “The Internet of Things has a gateway problem,” in Proc.

ACM 16th Int. Workshop Mobile Comput. Syst. Appl., 2015, pp. 27–32.

[43] A. Gangemi, R. Lillo, G. Lodi, A. G. Nuzzolese, and V. Presutti, “A
pattern-based ontology for the Internet of Things,” in Proc. WOP@

ISWC, 2017.

[44] W. Wang, S. De, R. Töenjes, E. S. Reetz, and K. Moessner, “A compre-
hensive ontology for knowledge representation in the Internet of Things,”
in Proc. IEEE 11th Int. Conf. Trust Security Privacy Comput. Commun.

(TrustCom), 2012, pp. 1793–1798.

[45] P.-Y. Vandenbussche, G. Atemezing, M. Poveda-Villalón, and B. Vatant,
“Linked open vocabularies (LOV): A gateway to reusable semantic
vocabularies on the Web,” Semantic Web, vol. 8, no. 3, pp. 437–452,
2017.

[46] A. Gyrard, C. Bonnet, K. Boudaoud, and M. Serrano, “LOV4IoT: A
second life for ontology-based domain knowledge to build semantic Web
of Things applications,” in Proc. IEEE 4th Int. Conf. Future Internet

Things Cloud (FiCloud), 2016, pp. 254–261.

[47] A. Gyrard, A. Zimmermann, and A. Sheth, “Building IoT-based applica-
tions for smart cities: How can ontology catalogs help?” IEEE Internet

Things J., vol. 5, no. 5, pp. 3978–3990, Oct. 2018.

[48] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for Internet of Things: A survey,” IEEE Internet Things

J., vol. 3, no. 1, pp. 70–95, Feb. 2016.

[49] D. J. Wu, A. Taly, A. Shankar, and D. Boneh, “Privacy, discovery,
and authentication for the Internet of Things,” in Proc. Eur. Symp. Res.

Comput. Security, 2016, pp. 301–319.

[50] B. Djamaa, M. A. Kouda, A. Yachir, and T. Kenaza, “FetchIoT: Efficient
resource fetching for the Internet of Things,” in Proc. IEEE Feder. Conf.

Comput. Sci. Inf. Syst. (FedCSIS), 2018, pp. 637–643.

[51] F. Viola, L. Turchet, F. Antoniazzi, and G. Fazekas, “C minor: A seman-
tic publish/subscribe broker for the Internet of musical things,” in Proc.

IEEE 23rd Conf. Open Innov. Assoc. (FRUCT), 2018, pp. 405–415.

[52] P. Waher and R. Klauck, “Internet of Things-discovery,” 2018.

[53] S. Cirani et al., “A scalable and self-configuring architecture for service
discovery in the Internet of Things,” IEEE Internet Things J., vol. 1,
no. 5, pp. 508–521, Oct. 2014.

[54] S. Mayer and D. Guinard, “An extensible discovery service for
smart things,” in Proc. ACM 2nd Int. Workshop Web Things, 2011,
p. 7.

[55] S. B. Fredj, M. Boussard, D. Kofman, and L. Noirie, “Efficient semantic-
based IoT service discovery mechanism for dynamic environments,” in
Proc. IEEE 25th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun.

(PIMRC), 2014, pp. 2088–2092.

[56] M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, and
K. Wasielewska, “Semantic technologies for the IoT—An inter-
IoT perspective,” in Proc. IEEE 1st Int. Conf. Internet Things Design

Implement. (IoTDI), 2016, pp. 271–276.

[57] F. Gao, M. I. Ali, and A. Mileo, “Semantic discovery and integration
of urban data streams,” in Proc. S4SC, vol. 7, 2014, pp. 15–30.

[58] A. Kamilaris, S. Yumusak, and M. I. Ali, “WOTS2E: A search engine
for a semantic Web of Things,” in Proc. IEEE 3rd World Forum Internet

Things (WF-IoT), 2016, pp. 436–441.

[59] L. Sciullo, C. Aguzzi, M. Di Felice, and T. S. Cinotti, “WoT store:
Enabling things and applications discovery for the W3C Web of Things,”
in Proc. 16th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), 2019,
pp. 1–8.



ANTONIAZZI AND VIOLA: BUILDING SWoT THROUGH DYNAMIC ONTOLOGY 10579

[60] K. Dar, A. Taherkordi, R. Rouvoy, and F. Eliassen, “Adaptable service
composition for very-large-scale Internet of Things systems,” in Proc.

ACM 8th Middleware Doctoral Symp., 2011, p. 2.
[61] T. Lebo et al., “PROV-O: The PROV ontology,” W3C Recommend.,

vol. 30, 2013.
[62] G. Tzortzis and E. Spyrou, “A semi-automatic approach for semantic IoT

service composition,” in Proc. Workshop Artif. Intell. Internet Things

Conjunction SETN, 2016, pp. 1–6.
[63] F. Viola, A. Stolfi, A. Milo, M. Ceriani, M. Barthet, and G. Fazekas,

“Playsound.space: Enhancing a live music performance tool with seman-
tic recommendations,” in Proc. 1st Int. Workshop Semantic Appl. Audio

Music, 2018, pp. 46–53.
[64] Z. Song, A. A. Cárdenas, and R. Masuoka, “Semantic middleware for

the Internet of Things,” in Proc. IEEE Internet Things (IOT), 2010,
pp. 1–8.

