Building Usable Menu-Based Natural Language Interfaces To Databases

Craig W. Thompson, Kenneth M. Ross,
Harry R. Tennant and Richard M. Saenz

Central Research Laboratories
Texas Instruments Incorporated
Dallas, Texas

ABSTRACT. Natural language interfaces to data-
bases are not in common use today for two main
reasons: they are difficult to use and they are
expensive to build and maintain. This paper
presents a functional overview of a new kind of
natural language interface that goes far in

overcoming both of these problems, The
"ease-of-use" problem is solved by wedding a
menu-based interaction technique to a
traditional semantic grammar-driven natural

language system. Using this approach, all user
queries are ‘"understood" by the system. The
"creation and maintenance problem" is solved by
designing a core grammar with parameters
supplied by the data dictionary and then
automatically generating semantic grammars
covering some selected subpart of the wuser's
data. Automatically generated natural language
interfaces offer the user an attractive way to
group semantically related tables together, to
model a user's access rights, and to model a
user's view of supported Jjoins paths in a
database.

1.0 INTRODUCTION

One major goal of much work done in AI and
computational linguistiecs in the last 15 years
has been to make natural language interfaces tc
software that naive wusers could use.
users might be new users or occasional users or
users who don't want to use a formal query
language. The motivation has been that people
know a natural language and won't forget how to
ask questions in it. The assumption has been
that the burden is on the computer to
"understand" the user's naturally phrased query

Naive

43

or command and take some appropriate action.
Most natural language interface work has
targetted on database systems. Yet, only a few
commercial natural language interfaces are
available today, including the Intellect system
by Larry Harris of AI Corporation, Straight Talk
by Gary Hendrix of Symantec, and Pearl by Roger
Schank of Cognitive Systems. Two good reasons
explain why: first, existing systems are brittle
and users are often frustrated in using them;
and second, natural 1language interfaces are
expensive to build and maintain.

This remainder of this paper 1is structured as
follows: The rest of section 1.0 motivates and
describes the general approach we have taken to
solving the two problems with existing natural
language systems. Section 2.0 describes the
architecture of the implemented system at a
functional level. Section 3.0 discusses the
advantages and limitations of the approaches
taken here.

1.1 A SOLUTION TO THE 'USABILITY' PROBLEM

In one of the few evaluations of a natural
language interface system, Tennant 1980 found
that a major problem with PLANES was that, even
after a training session where the capabilities
and limitations of the system were explained to
users, users quickly developed negative
expectations concerning what the linguistic and
semantic coverage of the system was. That is,
because PLANES had a one third error rate on
even simple queries, users did not ask more
complex queries, many of which could be handled
by PLANES., Tennant also found that users were
unable to distinguish between the limitations in
the system's conceptual coverage and the
system's linguistiec coverage. Users did not
Successfully adapt to the system's limitations
after some amount of use because there was no
clear path that naive users could use to 1learn
these limits., Problems in using PLANES rendered
users unable to successfully solve many of the
problems they were assigned as part of the
evaluation of PLANES, even though these problems
had been specifically designed to correspond to
some relatively straightforward qu«ries -that
PLANES could understand. These inferences chout

PLANES' capabilities resulted in much user
frustration because of their very limited
assumptions about what PLANES could understand.
The coverage mismatch problem pointed out by
Tennant is a general problem that must be faced
by any natural language interface.

