
Building Trusted Path on Untrusted Device Drivers for

Mobile Devices

Wenhao Li1, Mingyang Ma1, Jinchen Han2, Yubin Xia1, Binyu Zang1,

Cheng-Kang Chu3, Tieyan Li3

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, China
2Software School, Fudan University, China
3Huawei Technologies Pte Ltd, Singapore ∗

Abstract

Mobile devices are frequently used as terminals to inter-

act with many security-critical services such as mobile

payment and online banking. However, the large client

software stack and the continuous proliferation of mal-

ware expose such interaction under various threats, in-

cluding passive attacks like phishing and active ones like

direct code manipulation. This paper proposes TrustUI,

a new trusted path design for mobile devices that enables

secure interaction between end users and services based

on ARM’s TrustZone technology. TrustUI is built with

a combination of key techniques including cooperative

randomization of the trusted path and secure delegation

of network interaction. With such techniques, TrustUI

not only requires no trust of the commodity software

stack, but also takes a step further by excluding drivers

for user-interacting devices like touch screen from its

trusted computing base (TCB). Hence, TrustUI has a

much smaller TCB, requires no access to device driver

code, and may easily adapt to many devices. A prototype

of TrustUI has been implemented on a Samsung Exynos

4412 board and evaluation shows that TrustUI provides

strong protection of users interaction.

∗This work is supported by a research grant from Huawei Tech-

nologies, Inc., and China National Natural Science Foundation (No.

61303011).

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’14, June 25-26 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-3024-4/14/06 ...$15.00.

1 Introduction

Mobile devices have been increasingly used to provide

users’ on-the-go accesses for online shopping, mobile

payment and banking transactions. Unfortunately, such

convenience comes at a risk, where users’ interactions

with the Internet services can be easily tampered with or

divulged by malware. For example, a victim shopping on

Amazon through smartphone can easily be deceived with

the amount of money authorized for a transaction (e.g.,

showing $100 but paid $10,000 instead). Similarly, mal-

ware can trick a user entering password on a faked login

screen to steal the account information (known as phish-

ing attack).

The key reason with contemporary mobile devices is

the lack of a trusted path between users and Internet ser-

vices. On one hand, the architecture of state-of-art mo-

bile system is rather complex, which makes mobile de-

vices an attractive target of attackers. On the other hand,

there is usually no effective means to authenticate an user

interface to users by ensuring “seeing is believing”.

Prior work has attempted to provide a trusted path by

hardening different levels in the software and hardware

stack, such as operating systems [11, 4, 13, 7], hyper-

visors [2, 8], and special hardware [9, 10]. While these

efforts have made a very good first step, all of these ap-

proaches fall shorts in either of the following two aspects,

or both. First, some of them need a large TCB (Trusted

Computing Base) that includes the entire operating sys-

tem. However, exploiting root privilege in Android and

jailbreak in iOS are not rare in reality, either by rootkit

malware, or by the users on purpose. Once an application

gains the root privilege, all of the security mechanisms

in OS could be easily bypassed. Second, almost all of

prior approaches depend on some device-specific user-

interacting hardware such as keyboard, display, or touch

screen. Hence, prior secure systems usually contain the

drivers of these interacting devices, and thus require the

drivers to be trusted. However, device drivers are proven

to be vulnerable in mobile, as illustrated in [14] and this

further limits the portability of this approach to various

kinds of devices, especially in the case where device

manufacturers refuse to offer the device driver code.

In this paper, we propose TrustUI, a new design that

provides a trusted path between services and end users.

TrustUI leverages a widely deployed hardware secu-

rity feature, named TrustZone, to achieve better secu-

rity guarantee. By leveraging the split execution mode in

TrustZone, TrustUI runs a small and secure kernel in the

secure world in parallel with mobile-rich system running

in the normal world. To achieve a small TCB, TrustUI

takes a step further by excluding the device drivers for

input, display and network from the secure world, but

instead directly reusing existing drivers from the normal

world.

