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Abstract— There is widespread agreement that a higher level program-
ming model for sensor networks is needed. A variety of models have
been developed, but the community is far from consensus. We propose
an intermediate language to speed up the exploration of this design
space. Our language, called the Token Machine Language (TML) can be
targeted by compilers for higher level systems. TML provides a layer of
abstraction for a lower-level runtime environment, such as TinyOS.

TML is intended to capture coordinated activity in a sensor network.
Notable features of TML are its atomic action model of concurrency, and
its unification of communication, control, and storage around the concept
of a token. Tokens are small objects, typically under a hundred bytes,
and can be disseminated across the network. A token causes computation
upon its arrival at a site by invoking a token handler. The effect of the
computation is to atomically change the token’s own state as well as the
state of shared variables at the site.

I. INTRODUCTION

A breakthrough in programming technology for ad-hoc sensor
networks may help them achieve widespread acceptance across
commercial and scientific spheres. A number of ongoing projects are
developing better programming tools for sensor networks. These in-
clude virtual machines [15], high-level programming abstractions [3],
[20], and query engines [16], [23]. One approach, which we call
macroprogramming, would allow application designers to write code
in a high-level language that captures the operation of the sensor
network as a whole. The global program could then be compiled
into a form that executes on individual nodes.

In order to develop high-level languages that compile into node-
level programs, it would be extremely valuable to define a common
intermediate language. Without one, we are forced to build monolithic
implementations with a language such as NesC. We need an inter-
mediate representation to abstract away the details of concurrency
and communication while capturing enough detail to permit extensive
optimizations by the compiler.

In this paper, we propose such an intermediate language for sensor
networks, called the Token Machine Language (TML). TML is based
on a simple abstract machine model, which we call Distributed Token
Machines (DTMs). Distributed Token Machines provide an execution
and communication model based on tokens. Communication happens
through token messages, which are typed messages containing a small
payload. Tokens are associated with token handlers that are executed
upon reception of a token message (either locally or from a radio
message). Tokens are akin to Active Messages [19], although DTMs
provide additional facilities for structuring execution, concurrency,
state management, and communication that make this model attractive
as a compilation target for sensor network applications.

Our goal is to define an intermediate language for sensor network
programming that:

1) Provides simple and versatile abstractions for communication,
data dissemination, and remote execution.

2) Constitutes a framework for network coordination that can
be used to implement sophisticated algorithms such as leader
election, group maintenance, and in-network aggregation.

While not an explicit goal, it turns out that TML is also usable by
humans as well as code generators , as should be evident in the
example programs of Section V.

TML is meant to be lightweight in every respect. It must map
efficiently onto the event-driven semantics of existing sensor network
operating systems, such as TinyOS. TML also must be versatile
enough to construct a wide range of higher-level systems, while
simultaneously masking the complexities of the underlying OS and
runtime environment. These goals differentiate TML traditional inter-
mediate languages, such as the Java Virtual Machine and CLI, which
are have been designed for portability and safety. Instead, we draw
on the lineage of systems such as the Threaded Abstract Machine
(TAM) [6], which aims to provide an appropriate level of granularity
to achieve abstraction without sacrificing performance or versatility.

TML provides a unified abstraction for communication, execution,
and network state management based on tokens. Specifically, all
communication in TML is accomplished by dissemination of tokens.
Upon receiving a token, a node atomically executes the associated
token handler, which uses and modifies the stored form of the
token, schedules new tokens, and kills existing tokens. This approach
allows an application to refer to the tokens as well as to the set of
nodes holding a particular token as semantically meaningful units.
For example, tokens make it straightforward to implement network
abstractions, such as gradients, which involve flooding a token
throughout all or part of the network and constructing a spanning
tree pointing back to the origin of the gradient. Gradients are a
common routing model in sensor networks [14], [16] which can
be implemented in TML in a manner that meshes with its token
abstraction.

In Section III of this paper we present the semantics of the
Distributed Token Machine model. The DTM is an abstract machine,
not a complete executable language. Thus in Section IV we will
present the concrete language TML — our realization of the DTM
model. In Section V, we demonstrate how to use TML in writing
several simple applications, including a distributed event detector and
a decentralized leader election algorithm. Finally, we will discuss our
prototype implementation of TML on top of TinyOS, showing that the
TML abstraction introduces little overhead in terms of code sizes, and
only modest overhead in terms of RAM usage and execution speed.