There are three traditional approaches to
solving the coverage mismatch problems mentioned
above. The first is a set of training sessions
to teach the user the syntax and oconceptual
coverage of the system. Interestingly, users of
Harris' INTELLECT system are told that certain
words (like LIST and GROUP BY) are keywords.
However, there are several problems with this
approach. First, it does not allow untrained
novices to use such a systen. Second, it
assumes that infrequent users will remember what
they learn about the coverage of the system.
Third, training sessions can only give the user
a partial idea of coverage. The second approach
to solving the coverage mismatch problem is to
extend the coverage of the system to the point
where practically all inputs are understood. By
doing this, most sentences that are input will
be understood and few negative expectations will
be created for the user. In natural language
interfaces, the design methodology has often
been to trap users' queries that could not be
interpreted by the system, analyze them, and
then add capabilities to the system to cover the
input. Unfortunately, this methodology often
results in spotty coverage, so that a similar
input may not be covered and users have trouble
generalizing what is and what is not in the
scope of the language. So this approach ecan
actually contribute to the problem of allowing a
user to generalize about the coverage of the
system. The design goal of covering every user
input has the additional disadvantage of being
very open-ended. Large grammars result and
there is no clear criteria to tell the system
implementer when he 1is done building the
interface. The third approach to solving the
coverage mismatch problem is to engage the user
in a "clarification dialogue" whenever his query
is ambiguous, incomplete, or otherwise outside
of the bounds of the coverage of the system.
This approach was explored in Codd's Rendezvous
Codd 1978 . Here too, there are problems.
Clarification dialogues require the user to read
restatements of their query and users have some
trouble comparing restatements with their

original phrasing.

we will apply a technique that
uses current technology (current grammar

formalisms, parsing techniques, etec.) to make
natural 1language interface systems meet the

criteria of usability by novice users, To do
this, user expectations must closely match
system performance. Thus, the interface system
must somehow make clear to the user what the
coverage of the system is,.

In this paper,

The NLMENU System, described in this paper, is a

44

menu-based natural language

Rather than requiring the
user to type his input to the natural language
understanding system, he is presented with a
constellation of menus on the upper half of a
high resolution bit map display. Sample screens
for the NLMENU system are included at the end of
the paper. (See Figures 1-3). Using an
interaction technique of his choice (a mouse,
speaker-dependent speech, keyboard commands, or
typing), the user can choose the words and
phrases that make up his command or query. The
user chooses items from "active menus", which
are highlighted in the figures. As he chooses
items, they are 1inserted into the 'sentence'
window on the lower half of the screen. Some
sample sentences follow:

grammar-driven
interface system.

Find the average weight of parts whose part
color is red or blue and which are supplied
by suppliers whose supplier status is
greater than 10.

Find coursef# and description of courses taught
by instructors named Thompson or Ross and
whose prerequisites are courses whose course
title is Structured Programming.

Delete parts whose part status is between 10
and 20.

As a sentence is constructed, the active menus
and items in them change to reflect only the
grammatically legal choices, given the portion
of the sentence that has already been input. At
any point in the construction of a natural
language sentence, only those words or phrases
that could legally come next are displayed in an
active menu for the user to select. Thus,
sentences which cannot be processed by the
natural language system can never be input to
the system. By retaining both active and
inactive menus in the display, both the scope
and limitations of the system are made clear to
the user. Thus, the set of statable queries
exactly defines the linguistic and conceptual
coverage of the system. This approach solves
many of the problems having to do with
"ease-of-use" of natural language interfaces.

1.2 A SOLUTION TO THE 'PORTABILITY' PROBLEM

This paper also contributes to the solution of
the second problem, of making natural language
interfaces easy to build and maintain, in the
very important special case of relational
databases and in the context of a
grammar-driven, menu-based interface driver. 1In
this context, this paper addresses the following
problems: existing natural language interfaces
to databases are seldom portable; most are
application-specific. They take from man-weeks
to man-years for a specialist to build. They
are not robust with regard to changes in the
data they are interfacing to. They are hard to
debug. And there is no established way to
guarantee that they cover the desired data or

the functionality of the target computer system.
So, using existing approaches, natural language
interfaces to databases will be built only for
important database applications. Applications
must justify the expense.

Section 2.2 describes an implemented system
which automatically generates natural language

interfaces to relational databases. The
interfaces are for use with an NLMENU
grammar-driven, menu-based system. The basic

idea is that domain specific parameters are
elicited interactively from a wuser and then
substituted into a domain independent natural
language core grammar and corresponding lexicon
and a semantic grammar and lexicon result.
Together, the =semantic grammar and lexicon
define a natural 1language interface to some
semantically related set of database tables.