TrustUI is built with several key techniques to pro-

vide secure driver reuse, while still provides externally

verifiable trust path between users and services. To

provide strongly unforgeable user interaction, TrustUI

adopts two novel techniques called input randomization

and display randomization, by randomizing input layout

and display such that users can easily identify an un-

tampered interaction by comparing them with a tamper-

resistant indicator protected by TrustZone. Further, it

also adopts cooperative secure channel between the se-

cure world and Internet services to protect the network

communication. TrustUI does not rely on the trustwor-

thiness of the entire OS, including device drivers of net-

work, input and display.

We have designed and implemented TrustUI on a

Samsung Exynos 4412 development board. To demon-

strate the effectiveness of our system, we construct at-

tacks including KeyLogger, ScreenLogger in normal

world and the result shows that none of them can bypass

TrustUI.

2 Goals and Threat Model

The goal of TrustUI is protecting the interaction be-

tween cloud services and end users, while not requir-

ing significant engineering efforts. Specifically, TrustUI

aims to achieve the following goals:

First and foremost, the system should provide data

confidentiality and integrity for user interaction as well

as network communication. It should provide users with

verifiable security state to defend against phishing at-

tacks and other tampering. Second, the TCB of our sys-

tem should be minimal. The OS, including device drivers

and network stack, should not be trusted. It should not

rely on any specific peripheral devices, e.g., some spe-

cific touchscreen or keyboard, in order to be general to

different platforms. Third, the system should be de-

ployable to existing mobile devices without significantly

modifying existing OSes.

2.1 Threat Model

We trust the hardware of mobile devices, including the

TrustZone extension. We cannot defend physical attacks

such as reading data directly from the memory. Mean-

while, all of the software running inside the secure world

is trusted. On the opposite, the entire OS including de-

vice drivers in the normal world is not trusted. We rely

on but not trust the services provided by the OS, such as

device accessing and network packet sending/receiving.

We also do not consider DoS (Deny of Service) attacks

issued by the OS, which could be easily figured out by

the user. Even if a malicious OS launches a DoS attack,

the security properties of the trusted path still remain.

3 Background on TrustZone

Split CPU Mode Execution: TrustZone is a security

extension introduced by ARM to achieve strong isolation

between secure-sensitive execution environment (secure

world) and commodity environment (normal world). The

secure world can access all states of normal world but

not vice-versa. As shown in Figure 1, there is a higher

privilege mode called TrustZone monitor mode (TMM)

that is used for switching between the two worlds either

by executing the SMC instruction or receiving interrupts.

Secure Monitor Mode

Hyp Mode

Kernel Mode

User Mode User Mode

Kernel Mode

Figure 1: Split CPU Mode with TrustZone Support

Memory and Peripheral Protection: TrustZone sup-

ports memory partition between the two worlds. The

DRAM could be partitioned into several memory regions

by TrustZone Address Space Controller (TZASC), each

of which can be configured to be used in either worlds

or both. By default secure world applications can ac-

cess normal world memory but not vice-versa. System

peripherals could be configured as secure by TrustZone

Protection Controller (TZPC) to ensure these peripherals

could only be accessed in secure world. Besides, DMA

is also world-awareness and a normal world DMA that

transfers data to or from secure memory will be denied.

Interrupt and Exception Isolation: Generic Inter-

rupt Controller (GIC) with TrustZone support can con-

figure an interrupt as secure or non-secure. Secure world,

2

Secure Application

Secure Kernel

SSL Lib
NIC

Backend

Input
Frontend

NIC
Frontend

Input
Backend

Display
Backend

Untrusted Rich OS

Proxy

NIC
Driver

Input
Driver

Display
Driver

Soft
Keybord

Display LibProxy

NIC
Device

Touch
Device

Display
Device

LED
Indicator

Random
Generator

Unsecure Secure
Frame

Buffer

Display
Frontend

Memory

Secure worldNormal world

Software

Hardware

Monitor Handlers

Secure Monitor

Figure 2: TrustUI overall architecture

normal world and TMM have their own indepentent ex-

ception vector tables and the routing of an interrupt could

be configured to one of them. A security memory access

violation may cause an external abort and trap to either

monitor mode or current CPU state mode exception vec-

tor, depending on how the configuration of interrupt be-

havior is set in secure world.