II. RELATED WORK

There have been a variety of attempts to raise the bar for sensor
network programming, including middleware services, communica-
tion abstractions, and programming models.

Of these, the Maté system is most similar to TML. It provides
a platform for higher-level languages, but does so through a virtual
machine rather than a compiled intermediate language. The project
focuses on application specific VM extensions, safety guarantees,
and energy-efficient dynamic reprogramming. However, the overhead
of bytecode interpretation makes intensive computation prohibitive.
TML’s approach is to use more efficient compiled code, but at
a cost of larger binaries. Further, safety can be guaranteed by
the macroprogram compiler, not the run-time system, or even the
intermediate language — TML itself is not type-safe, for example.

Maté hosts high-level programming systems through application
specific VM extensions. For example, TinySQL is a query processing
system built on a specialized Maté VM. Another specialized VM
incorporates the abstract regions communication model of Welsh and
Mainland [20]. Maté differs from TML in that it provides only low-
level radio communication directly within Maté, and uses application-
specific opcodes — essentially a foreign function interface into other
TinyOS components — to expose new communication primitives
such as abstract regions. In contrast, TML provides a coordinated
communication and execution architecture, based on tokens, that is
used to build up new communication abstractions.

The Impala middleware system enables application modularity
and network reprogramming, while MagnetOS [2] aims to provide
automated assignment of Java components to parts of an ad-hoc
network (but has not been scaled down to resource-constrained sensor
networks). Middleware systems such as these share goals with TML,
but they focus on providing a rich array of run-time services. TML,
on the other hand, requires very little in the way of run-time support;
its core implementation is a few hundred lines of NesC code. Instead,
TML is focused on defining the appropriate semantics useful for
compilation.

A number of recent projects have proposed novel communication
abstractions for sensor networks. For example, Spatial Programming
[4] uses Smart Messages to provide content-based spatial references
to embedded resources. In this system, the programmer may refer
to the first available camera in a given (predefined) spatial region.
Alternatively, Blum et al., 2003 describes an “entity maintenence”
abstraction that exposes tracked targets as first-class language objects
which serve as communication endpoints. Other related communica-
tion abstractions include abstract regions [20], Hoods [21], DIFS [10],
and DIMENSIONS [8].

A few communication models in particular had an influence on
TML. The general purpose gradient and aggregation interface of TML
(Section V-A) are similar to those in Directed Diffusion [14] and
SPIN [12], which are paradigms for source-sink communications over
named data. Also, work on Amorphous Computing [1] explores in
depth the applications of gradients. TML is also heavily inspired by
Active Messages (AM), which were originally conceived as a mech-
anism for efficient message passing in parallel architectures [19].
The original AM work focused on integrating communication and
execution for constructing parallel applications. AM has found a new
home in TinyOS [13], although it is used there primarily as a radio
message format, rather than for introducing specific semantics for
the execution of message handlers. For example, the TinyOS variant
of AM does not specify how messages interact with the link and
network layers of a protocol stack.

Additionally, several high-level languages have been proposed for
programming sensor network applications, including Mottle [22],
TinyScript [22], SNACK [9], and the variants of SQL found in
Cougar [23] and TinyDB [16]. The goal of TML is to define an ap-
propriate intermediate language to which these systems can compile
down. Without a common abstraction, sharing functionality is more
difficult and complexity less seperable. For example, the TinyDB
system is monolithic and includes a wide range of functionality:
spanning tree formation, query dissemination, query optimization,
and in-network aggregation.

Our prior work on Regiment [17] defines an alternative macro-
programming language based on functional reactive programming.
Regiment represents sensor nodes as streams of data that can be
grouped into regions for the purpose of in-network aggregation or
detecting events. Because of its high level nature, the semantic gap
between Regiment and a node-level language like NesC is large,
making the task of compilation daunting. It was in the course
of implementing a Regiment compiler that we created the TML
intermediate language. We return to a discussion of Regiment and
its compilation to TML in Section V.

III. DISTRIBUTED TOKEN MACHINES

The Distributed Token Machine (DTM) is an abstract model
for computation in a dynamic, asynchronous, ad-hoc network with
stopping failures and message losses. The DTM model structures
concurrency, communication and storage according to the architecture
pictured in Figure ??. However, it makes few assumptions about
which scheduling algorithm is used or about the base language used
to describe the actions performed by each token handler. The Token
Machine Language introduced in the next section is one realization
of the DTM model using a concrete handler language similar to a
basic subset of C.