Interfaces that have been built with the
techniques deseribed here include versions of

well-known experimental natural language
interfaces PLANES, LUNAR, LADDER, TQA,
RENDEZVOUS, and INTELLECT/EMPLOYEES (original
data is only available for LADDER), In

addition, we have built NLMENU interfaces to
several TI Internal NLMENU databases; some
personal databases like MY CONFERENCES and MY
CITATIONS; some toy databases like Date's
SUPPLIER-PARTS database Date, 1981 , a JOBSHOP
database, a BASEBALL database and a UNIVERSITY
database; and the SYSTEM RELATIONS database.

of
the

number
in

several
been

In the past
researchers have
portability issue. Kaplan 1979 , Harris
1979 , Hendrix and Lewis 1981 , and Grosz et
al 1982 all provide insights into some aspects
of portability. Kaplan describes a portable
system in which an expert can port to a new
domain in a matter of hours. Harris' Intellect
has been ported to a variety of applications.
It takes a system person a day to build a bare
bones interface and a month is needed to reach a
finished product. Both Hendrix and Grosz
describe a prototype system, first called Ted
and later Team, which allows a database expert
who is not necessarily a natural language expert

years a
interested

to build new interface. They describe an
acquisition dialogue in which the designer
interactively specifies 1lexical information
(synonyms, antonyms, verb conjugations,
+-human), and also database structural
information (like what attributes are numeric).

This information provides parameters to a
pragmatic grammar. None of the papers above

give the reader any real insight into how expert
a user had to be to build an interface, how long

it took to build one, whether it was easier to
build some interfaces than others, and whether
the resulting interfaces were usable.

Our work differs from past work in two ways:
first, we concentrate on crafting a small,
expressive, carefuly designed core grammar and

45

lexicon., We provide a guided path towards
expressing a query, but not a general
paraphrasing capability. The grammars and
lexicons produced by the "Bulld Interfaces"
interface (see below) are for use with an NLMENU
system and would be very inadequate in
traditional systems. The principal reason is
that they are purposely engineered to provide
only a limited set of grammatical and 1lexical
ways of expressing a statement. They are aimed
at taking advantage of a person's ability to
understand a fragment of natural language
written in a limited language and at guiding him
to express himself in that limited language.
There is no intent to cover any more natural
language than a domain requires, so the problem
of building an Interface is not open-ended.
Second, end-users can Build interfaces in a
short period of time without needing to become
familiar with grammars and lexicons. The
interface specification dialogue itself is
NLMENU driven. It makes no wuse of linguistie
information but makes heavy use of the data
dictionary. In the simplest case, a user can
build a new interface simply by choosing from a
menu a set of tables that he wants the interface
to cover. Automatically generated interfaces
are quite usable: people who have never seen a
lisp machine before can formulate interesting
queries using automatically generated natural
language interfaces, as often happens in our
demos,

2.0 SYSTEM ARCHITECTURE

The system described in this paper was
prototyped on LMI lisp machines, The prototype
served as a specification for a commercial
product, written in C, which will be available
on the 8088-based TI Professional Computer and
which interfaces the menu-driven natural
language interface technology to Oracle's SQL.
The prototype NLMENU system is implemented in
Lisp Machine Lisp and consists of the following
software components: a window management system,
a target 1lisp machine relational dbms, a parser,
an NLMENU driver, a General Sessioner and a set
of NLMENU driven interfaces including various
natural language interfaces, a GUIDED SQL
interface, and a BUILD INTERFACE interface.
Each NLMENU-driven interface consists of a
grammar, a lexicon, a set of experts, and
possibly a target software system. This section
describes each of the components in turn. The
significance of the more important components is
discussed in section 3.0.

2.1 THE BASIC NLMENU SYSTEM ARCHITECTURE

The WINDOW SYSTEM, including the menu subsystem,
is fully described in documentation from Lisp
Machines Incorporated. It 1is based on
"flavors", an object-oriented, hierarchical data
structure with message-passing that is available
in newer Lisps. The window system contains

primitives for building various kinds of menus
and for building constraint frames of menus and
windows like the ones in NLMENU screens.