4 Design

In order to build a trusted path while reusing the de-

vice drivers, TrustUI adopts a mechanism that logically

splits a device driver into two parts: a backend running

in the normal world, and a frontend running in the secure

world. The backend part is the unmodified driver and

its corresponding wrapper in the normal world, while the

frontend part works on top of it and provides safe ac-

cess to device for secure apps. The two parts commu-

nicate through corresponding proxy modules running in

both worlds which exchange data through shared mem-

ory. The architecture is shown in Figure 2.

A commodity operating system (such as Android) runs

in the normal world, while a small secure kernel runs in

secure world. The secure kernel isolates itself from the

normal world by reserving a region of memory for the

secure world only. Meanwhile, the secure world can ac-

cess the entire memory space of normal world if needed.

A monitor handler that runs in TrustZone monitor mode

is responsible for world switch, handling external in-

terrupts and verifying security exceptions. The normal

world proxy is a kernel module that runs in the untrusted

commodity operating system. It delivers any calls from

the secure kernel to corresponding backend drivers and

transfers the response back. There are three pairs of fron-

tend/backend drivers for input, display and network de-

vices.

TrustUI provides several necessary interfaces between

two worlds and Table 1 shows the API list. The input

backend driver uses send input data to deliver the coor-

dinate of the screen to the front driver in secure world.

Table 2: Security Challenges of TrustUI
Attribute Attack Solution

Code Integrity Code Tampering Secure Booting

Availability Denial-of-Service Detect by user

Display Privacy Screen-capture Dedicated FB

Display Integrity FB Overlay FB Randomization

Input Privacy Touch-logger Input Randomization

Input Privacy Phishing LED Indicator

Input Integrity Fake Input Random Keyboard

For display, the frontend driver asks for a framebuffer of

the display device from the backend driver, and sets the

region of memory as secure-only. Then the secure kernel

can operate the framebuffer to display. For network com-

munication, all of the SSL encryption and decryption are

done in the secure world, thus the NIC backend only get

the encrypted packets to deliver to the NIC.

TrustUI relies on three hardware features. The first

one is an LED indicator peripheral with one or more

LED lights that can be controlled by the secure world

only. The second one is a cryptography component that

has a hardware random number generator used to gen-

erate unpredictable random seed so as to provide strong

entropy since the display and network security of Trus-

tUI highly depends on it. The third one is secure boot

process, which uses cryptographic checks to each stage

of boot process to ensure the integrity of the loaded code

and the root public key is fused in the SoC ROM which

is read-only. All of the three hardware features are preva-

lent on current mobile devices.

4.1 Security Challenges

Giving the overall design above, there are several

kinds of potential attacks that may lead TrustUI to an

insecure state need to be addressed, as shown in Table 2.

Tampering with secure code: System image usually

locates in external storage like flash, attackers from nor-

mal world could tamper with the secure code and replace

it with an untrusted or even malicious one.

Denial-of-Service attack: Switching from normal

world to secure world is invoked proactively via send-

ing requests to normal world Proxy. The normal world

may refuse to switch to secure world, drop users’ input

events, or offer a fake framebuffer to the secure kernel.

Screen-capture attack: Attackers may try to capture

the display framebuffer to get the confidential display

data, thus users’ secure sensitive data could be leaked.

Framebuffer overlay attack: A malicious display

driver can pass a pointer of framebuffer with low priority

to the secure world, and operate on a higher layer frame-

work to overwrite the data user eventually sees. Such

attack is also known as “screen hijacking”.