A. Execution Model

In the DTM execution model, each node in the network holds
some number of tokens as well as a single fixed-size shared memory.
Each token has an associated token handler that is executed upon
receipt of the token in a message. The token handler takes arguments
that it receives from the payload of the message carrying the token.
Each token also has a private memory, which is a fixed-size piece
of state that may only be accessed by the associated token handler.
The stored token along with its private memory is referred to as a
token object. In OOP terms, each token object can be thought of
as an object with only private fields and only one method. Each
handler executes atomically and in a bounded amount of time, which
simplifies memory consistency issues and makes precise scheduling
possible. This model is restrictive, but its simplicity is a boon to
compilers and analysis tools working with the architecture. The
DTM model’s selling point is its combination of expressiveness and
simplicity.

DTMs have only the core ingredients necessary to build up higher
level programming features. For, example, it would be straightforward
to map multiple token “methods” down onto the one supported
handler action. Similarly, issues of memory scope and protection can
be compiler controlled. Most importantly of all, a compiler can break
a long sequence of coordinated actions into a set of token handlers
that interact in predictable ways, both inside nodes and across the
network.

Figure 1 depicts the structure of a sensor node executing the DTM
model. A node in the network consists of a heap storing local token
objects (the token store), a scheduler that processes incoming token



Fig. 1. The structure of a node in the DTM model. Token messages
are transmitted on network channels. When received, they morph into their
persistent form: token objects.

messages, and a collection of handler actions that are computable
by the node. Again, just as the DTM model does not fix the base
language used for handlers, the scheduling algorithm also remains
implementation-specific.

Token messages are the form tokens take when traveling over
network channels. The token name is paired with an associated
payload. As in Active Messages, the token-name is at the start of
each message. (Also, in the DTM model we allow token names to be
encoded as data and transfered in messages or stored in memories.)
Once a message comes through the scheduler, the token name directs
it to the corresponding handler. If the corresponding token object is
not already present in the token store, its memory is allocated and
initialized (to zero) before the handler begins running. The handler
consumes the message payload and executes atomically, possibly
reading and modifying the token object’s private memory and the
node’s shared memory in the process.

B. Handlers and their Communication Interface

Executing token handlers must post new messages. Thus, they must
interact with the scheduler. We still do not wish to specify exactly
what language is used for describing handlers — we do not care, for
example, what concrete syntax or data types are used — but we do
wish to specify the interface through which the handler must interact
with the rest of the system. Token handlers must use the below
operations to access or modify the token store and the scheduling
queue.

• schedule(Ti, priority, data . . .)
• timed schedule(Ti, time, data . . .)

The schedule operation inserts a token message in a nodes’
local scheduling queue. data . . . is the payload of the token
message. schedule is non-blocking and returns immediately.
timed schedule is a version of schedule that causes a message
to execute on the local node at a precise time — after a
given number of milliseconds. This time requirement overrides
whatever other strategy the scheduler uses to order messages.
But in general the scheduler may use an implementation specific
algorithm for scheduling incoming messages. The acceptable
values for the priority argument are also implementation spe-
cific and are only relevant insofar as they affect that particular
scheduler. The scheduler even has permission to drop remotely

received messages — legal because the DTM model is defined
in terms of lossy channels. However, the scheduler is expected to
follow certain rules. It must respect the relative order of all token
messages produced by during the execution of a single atomic
token handler. Thus two consecutive schedule commands in a
handler will always have their order preserved.

• bcast(Ti, data . . .) bcast is a version of schedule which, instead
of handing the token message off to the local scheduler, broad-
casts it to the radio neighbors of the node running the executing
handler. The message may subsequently be received by one
neighbor, several neighbors, or none, and the DTM model does
not assume ACKs in the communication protocol. This message
loss must be dealt with by the executing token machine. At its
core, DTMs provide only simple single-hop broadcast, nothing
more. More complex communication primitives are built up from
there (see Section V-A).

• is scheduled(Ti)
• deschedule(Ti)

is scheduled and deschedule allow query and removal of token
messages that are waiting in the scheduler. is scheduled only
reports the presence or absence of a given token — not the
number or timing of token messages affiliated with that token.
Similarly, deschedule removes all messages with a given token
name.