Two target RELATIONAL DBMS's have been
interfaced to in the prototype NLMENU system:
Oracle's implementation of SQL and a prototype
relational dbms on the lisp machines, which uses
a relational algebra,

The PARSER is a "modified" left-corner, bottom
up, all paths, attributed grammar parser Ross
1983 . The modifications enable the parser to
parse a menu item (word or phrase) at a time and
to predict the set of next possible words in a
sentence, given the input that has come before.
The grammars employed in the NLMENU system are
semantic grammars Burton, 1976 written in a
context-free grammar formalism. Translation of
the sentence is done as the sentence is parsed,
using 1lambda conversion. Translations are
associated with each of the words and phrases in
the lexicon. Associated with each context-free
rule is a semantic rule indicating the order in
which the translations of the nodes to the right
of the arrow are to be combined.

The NLMENU DRIVER is an input loop which accepts
user's input (in the form of a menu choice), If
the menu choice comes from the "commands" menu,
one of the following actions is taken:

RE-START--reinitialize the screen for another
query

RUBOUT--rubout the last menu choice from the
end of the current sentence being composed

SHOW QUERY--when a completed sentence has been
entered, the translation of the query or
command into the database query language is
displayed in the output window (see Fig 2)

EXECUTE--the query is executed and the result
displayed in the output window (see Fig 3)

EDIT ITEM--a mode in which the owner of an
interface can rephrase awkwardly phrased
automatically generated menu items

EXIT--exit the driver, leaving it in the
current state, in case the user later
returns to the interface

SAVE Q, RETRIEVE Q, DELETE Q, PLAY Q--queries
can be saved, recalled (or deleted) from a
menu of saved queries, or a set of queries
can be "played" automatically for demo
purposes.

If the menu cholce is one of the active menu
items, the driver parses that choice and then
predicts the set of next legal grammar

terminals. It then refreshes a display of next
legal choices and the user chooses ane.

The NLMENU system does not store the words that
correspond to data items in the lexicon as many
other natural language systems do. Instead, a
meta category called an EXPERT is stored in the
lexicon. As an example, when a user's sentence
is "Find parts whose part color is ...", a

46

PART COLOR_EXPERT pops up a menu of legal part
colors. An expert is an arbitrary procedure
which the user may supply but which defaults to
some system supplied procedure. Three default
procedures that are particularly useful are:
present the user with a menu of data items
chosen from a closed semantic domain, or go
directly to the database and populate a menu
from the projection of an attribute, or simply
allow the user to type in a value and use the
data dictionary to validate the value the user
types. This last sort of expert is particularly
useful when the database is remote and it is
undesirable to execute sub-queries while the
sentence is being built. Experts may be much
more exotie: In our example above, on a color
monitor, an expert could pop up a color chart
and let the user choose a color from it. When
interfacing to our spatial database, we
implemented an expert that allowed a user to
pick a latitude/longitude rectangle off of a map
to specify an area.

Many systems allow ELLIPSIS to permit the user
to, in effect, ask a parameterized query. For
example, in Ladder, a query like "Find ships
whose speed is greater than 50 knots and which
are in the Mediterannean™ might be followed by
typing "30 knots", which has the effect of

re-running the query with the new parameter. In
our system, we handle ellipsis in a more
immediate way, by structure editing. To change

a "parameter", we simply move the mouse to a
phrase generated by an expert and select that
jtem., The expert which originally produced that
item is then called, allowing the user to change
that item to something else. Our approach gets
around problems of elliptical ambiguity as in
"Find ships whose status is 10 and whose speed
is over 30" followed by "20".

Since the natural language semantic grammar is
technically unrestrictedly context free and a
subset of English, ambiguous sentences can be
created. In the NLMENU system, by design,
lexical ambiguity (where one lexical item from a

given syntactic category has two or more
translations) does not occur, But structural
ambiguity can occur. In our system, if a user
tries to execute an ambiguous query, the system

offers him a menu of possible interpretations.
The interpretations are distinguished by
indentation and numbering, as in:

"Find courses which are prerequisites of
courses (1) whose course department is
Computer Science
and {2) whose course credits is 3."

"Find courses (1) which are prerequisites of
courses whose course
department is Computer Science

and (2) whose course credits is 3."