Touch-logger attack: Even if the attacker doesn’t

3

Table 1: Interfaces provided by two worlds
World Command and parameters Description

Secure World API
start secure app(appid,parameters) start a secure application in secure world

send input data(x,y,z) send the touch input data to secure world

Normal World API
create shared buffer(p addr,size) create a shared non-secure memory buffer used by both worlds

lock display() disable modification to display controller and framebuffer in normal world

invoke ns func(function id,parameters,response) invoke normal world functions

get trustui info() get the display information and input interrupt NO from normal world, input

interrupt NO is needed so as to keep it unmask in secure world.

know the content of the display, he can still infer user’s

input by three information: the positions, the times, and

the frequency of user’s touch operation. Further, at-

tackers may even leverage side channel attacks like mo-

tion [3] to infer some sensitive information.

Phishing attack: Invoking secure user interaction is

through well-defined interface. Attackers may refuse to

switch to secure world but claim that the switch is OK

and display a fake secure PIN input screen to cheat user

to enter PIN number.

Fake input data attack: An attacker may change the

user inputs or fake problematic data to the secure world.

For example, when a user touches the screen in position

x, the malicious driver may return a wrong position y,

thus leading to unexpected result.

The Denial-of-Service attack could happen since

switching from normal world to secure world is invoked

proactively via sending requests to normal world Proxy

and the normal world may refuse to switch to secure

world, drop user’s input events, or offer a fake frame-

buffer to the secure kernel. This kind of attack will not

leak any sensitive data and is out of scope of the threat

model.

4.2 LED & Display Color Randomization

Screen Foreground Color

Screen Background Color

Foreground LED Indicator

Backgroud LED Indicator

A
Figure 3: Use LED to show foreground/background col-

ors

Once the secure kernel gets a framebuffer from the

normal world, the display controller and the framebuffer

are set as not accessed by normal world.

To prevent framebuffer overlay attack, we leveraged

the LED indicator and a new scheme called color ran-

domization to bind the content on the screen with the

state of LED indicator. As shown in Figure 3, a se-

cure display contains foreground layer and background

layer, both layers render an unpredictable and periodi-

cally changed random color. The indicator has one or

two LED lights, which can display multiple colors under

the control of the secure kernel and will be turned on in

secure world only. Their colors are used to indicate the

correct foreground and background colors on the screen,

respectively. By comparing the display colors with the

LED colors, users can confirm that the content on the

screen is secure and not overlayed by untrusted normal

world driver using hardware display layer.

With TrustUI, users could easily detect Denial-of-

Service attack, and would not be cheated because the ex-

ecution world is identified by the LED Indicator. Screen-

capture attack will not work because the framebuffer is

set to be secure. Framebuffer overlay attack, meanwhile

is more stealthy and the UI scheme color randomization

could solve this problem and provide users with a verifi-

able security state.

4.3 Software Keyboard Randomization

User’s inputs are first obtained by the backend driver

and then delivered to the frontend driver. As the backend

driver is untrusted, this approach may lead to sensitive

information leakage or tampering. TrustUI introduces

randomization in the generation of software keyboard.

To achieve both security and good user experience, we

leverage a para-randomized keyboard whose keys are or-

dered alphabetically as shown in Figure 4 (a). We only

choose the position of button 0 randomly, then put all

other buttons according to it. Each time the user enters

a character, TrustUI regenerates the keyboard by picking

up another position for button 0. (Figure 4 (b))

With this keyboard, attackers have no way to know

what the user is typing, but he may still learn the length

of user’s password. Further, TrustUI applies another ran-

domness in soft keyboard: TrustUI will generate some

random buttons on the screen within the keyboard area,

and ask the user to click the button before continue. As

such buttons are standout, it is easier for user to find their

positions. However, this makes it possible for attackers

to guess which input is injected by analyzing the time

4

interval of two consecutive events. Thus, TrustUI in-

troduces a little delay before showing this button on the

screen, the delay time is calculated using user’s previous

input time interval.

(a) (b)

Figure 4: Alphabetic keyboard with random position.