• present(Ti)
• evict(Ti)

DTM does not specify how handlers interact with their own
private memories — it is expected that they will have appropriate
load and store operations — but it does specify the interface
into the nodes’ token store as a whole. present queries the
local node’s token store for the presence of a token of a given
name. evict removes the token, if present. When a token name
Ti is evicted, the corresponding token object frees its private
memory — no record of the token’s presence is kept. If a token
handler evicts itself while executing, the eviction occurs upon
the handler’s completion.

IV. TOKEN MACHINE LANGUAGE

In this section we describe a realization of the DTM model —
the Token Machine Language (TML). The DTM model provides
the execution model; TML fills in set of basic operators and a
concrete syntax for describing handlers. The language used in TML
for the bodies of handlers is a subset of C extended with the
DTM interface described above (schedule, evict, etc). This subset
disallows data pointers, allows only fixed-length loops, and uses
the scheduling of tokens as its only procedure call mechanism.
Conditionals are permitted, but they can make the execution time
of a handler undecidable (but still bounded).

Named fields such as (int16 x, int32 y) replace the un-
differentiated blocks of bits described in the DTM model — both
for the handler arguments (the token message payload) as well as for
the token object memories and the shared memory. Data in the token
object’s private memory can be statically allocated by declarations of
the form: stored int x, y; (initialized to zero). Data shared
by all tokens is declared as shared int z;. TML also allows
trailing arguments to handlers to be omitted with the understanding
that they will take on a zero value. This makes some scheduling
and broadcasts of token message more efficient. Here is a sample of
nonsense code showing what a token declaration looks like.



shared int s;

token Red (int a, int b) {
stored int x;
if ( present(Green) )

x = 39;
else {

x += a + b;
timed schedule Red(500, s, a);

}
}

The current prototype TML implementation targets the
NesC/TinyOS environment. The DTM interface (bcast,
schedule, etc) becomes a TinyOS module (DTM.bcast,
DTM.schedule, and so on). Handlers are compiled into individual
NesC commands. Our TML compiler provides certain guarantees
for generated NesC code; it will conform to the DTM execution
semantics — handlers will terminate, programs will not crash motes,
and invalid memory references are impossible due to the lack of
pointers in TML. There is, however, nothing to stop the user from
bypassing our TML compiler and manually writing code against
our DTM library. They would then be responsible for respecting
the constraints of the DTM model, or at least breaking them in
controlled ways.

Token Namespace in TML: The token store is the only place for
dynamic memory allocation in the system, which does not even have
a call-stack. In order for programs to make best use of the token store,
they need a way to create an arbitrary number of token names rather
than just those that occur in the program text. Thus we allow unique
“subtokens”. If a program consists of token declarations for tokens
{Red, Green, Blue}, the user may also reference Red[11] and
Green[32]. All subtokens of Red use the same handler, but have
their own token object in the store and thus keep their own private
memories.

Handlers then need a way to refer to the number of the subtoken
currently executing. For this reason we allow a syntax similar
to component parameterization in NesC. When declaring a token
handler we write “token Blue[id]() { ...”. The variable id
refers to the numeric index of the subtoken currently invoked. Calling
(scheduling) a token without a subtoken index is the same as using
index 0.

Subtokens are analoguous to constructing multiple instances of a
token “class”. Subtoken indices are thus a form of pointer in TML,
but one that uses a consistent virtual address space across all nodes
in the network. They can be used to allocate variable amounts of
storage, or as we will see in Section V-A, to keep gradients from
overlapping.

A. Returning Subroutines

As our first example of systematically building abstractions on
top of TML, we will now add subroutine calls with return values.
These are a staple of normal procedural programming. But the DTM
equivalent would be schedule operations that carry a return value.
We must exclude these from the DTM model to keep our atomic
actions small and fast. (Besides, our model has only one dynamically
allocated structure, the token store; a call-stack would constitute
another.)