[65] J. Delsing, IoT Automation: Arrowhead Framework. London, U.K.:
CRC Press, 2017.

[66] P. P. Jayaraman, D. Palmer, A. Zaslavsky, A. Salehi, and
D. Georgakopoulos, “Addressing information processing needs of digital
agriculture with OpenIoT platform,” in Interoperability and Open-Source

Solutions for the Internet of Things. Cham, Switzerland: Springer, 2015,
pp. 137–152.

[67] A. Bassi, M. Bauer, M. Fiedler, and R. V. Kranenburg, Enabling Things

to Talk. Heidelberg, Germany: Springer, 2013.
[68] P. Barnaghi, W. Wang, C. Henson, and K. Taylor, “Semantics for the

Internet of Things: Early progress and back to the future,” Int. J.

Semantic Web Inf. Syst., vol. 8, no. 1, pp. 1–21, 2012.
[69] D. Pfisterer et al., “SPITFIRE: Toward a semantic Web of Things,” IEEE

Commun. Mag., vol. 49, no. 11, pp. 40–48, Nov. 2011.
[70] M. Ruta, F. Scioscia, and E. Di Sciascio, “Enabling the semantic Web

of Things: Framework and architecture,” in Proc. IEEE 6th Int. Conf.

Semantic Comput., 2012, pp. 345–347.
[71] D. Raggett, “The Web of Things: Challenges and opportunities,”

Computer, vol. 48, no. 5, pp. 26–32, May 2015.
[72] M. Noura, S. Heil, and M. Gaedke, “GROWTH: Goal-oriented end user

development for Web of Things devices,” in Proc. Int. Conf. Web Eng.,
2018, pp. 358–365.

[73] Z. Wu, Y. Xu, Y. Yang, C. Zhang, X. Zhu, and Y. Ji, “Towards a semantic
Web of Things: A hybrid semantic annotation, extraction, and reasoning
framework for cyber-physical system,” Sensors, vol. 17, no. 2, p. 403,
2017.

[74] F. Antoniazzi, G. Paolini, L. Roffia, D. Masotti, A. Costanzo, and T. S.
Cinotti, “A Web of Things approach for indoor position monitoring of
elderly and impaired people,” in Proc. IEEE 21st Conf. Open Innov.

Assoc. (FRUCT), 2017, pp. 51–56.
[75] M. Swan, “Sensor Mania! The Internet of Things, wearable computing,

objective metrics, and the quantified self 2.0,” J. Sensor Actuator Netw.,
vol. 1, no. 3, pp. 217–253, 2012.

[76] P. Gope and T. Hwang, “BSN-care: A secure IoT-based modern health-
care system using body sensor network,” IEEE Sensors J., vol. 16, no. 5,
pp. 1368–1376, Mar. 2016.

[77] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet, “Internet
of musical things: Vision and challenges,” IEEE Access, vol. 6,
pp. 61994–62017, 2018.

[78] C. Bormann, M. Ersue, and A. Keranen, “Terminology for constrained-
node networks,” IETF, Fremont, CA, USA, Rep. RFC 7228, 2014.

[79] P. Hitzler and F. Van Harmelen, “A reasonable semantic Web,” Semantic

Web, vol. 1, nos. 1–2, pp. 39–44, 2010.
[80] M. Fernández, C. Overbeeke, M. Sabou, and E. Motta, “What makes

a good ontology? A case-study in fine-grained knowledge reuse,” in
The Semantic Web, A. Gómez-Pérez, Y. Yu, and Y. Ding, Eds. Berlin,
Germany: Springer, 2009, pp. 61–75.

[81] N. Matentzoglu, J. Malone, C. Mungall, and R. Stevens, “MIRO:
Guidelines for minimum information for the reporting of an ontology,”
J. Biomed. Semantics, vol. 9, no. 1, p. 6, Jan. 2018. [Online]. Available:
https://doi.org/10.1186/s13326-017-0172-7

Francesco Antoniazzi (M’17) was born in Conegliano, Italy, in 1991. He
received the B.Sc. degree in electronics and telecommunication engineer-
ing and the M.Sc. degree in electronics engineering from the University of
Bologna, Bologna, Italy, in 2013 and 2016, respectively, where he is currently
pursuing the Ph.D. degree in computer science and engineering.

He is a Research Fellow with the University of Bologna. He was also
a Research Fellow with the CNAF Section, Istituto Nazionale di Fisica
Nucleare, Rome, Italy. His current research interest includes future Web and
Internet of Things technologies.

Fabio Viola (M’16) was born in Lecce, Italy, in 1986. He received the degree
in information engineering from the University of Salento, Lecce, in 2011,
and the master’s (summa cum laude) degree and the Ph.D. degree in computer
science and engineering from the University of Bologna, Bologna, Italy, in
2014 and 2019, respectively.

From 2014 to January 2019, he was a Research Fellow with the Advanced
Research Center on Electronic Systems, University of Bologna. He is cur-
rently with the Centro Nazionale per la Ricerca e Sviluppo nelle Tecnologie
Informatiche e Telematiche (INFN CNAF), Bologna. His current research
interest includes semantic technologies for the Web of Things.