This simple approach contrasts with the standard
solution of natural language systems which is to

paraphrase a user's ambiguous query. That
approach requires a paraphraser module and also
requires a user to look at multiple paraphrases,
and people often have trouble choosing the
interpretation they want.

One interesting note about our grammar is worth
mentioning. In English, there is no really
algorithmic way to decide what the user means
when he uses conjunction and disjunction
together. Possible implementations might
include left-to-right parsing with AND and OR of
equal precedence, some AND/OR precedence rule,
some heuristic approach or a hybrid. If more
than one approach is taken, rampant ambiguity
results. One can always find contradictions to
a heuristic approach. We finally settled on the
AND/OR precedence approach found in many
programming languages (we even allow parenthesis
to override precedence), because programmer/
users are already familiar with the idea and it
is not hard to learn. We performed a human
factors experiment to verify that this approach
was reasonable and the results bore out our
conjecture that people can easily learn to use
the feature. In addition, we found it desirable
to include a reference to the thing modified in
modifying phrases (as in "whose COURSE
department is"). Although stilted, the English
is readily understood and ambiguities 1like
deciding whether "whose department is" modifies
INSTRUCTORS or COURSES can be avoided.

In addition to the above software modules, a
HELP SYSTEM is available for users. At any
point in a query, a user can get help on a menu
item or a menu itself; he can use mouse buttons
or the keyboard to make his request. For
automatically generated interfaces, the "help
message" can be automatically generated. A
message about an attribute may include its
documentation, its range if restricted, its

units if any, its format if any, ete. Help on
active menu items also displays the set of

active items that would be available if the item
were chosen. As with menu items themselves,
automatically generated help messages may be
edited by the user,

The GENERAL SESSIONER module (see Figure U) is a
top-level driver that checks a users password,
and then presents him with a menu which gives
him choices between system commands, user-owned
natural language interfaces (those that the user
created), interfaces granted to the user, and
interfaces granted to the PUBLIC, Naturally,
different users see different menus according to
their access rights to various NLMENU
interfaces. Two system-owned relations:

NLMENU-INTERFACES(owner, interface name,
target-dbms, portable-spec, grammar,lexicon,
window~-deseription)

NLMENU-GRANTS(owner, interface-name, user)

47

govern which interfaces users own and which
interfaces users have been granted access rights
to.

The GUIDED SQL choice on the general sessioner
menu allows a user to use the NLMENU driver with
a formal SQL grammar. Such a grammar is not a
semantic grammar in the sense of the natural
language grammars--that is, constraints
governing what relations and attributes can fill
identifier roles are not necessarily satisfied
as they are in the natural language NLMENU
grammars. But, by using the GUIDED SQL
interface, users can be guaranteed of making no
syntactic errors in specifying database queries
or requests. This interface is Just
representative of a menu-based grammar-driven
interface to any formal language, by no means
restricted to database query languages,

2.2 AUTOMATICALLY GENERATING A NATURAL LANGUAGE
INTERFACE

This section discusses how an end-user can build
his own natural language interface to data that
he owns or has been granted access to. The user
needs no knowledge of grammars, lexicons, the
target query language, ete., but only an
elementary knowledge of tables, keys and joins,
So a large class of users can build their own
interfaces. First, the BUILD INTERFACES
interface is discussed and operations on
interfaces are described. Then, the CREATE and
MODIFY operations are described as a means of
eliciting domain-dependent customization and
coverage parameters from the user. These
parameters are stored in a data structure called
a "portable spec". Finally, the method whereby
a semantic grammar and lexicon are generated
from a core grammar and a portable spec is
discussed.

The BUILD INTERFACES module (see Figure 5) is an
NLMENU driven interface consisting of a grammar,
lexicon, window deseription, and an underlying
semantics which defines the following
operations:

TUTORIAL--an on-line tutorial on the BUILD
INTERFACES interface

LIST INTERFACES--~list interfaces owned or
granted to the user

CREATE INTERFACE--create a new NLMENU
interface covering a set of tables

MODIFY INTERFACE--modify an existing owned
NLMENU interface

COMBINE INTERFACES--merge two interfaces

GRANT INTERFACE--grant owned interface(s) to
other user(s)

REVOKE INTERFACE--revoke a granted interface

DROP INTERFACE-~drop owned interfaces

Each of the commands has a simple English-like
syntax. An effort was made to make the keyword
phrasing of the commands compatible with SQL,

our usual target query language.