As a user, however, one would like a token handler to be able
to invoke another handler get back a return value. We enable this
feature by building returning handler-calls on top of core TML using
a continuation passing style (CPS) transformation. This is our answer
to the issue of split-phase vs. blocking operations. We circumvent

the issue by having implicitly split-phase calls. The user simply uses
subcall as below, and the CPS transformation splits their handler
at that point, producing a pre-subcall and post-subcall handler. The
programmer must understand that when they use this facility they may
break the atomicity of their handler — they are really using syntactic
sugar for multiple handlers. This could require freezing all the live
variables at the subcall-point, storing them in the continuation token
object, and restoring the context again in the post-subcall handler (the
continuation token handler), which poses efficiency concerns. As an
example, consider the following simple code snippet.

token int Red(int a) {
stored int y = 0;
schedule Blue(4);
y = subcall Green(3);
bcast Red(a);
return y;

}

The token handler for Red is transformed so that it stops at the
subcall to Green; see below for the resulting TML code. At the
stopping point, Red allocates a continuation object in the token store.
The continuation is given a unique name (e.g. RedK) and associated
with a new compiler-generated token declaration containing the code
truncated from Red’s handler. This continuation must be invoked
somewhere; thus the CPS transformation requires that every handler
called via “subcall” take an extra argument naming a continuation
to invoke on its return value. Thus, when Green is called it is
passed the (sub)token name of its continuation (RedK[...]), which
is equivalent to a pointer to that continuation.

The generated code below is unpleasant because it must invoke
the continuation handler in two different modes: first, to allocate
a continuation object in the token store; and second, to invoke
the continuation. The INVOKE call to RedK takes advantage of
the fact that the token message payload is really just a fixed size
buffer, and omits unused trailing arguments (which become zero).
The unsightliness of this code is acceptable because it is automatically
generated and not intended for human consumption.

token int Red[id](int a) {
stored int y = 0;
schedule Blue(4);
schedule RedK(ALLOC, a, y);
schedule Green(3, RedK[id]);

}

token RedK[id](int mode, int[2] freevars) {
stored int a, y;
if (mode == ALLOC) {

a = freevars[0]; // captured a
y = freevars[1]; // captured y

} else if (mode == INVOKE) {
y = freevars[0]; // returnval
bcast Yellow(a + y);

}

token Green(int x, tokname k) {
...
returnval = ...;
schedule k(INVOKE, returnval);

}



Performing a CPS transformation on TML is straightforward
because of TML’s simplicity and clear semantics. Doing the same
for general NesC code would be quite difficult. First, NesC has
multiple execution contexts: tasks and events. Second, TinyAlloc is
not an convenient mechanism for dynamically allocating and invoking
continuation objects.

CPS is well studied in the literature [7], [11], [18]. There are a
number of optimizations that can make it more efficient, especially
in the case of TML where we can perform whole program analysis.
Some techniques minimize the number of continuations created and
the circumstances in which they must allocate memory. Further, in the
case of TML we can optimize the subcall abstraction layer without
breaking the core DTM semantics in the following way. We permit
the implementation to choose “direct calls” (i.e. NesC’s “call”) to
non-recursive subroutines, rather than going through the scheduler.
This is similar to procedure inlining. In our case, since the execution
time of each token handler is bounded by a statically known quantity,
we can compute an upper bound on the time cost of a non-recursive
subroutine call. We then choose to “inline” or not based on the
constraints of the scheduling algorithm. For example, we may simply
set a maximum desirable atomic action duration, and “inline” subcalls
up to that maximum action duration.

Invoking split-phase TinyOS operations: Many operations in
TinyOS are split-phase. We expose these split-phase operations as
TML “blocking” operations using our CPS transformation described
above. For example, consider reading data from a sensor in TinyOS.
The interface consists of a getData command and a dataReady
event. In TML we expose a simple sense operation which we treat like
a subcall. The handler is split, the code before the sense becoming
the getData portion, and the code after becoming the dataReady
portion.

Unfortunately, event-invoked continuations may occur at any time.
Our scheduler depends on complete control over timing handlers.
(Otherwise, the scheduler cannot promise meet deadlines for tokens
scheduled with timed schedule — the processor might be busy with
an unanticipated action.) For this problem our work-around involves
pushing the continuation code out of the TinyOS event handler (e.g.
dataReady) and into its own, proper, token handler. The TinyOS
event handler then schedules the continuation token with highest
priority.