The initial look of soft keyboard could be like (a), where

the red rectangle indicates the start position of the first

key. After user hits one button, the whole keyboard could

be re-generated as (b)

In order to defend against fake key injection attack, a

secure application could choose to take a confirm process

by showing some random positioned buttons asking for

user’s click to confirm the inputs are actually from user.

4.4 Network Delegation

Secure network should be considered so as to achieve

a trusted path between application and cloud services.

TrustUI adds an SSL library to secure kernel and dele-

gates all network stack function calls to normal world

proxy and call them in untrusted OS. Since all the secu-

rity related logics (the SSL protocol) is implemented in

Secure Kernel, no information leakage could occur.

One problem is that the TrustZone itself does not con-

tain secure storage. However, as TrustZone can be used

to configure one peripheral as secure world accessible

only, it is up to the vendors or TrustZone software devel-

opers to decide which peripheral is available for secure

storage. Currently TrustUI stores its CA public keys in

the secure kernel image. Since public keys do not need

to be kept confidential but need to ensure the integrity,

with the integrity check enabled in secure boot, the in-

tegrity at the boot stage could be guaranteed. After load-

ing the public keys into RAM, the memory region that

stores them will be set as secure. In this way, the in-

tegrity of public keys could be guaranteed.

5 Preliminary Implementation

The board we use is Samsung Exynos 4412 develop-

ment board, which has quard-core ARM Cortex-A9 pro-

cessor with 1.4GHz main frequency and TrustZone sup-

port. The reason why we don’t use a real phone is that

most of TrustZone enabled phones are locked in boot-

loader or have a secure boot, preventing us from access-

ing the secure world. The development board, on the

other hand, is TrustZone unlock and thus we could re-

place the original bootloader with our customized one.

The rich system we run in normal world is Android

Ice Cream Sandwich (Android 4.0 version), with Linux

kernel version 3.0.2. We implement TrustUI based on

T6 [1], a kernel based on ARM ported Xv6 with Trust-

Zone support. In this section, we describe: 1) the boot

process, 2)display data protection, and 3)touch input

configuration.

5.1 System Boot

Devices with TrustZone support will start in secure

world and run a secure world bootloader after running

two vender-specific bootloaders. The secure bootloader

will load TrustUI image and check the signature of the

image using its embedded public key to ensure the in-

tegrity of TrustUI before executing the secure kernel. Se-

cure kernel will setup the secure environment, such as

partition the secure and non-secure memory in TZASC,

set the LED Indicator peripheral as secure peripheral in

TZPC, configure FIQ as secure interrupt and IRQ as non-

secure interrupt in GIC and set the trap behavior to mon-

itor mode when security exception occurs. After config-

uration, TrustUI will switch to normal world to execute

the normal world bootloader and boot Android.

5.2 Protect Display Data

When a user starts a secure interaction, the normal

world proxy will switch to secure world together with

framebuffer information. The framebuffer memory re-

gion and display controller permission will then be set to

secure world accesses only by setting TZASC and TZPC,

then the LED indicator will be turned on indicating the

secure state. When displaying, the display randomiza-

tion will be employed: the color value of foreground and

background layer will be generated by the randomization

module and the secure display content is the combination

of the two disinct layers, together with the LED Indicator

to provide users with security status. Each layer is com-

posed by its own kinds of elements. The background

layer elements include bitmap image, pure pixel color

and the foreground layer elements include bitmap im-

age, button image and text font. When a processor tries

to modify the configuration of display controller or the

framebuffer in normal world, an external abort to secure

monitor mode will be signaled. Since the trap rate is rel-

atively high sometimes, we modify the normal world un-

trusted OS by adding a function lock display to lock any

modifications to the display controller and framebuffer

by instrumenting several lines of code in Android’s Sur-

faceFlinger process to cache the modifications until the

5

secure world execution ends.

5.3 Configure Touch Input Setting

When a user starts a secure interaction, the normal

world proxy will also tell secure kernel the interrupt id

of input so that secure kernel can mask all other IRQs

and set the input interrupt to trap to monitor mode by

configuring SCR register and GIC, and the monitor han-

dler will switch to normal world and get the input data.