The CREATE INTERFACE and MODIFY INTERFACE
commands are the heart of BUILD INTERFACES.
Both commands operate on a (new or existing)
domain specific data structure called a PORTABLE
SPEC and interactively allow a user to fill in
slots in the structure. A portable spec
consists of a list of categories. The
categories are as follows: the COVERED TABLES
list specifies all relations or views that the
interface will cover. The retrieval, insertion,
deletion and modification relations specify
ACCESS RIGHTS on selected covered tables.
Non-numeric attributes, numeric attributes and
computable attributes CLASSIFY ATTRIBUTES
according to type. Computable attributes are
numeric attributes that are averageable,
summable, ete. A user may also choose not to
cover some attributes in an interface.
IDENTIFYING ATTRIBUTES are attributes that can
be used to identify the rows. Typically,
identifying attributes will include the key
attributes, but may include other attributes if
they better identify tuples (rows) or may even
not include a full key if one seeks to identify
sets of rows together. TWO TABLE JOINS specify
supported Join paths between tables. THREE
TABLE JOINS specify supported "relationships"
(in the entity-relationship data model sense)
where one relation relates 2 others. The TABLE,
ATTRIBUTE and INSERTION EXPERTS define user
supplied expert definitions to replace system
defaults. EDITED ITEMS provides a list of old
and new phrasings of menu items. And the EDITED
HELP provides a way for users to add to, modify,
or replace automatically generated help
messages.

Popup expert menus guarantee that the user will
choose only from legal choices when selecting
parameter values. Categories COVERED TABLES,
ACCESS RIGHTS, CLASSIFY ATTRIBUTES, IDENTIFYING
ATTRIBUTES, and TABLE JOINS all involve
consulting the database data dictionary and then
popping up various kinds of menus in which a
user selects from legal options. Unspecified
options are defaulted.

Some of the categories in the portable spec are
best specified after the interface builder has
created the interface. At that time, he can
replace menu items or help messages with
customized paraphrases. All such changes are
recorded in the portable spec in case the
interface is later modified. An interface
resulting from a BUILD INTERFACE session is

guaranteed to be valid in a sense described
below.

AUTOMATICALLY GENERATING A NATURAL
LANGUAGE INTERFACE FROM A PORTABLE SPEC

2.2.1

The function MAKE-PORTABLE-INTERFACE takes as
input a portable spee, uses it to instantiate a

48

domain independent core grammar and lexicon, and
returns a semantic grammar and a semantic
lexicon pair, which defines an NLMENU interface.

A portable spec data structure is the input to
both a MAKE-SEMANTIC-GRAMMAR and a
MAKE-SEMANTIC-LEXICON routine to be described.
These routines do not verify the integrity of
specs though they could easily be modified to do

s0. Instead, it is assumed that the component
that provides the parameters has done this
validation., This is guaranteed to be the case

when a portable spec is specified using the
BUILD INTERFACES interaction.

The function MAKE-SEMANTIC-GRAMMAR is defined as
follows:

MAKE-SEMANTIC-GRAMMAR (portable-spec) ~--)
semantic-grammar.

Grammar rules have two parts: a context free
rule part and an interpretation part telling how
to combine translations associated with the
elements on the right hand side of the grammar
rule to make a translation to associate with the
element on the left hand side of the grammar

rule. The basic operation of the
MAKE-SEMANTIC-GRAMMAR function is identifier
substitution. Generally this occurs in a

context of looping through one of the portable
spec categories, say non-numeric-attributes, and
substituting every relation and attribute pair
into a given rule template. So given the rule
template:

{rel)-mod --) whose-(rel)y-{attr¥-is
{rely-{attry-expert ((1 2)),
if non-numeric-attributes =
((PART city color name part#)
(SUPPLIER city name suppliert#)
(SHIPMENT part# suppliert#))

then 9 grammar rules will result. The first
will be:
PART-mod --)» whose-PART-CITY-is

PART-CITY-expert ((1 2))

Function MAKE-SEMANTIC-LEXICON works analogously:
MAKE-SEMANTI C-LEXICON(portable-spec) -9
semantic-lexicon.