However, a small (and predictable) amount of time is lost to
the TinyOS event handler. Indeed, because TML is not a operating
system and instead runs on top of TinyOS, it will always suffer
time-leaks to event firings in the TinyOS subsystem. In reality, our
current implementation performs only approximate timing. We make
a hand-tuned estimate of the running time of token handlers based
on only their TML-code, erring towards generous time allotments.
If we underestimate the running time of an atomic action, there
is a possibility that a timed schedule will land slightly off. We
believe that such approximate timing is good enough for most sensor
networks applications. In future work we may attempt to improve
timing by enabling abortion of atomic actions when they run over
their time-allotments.

V. EXAMPLE APPLICATIONS OF TML

In this section we will explain several example usages of TML.
We will begin by adding a gradient interface to TML using a very
simple program transformation, just as we did in our implementation
of the subcall keyword. We will thus have built a small “gradient
language” on top of core TML, one which provides a collection
of gradient network coordination operations that mesh naturally

DTM

  High level language

TinyOS

 gradients  subcalls
   other
extensions

TML

Fig. 2. The ingredients in the TML system. With Token Machines, the
implementation process is bidirectional. We build TML up by enriching it with
features like gradients, while compiling down from a higher level language.
DTM is the underlying abstract model implemented by TML, and TinyOS
provides the run-time environment.

with the token-oriented semantics of TML. This sort of lightweight
language building is intended to represent typical usage for TML.
After building up this gradient layer, we demonstrate its ease of use
by writing a few simple applications. Finally, we discuss briefly how
TML is used as a target language for the Regiment compiler.

A. Gradients

Gradients are a general purpose mechanism for breadth-first explo-
ration from a source node. In simplest form, a gradient establishes a
spanning tree that tells all nodes within the gradient how to route to
the source as well as their hop-count. See Directed Diffusion [14] for
an example of the utility of gradients and an overview of the design
tradeoffs in gradient implementation.

Like our subcall facility, adding gradients involves a simple pro-
gram transformation that adds code and implicitly appends extra
arguments to token handlers. The extra arguments carry gradient
information such as hop-count and version number. We use an
interface consisting of four operations.

• gemit(Ti, data . . .)
gemit is a version of bcast which begins a gradient propogation
from the current node. Gradient equality is determined by
token name. Each node that joins the gradient will fire the Ti

token handler. Subtokens are used to achieve overlapping, non-
interfering gradients that use the same token handler.

• grelay(Ti, data . . .)
grelay is a version of bcast which continues the propogation
of a gradient from the current node. Grelay fails silently if the
named gradient has not been received.

• greturn(Tcall, Tvia, Taggr , data . . .)
Greturn allows data to be propagated up gradients to their roots,
with optional aggregation along the way. A greturn call sends
data up the via gradient, and fires the call token handler on
the data when it reaches the source. The aggr argument can be
NULL, indicating no aggregation, or it can name a token handler
of two arguments that can aggregate return values on their way
to the source.

• dist(Ti)
• version(Ti)

We do not expose parent pointers through the gradient inter-
face, applications should not depend on the details of gradient
implementation (e.g. single vs. multiple parents). But user code
can use dist to become aware of its distance from the source



of a particular gradient. Further, if a gradient is re-emitted from
a source node (as is often the case) the user code should be
able to differentiate the different generations of gradient. To this
end we allow the user to query the version of a gradient it has
received. This is useful for performing initialization the first
time a gradient is received. Both dist and version return -1 if
the named gradient has not been received at the local node.

The above interface does not commit to a particular spanning
tree selection or maintenance algorithm. The developer will want
to choose a gradient implementation appropriate to the application.
Ideally the gradient-augmented TML compiler should expose a set
of choices of gradient implementation that covers the design space
outlined in [14], but our current prototype compiler provides only
simple, single-parent, link-quality unaware gradients.

B. Timed Data Gathering

This rudimentary example shows how to use the gradient interface
to sample each node’s light sensor . It uses a couple of simple
keywords not mentioned above. The startup declaration indicates
that the Gather and GlobalTree tokens will be scheduled when
the node is first turned on. The base startup keyword is similar,
but only applies to the base-station node in the network. Also
BaseReceive is predefined token handler supported only on the
base-station, and used to return results to the outside world.

startup Gather, GlobalTree;
base startup SparkGlobal;

token SparkGlobal() {
gemit GlobalTree();
timed schedule SparkGlobal(10000);

}

token GlobalTree() {
grelay GlobalTree();

}

token Gather() {
greturn(BaseReceive,

GlobalTree,
NULL,
subcall sense light());

timed schedule Gather(1000);
}

This program emits a gradient from the base-station, which relays
itself until it reaches the edge of the network, and refreshes itself
every ten seconds. Once per second, every node fires the Gather
token which uses the globally present gradient to route data back to
the base-station.