We use the getevent tool in Android to read input data

and input backend will transfer the data to secure world

to process. To avoid the case that it may never come

back to secure world, we set a secure timeout value us-

ing a secure timer so that when timeout, the generation of

a secure timer interrupt will force world switch back to

secure world and secure kernel will abort the interaction.

6 Preliminary Evaluation

In this section, we construct and analyze several nor-

mal world attacks to evaluate the security of TrustUI. The

attacks we construct and analyze include touch-logger

and screen-capture attack, screen overlay attack.

Figure 5: Touch map of different password inputs. Grey

rectangles represent keys, and each red circle means one

time of click. The opacity indicates the hit count, and

multiple hits at one place will cause a deeper red. Figure

(a) (b) (c) are got by entering the password ‘00000000’

separately and (d) (e) by ‘5cfc912f’ and ‘12345678’ sep-

arately; Figure (f) is generated with ‘f6b0736c3b’.

Touch-logger Attack: The input randomization

mechanism can ensure the randomness of input coordi-

nates, times, and intervals. As shown in Figure 5, the

result of (a)(b)(c) shows that even if the password con-

sists only one kind of character, the input pattern and the

length of password are still random. By comparing the

difference between (a)(b), (a)(d) and (a)(e), we show that

input patterns have no obvious relationship with the con-

tent and strongness of the password. For two passwords

that have different lengths in (d) and (f), they both need

15 times of click, and it’s hard to tell which one has a

longer length.

500

1000

1500

2000

2500

3000

1 6 11 16 21 26 31 36 41 46 51 56

T
im

e
 (

m
s)

Index of time interval

Origin Input Injected Input

Figure 6: Time intervals between two consective inputs.

The columns are arranged as time order, where the red

ones are injected inputs and blue ones are normal inputs.

To demonstrate that attackers cannot distinguish the

injected inputs from others, we logged the time interval

between two clicks with a sentence that contains 37 char-

acters. The actual total number of clicks needed to enter

this sentence is 58, counting the injected inputs. The re-

sult in Figure 6 shows that neither the longest(which is

3030ms) nor the shortest(which is 948ms) time interval

is caused by injected input, and there is no fixed pattern

for injected inputs, thus attackers are not able to distin-

guish these two types of inputs.

Screen-capture Attack: Screen-capture in normal

world could be done by reading device file in /dev/graph-

ics/fb0 and some overlay devices like video playback and

camera preview. Android provides a tool called screen-

cap for easy screen capturing, we use screencap with

or without display controller and framebuffer locked by

lock display(). In both case, screencap cannot get the se-

cure display data but the display content before switching

to secure world.

Screen Overlay Attack: If an attacker wants to suc-

cessfully cheat the user with screen overlay attack, he

must guess the color of both foreground and background

in the secure world correctly. The RGB in the LED light

has large color range of 2563, two colors make the range

larger. Though users cannot distinguish two colors with

very small difference (in our experience, a difference of

10 could be easily recognized), the possible color range

is still large enough. Furthermore, TrustUI will peri-

odically change the foreground and background colors,

which makes the guessing harder.

Reduction in TCB: Since TrustUI doesn’t need to

trust the rich OS or any device drivers, its TCB is larged

shrunk. The TCB contains only three frontend drivers,

SSL library, the monitor handler, some initialization

code, and some other libraries. The entire lines of code

is around 10K.