C. Distributed Event Detection

Consider the problem of local event detection with unreliable
sensors. We cannot trust the reading of a single sensor, but if several
sensors within an area all detect an event, an alarm should be raised.
Here we solve the problem by spreading out a small two-hop gradient
from every node when it detects an event. When these gradients
overlap sufficiently, the alarm is raised. This program assumes the
declarations above, establishing the GlobalTree.

shared int total activation;

token EventDetected () {
emit AddActivation[MYID](1);
schedule AddActivation[MYID](1);

}

token AddActivaton[sub] (int x) {
if ( dist(self) < 2 )

relay AddActivaton(x);
total activation += x;
if (total activation > threshold)

greturn(BaseReceive, GlobalTree,
NULL, ALARM);

timed call SubActivation[sub](1500, x);
}

token SubActivation[sub] (int x) {
total activation -= x;
if (total activation <= 0) {

evict AddActivation[sub];
evict SubActivation[sub];

}
}

We keep the individual gradients from colliding by using subtokens
for AddActivation and SubActivation (indexed by the ID of the node
emitting the gradient). However, their overlap is still seen through the
shared variable total activation. This demonstrates the utility
of lightweight gradients spawned and destroyed from arbitrary points
in the network.

D. Leader Election
We will now build a reusable leader-election component in TML.

All the nodes that invoke ElectLeader(Ti) will participate in the leader
election for token Ti. One such node will eventually be decided
leader and receive an Ti token. Multiple leader elections can proceed
concurrently in the network; this is because ElectLeader(Ti) uses
subtokens indexed by Ti for all of its computation. The problem of
garbage collecting dead tokens is ignored for the purpose of this
example.

shared int winner;

token elect leader(tokname T) {
int current = winner;
if (current == 0 || current < MYID) {

winner = MYID;
timed schedule Confirm Fire[T](5000, T);
emit Compete(MYID, T);

}
}

token Compete(int id, tokname T) {
if (winner == 0) {

winner = MYID;
timed schedule Confirm Fire[T](5000, T);

}
if (version(Compete) == 0 || id > winner) {

winner = id;
relay Compete(id, T);

}
}

token Confirm Fire[sub](tokname T) {
if (MYID == winner) schedule T();

}

E. Compiling Regiment

As a final application example we discuss our Regiment[17]
compiler which targets TML. Regiment is a macroprogramming
language in which a high-level program manipulates “regions” of
sensor data as values in the language. Individual nodes in the network
appear as data streams, and regions are groupings of these streams as
designated by the programmer using a number of different criteria.
The program operates over these streams and regions, performing



Fig. 3. The simple component structure of the TinyOS TML implementation.

actions which must be translated into node-level actions on local
data. The resulting node behavior can be complex and difficult to
reason about directly.

TML helps bridge this semantic gap by virtue of token-holders
forming natural groups. Every expression in a Regiment program
which evaluates to a region value gets assigned a formation token and
a membership token. Every node that holds the membership token at
a particular time is a member of region at that time. Formation tokens
on the other hand, initiate the work of constructing or discovering the
region. Formation tokens also have constraints on where and when
they need to fire. Because of Regiment’s clear, high-level semantics
we can reason about where and when all of these events need to take
place. Once this is done, TML makes it straight-forward to translate
region-logic into token-logic.

VI. STRUCTURE OF THE TML RUN-TIME

First we will examine the component structure of our Token
Machine run-time. A complete TML program compiles to produce a
single module conforming to the interface TMModule. This compo-
nent provides only a single method, process token, which takes
a token and runs the appropriate handler. Each token handler becomes
a single command in the generated code. The process token
message just looks at the type of the token dispatches appropriately.
The rest of the system uses this TMModule, and handles the work
of transporting tokens, the TMModule needs only to process tokens.
This simple two component assembly is shown in Figure 3.

As described in Section V-A the gradient communication exten-
sions can be built on top of core TML. But because gradients are
an integral part of our use of TML, we choose to implement the
gradient API directly in TinyOS. Hence you see commands emit,
relay, and return home listed in the TMComm interface. Most
of the other methods appear exactly as they did in the discussion of
TML’s API.