6

7 Related Work

There are intensive previous researches attempting to

provide trusted path. Most of them trust both OS and

entire libraries (such as Android framework) and have

a large TCB [11, 4, 13, 7], or leverage a hypervisor to

provide a trusted path [2, 8, 15], which is not widely

available in mobile devices and they include most of the

device driver codes in their TCBs. Besides, some sys-

tems leverage special hardware to ensure the trusted path

and achieve a small TCB [9], but they cannot ensure the

security of user interaction. There are several systems

that are closed to TrustUI either in their goal or tech-

nique. Crossover [5] leverages a hypervisor to provide a

UI framework for multiple VMs under mobile virtualiza-

tion environment. VeriUI [6] runs a Linux in TrustZone

secure world to provide an attested login for users, which

has a large TCB. TLR [12] provides a framework for run-

ning trusted applications on smartphones by splitting an

application into secure world and normal world part, but

doesn’t not provide a trusted path for user interaction. In-

stead, TLR envisions future hardware feature to achieve

the same goal of TrustUI.

8 Summary and Future Work

In this paper, we proposed TrustUI, a system aiming

at providing trusted path for mobile devices. TrustUI en-

ables secure interaction between end users and services

based on TrustZone. TrustUI is built with a combination

of key techniques including cooperative randomization

of the trust path and secure delegation of network inter-

action. With these techniques, TrustUI not only requires

no trust of the commodity software stack, but also takes

a step further by excluding drivers for user-interacting

devices like touch screen from its TCB. Hence, TrustUI

has a much smaller TCB, requires no accesses to device

driver code, and can easily adapt to many devices.

In the future, we plan to 1)support multiple secure ap-

plications and introduce a tiny sandbox mechanism to

isolate them, 2) port several real world secure-sensitive

applications running in TrustUI and do a comprehensive

security and performance study, 3)support multicore so

that TrustUI can run on any cores of a device.

References

[1] T6, an operating system for trustzone based trusted execu-

tion environment (tee) in arm-based systems. http://www.

liwenhaosuper.com/projects/t6.

[2] K. Borders and A. Prakash. Securing network input via a trusted

input proxy. In Proc. USENIX HotSec, 2007.

[3] L. Cai and H. Chen. Touchlogger: inferring keystrokes on touch

screen from smartphone motion. In Proc. Usenix HotSec, 2011.

[4] M. Jakobsson and H. Siadati. Spoofkiller: You can teach people

how to pay, but not how to pay attention. In IEEE Workshop on

Socio-Technical Aspects in Security and Trust, 2012.

[5] M. Lange and S. Liebergeld. Crossover: secure and usable user

interface for mobile devices with multiple isolated os personali-

ties. In Proc. ACSAC, pages 249–257. ACM, 2013.

[6] D. Liu and L. P. Cox. Veriui: Attested login for mobile devices. In

Mobile Computing Systems and Applications, 2007. HotMobile

2014. Eighth IEEE Workshop on. IEEE, 2014.

[7] D. Liu, E. Cuervo, V. Pistol, R. Scudellari, and L. P. Cox. Screen-

pass: Secure password entry on touchscreen devices. In Proc.

MobiSys, 2013.

[8] L. Martignoni, P. Poosankam, M. Zaharia, J. Han, S. McCamant,

D. Song, V. Paxson, A. Perrig, S. Shenker, and I. Stoica. Cloud

terminal: secure access to sensitive applications from untrusted

systems. In Proc. USENIX ATC, 2012.

[9] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and

H. Isozaki. Flicker: An execution infrastructure for tcb minimiza-

tion. In OS Review, volume 42, pages 315–328. ACM, 2008.

[10] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for

passwords and other sensitive data. In NDSS, 2009.

[11] Microsoft. How interactive logon works.

http://technet.microsoft.com/en-us/library/cc780332

(v=ws.10).aspx, Jan 2009.

[12] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using arm trust-

zone to build a trusted language runtime for mobile applications.

In Proc. ASPLOS. ACM, 2014.

[13] T. Tong and D. Evans. GuarDroid: A Trusted Path for Password

Entry. pages 1–10, Apr 2013.

[14] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The peril

of fragmentation: Security hazards in android device driver cus-

tomizations. In IEEE Symposium on Security and Privacy, 2014.

[15] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building

verifiable trusted path on commodity x86 computers. In IEEE

Symposium on Security and Privacy, 2012.

7