However, the current TML implementation cuts one corner. Rather
than each token handler having an arbitrarily structured private
memory, in the current implementation each token handler stores
exactly one cached copy of the corresponding token message argu-
ments. Hence, get cached and set cached are the only access
between a token handler and its stored memory. For example, if the
user code needs information about parent pointers, hop counts, or
version numbers it acquires it by using the get cached method
and extracting that information from the cached token. Stored fields

The shared memory, on the other hand, is allocated inside the
TMModule component and need not appear in the interface between
the two components.

A. BasicTMComm

The component used to provide the TMComm interface in the cur-
rent TML implementation is called BasicTMComm. This component
contains the scheduler and implements the communication interface.
The scheduler maintains a queue of incoming tokens ordered in a
way that respects timed tokens. Message reception events trigger
event handlers which unpack the token from the message (currently
one token per message), and place it in the queue. A separate task
consumes messages from the queue, invokes process token, and
sets timers to schedule future consumptions.
BasicTMComm contains all the logic necessary to implement

gradients. That is, none of it leaks into the TMModule. Emission
is simply broadcast (plus book-keeping for counters and versions).
Further, returning values via gradients requires that BasicTMComm
route messages along the spanning trees. It does this by inter-
cepting the message receives and never calling the TMModule’s
process token unless the return message has reached the root
of the spanning tree.

VII. EVALUATION AND DISCUSSION

TML is currently implemented as a high level simulator and as a
compiler targeting the NesC/TinyOS environment. The mapping from
Token Machines onto NesC was discussed in Section IV. Overall, it
took relatively little effort to map TML into TinyOS because TML
is not a mechanism so much as a discipline.

Our current compiler has some shortcomings with respect to the
features laid out in this paper. Namely, the current implementation
implements subcalls but makes all subcalls “direct” (as described
in IV-A), and thus circumvents the necessity of the CPS transforma-
tion. As a result, we must manually insure that handlers complete
in a relatively short time. This part of the implementation will be
corrected in the near future.

Code size for compiled TML code is very good. Only a small
constant factor size increase is added to the TML source when
translated to NesC. The run-time support (DTM component) is also
relatively lean. When compiled for the Mica2 mote, it consumes only
8836 bytes of ROM. RAM usage is worse: 817 bytes, including
a token store of 320 bytes. Both RAM and CPU usage suffer as
compared to “equivalent” native TinyOS code. This is because of
the overhead of running the scheduler component and unnecessary
copying of buffers. We believe that there are many optimizations yet
to be exploited which can reduce memory redundancy. Future work
will move in this direction.

What we have learned thus far from our use of TML is that its two
important qualities are the atomic action model of concurrency, and
the fact that communication is bound to persistent storage (tokens).
The former precludes deadlocks and makes reasoning about timing
extremely simple. The later essentially gives us a way to refer to
communications that have happened through the token they leave
behind. Also, tokens give us some of the benefits of “viral agent”
type models of ad-hoc distributed computing (as seen in [5]), without
the overhead. They can be seen as a lightweight version of this agent-
oriented model.

Future Work and Conclusions

In the future, we will explore more dynamic alternatives for TML,
including dynamic network retasking. TML programs are modular
and conducive to division into “code capsules” similar to those
employed by Maté. Ultimately, we concur with the position espoused
in [22] that there should be separate representations for the end-
user programming model, the code transport layer, and the execution



engine. Ideally, the user program should be compiled to a concise
bytecode supported by a pre-installed virtual machine. We will look
into targetting a virtual machine rather than native code, perhaps Maté
itself.

We intend, however, to keep our focus on whole-program com-
pilation. There are numerous optimizations (not described in this
paper) currently under development that depend on whole program
optimization. If we can determine all call-sites for a token handler, it
is a great benefit. For example, unused arguments to token handlers
can be eliminated (including automatically generated ones such as
continuation and gradient arguments). Also the lack of pointers in
TML results in a lot of unnecessary copying, some of which can be
eliminated by a compiler that has access to the whole program.

We are also working on incorporating a token based routing
scheme, allowing operations such as “route a Green token to all
holders of a Red token”. Eventually, we will also look at incorporating
a larger array of established distributed algorithms in DTMs and
TML. For example, we would like to incorporate quorums and
consensus algorithms in a token-oriented manner.
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