Here each form being substituted into results in
a LEXICAL ENTRY consisting of a 5-tuple with
fields {category, menu-item, menu-window,
translation, help-text). The category
corresponds to a terminal element in the grammar
(that is, it appears on the right hand side, but
not on the left hand side, of one or more
grammar rules). The menu-item is a string (word
or phrase or whatever) to display as an item in
some menu-window. The menu-window identifies in
which pane a menu-item will appear. The

translation lists a fragment of code written in
the target software system. Whenever
interfacing to a new target database system,
only this portion need be re-written. At
present we have translations which map natural
language to our lisp machine relational dbms and
to IBM's SQL. An example of an instantiated
lexical rule for our example is:

(whose~PART-CITY~is

"whose part city is"

modifiers

(LAMBDA Y (%% (RETRIEVE 'PART
WHERE (MEMBER CITY 'Y))))

"The CITY attribute of relation PART has the
following documentation:

the city a part is in at the moment

and comes from the SUPPLIER-CITIES semantic
domain, which is an ordered set of
."Paris', 'London', 'Rome’', 'New York' ")

The core grammar and lexicon can be small (on
the order of 25 grammar rules and 30 lexical
entries), but the size of the resulting semantic
grammars and lexicons will depend on the
portable spec. (72 semantic grammar rules and
84 lexical entries result from instantiating the
core grammar and lexicon with the portable spec
that describes the 3 relations in the
supplier-parts database from Date, 1982 :

SUPPLIER(suppliert# name city status)
PART(part# name city color weight)
SHIPMENT(supplierd# part# quantity)

Since substitution is uniform, no rules can be
carelessly excluded. So all the tables and
their attributes will be covered. The next
section describes an algorithm that checks the
well-formedness of -generated grammars and

lexicons.

2.2.2 WELL-FORMEDNESS TESTING AND VALIDATION.

The function
(WELL-FORMEDNESS-TEST nlmenu-grammar
nlmenu-lexicon)
invokes a static collection of tests to find
bugs in either an automatically generated NLMENU
grammar and lexicon pair or a manually-generated
one, The function finds the following problems:

0 unreachable grammar non-terminals

o items that are both non-terminals and
lexical categories.

¢ unused lexical items: these are in the
lexicon but are not grammar leaves.

o undefined lexical items: these appear as
leaves in the grammar but are not in the
lexicon.

This test is clearly useful for manually
generated NLMENU interfaces, but it is also
useful for testing and debugging changes and
additions made to core grammars and lexicons.

49

In addition to finding bugs, the test can be

used at grammar-lexicon writing time: One of
the values returned by WELL-FORMEDNESS-TEST
(grammar, nil) is a list of all lexical

categories that the grammar writer must write
lexical entries for. The WELL-FORMEDNESS-TEST
was used in the development ,of a GUIDED SQL
interface as well as in debugging several core
natural language grammar and lexicon pairs.

The function (VALIDATE spec) checks to make sure
that a portable spec data structure is
well-formed and reflects an existing data
dictionary state. The categories of the spec
are verified against the data dictionary where
the definitions of tables are stored. VALIDATE
checks that specified relations and views really
are tables in the database and that the user has
the access rights reflected in the categories
RETRIEVAL RIGHTS, INSERTION RIGHTS, ete., checks:
to make sure the attributes are classified
correctly according to types non-numeric or
numeric, checks that at least a candidate key of
the relation is a (possibly proper) subset of

‘the identifying attributes, and checks the join

fields to make sure they are of the same (or
comparable) semantic data type. For rich data
dictionaries, all this can be supported. For
more impoverished ones, 1like SQL's, less
checking can be provided. For instance, since
the only data types supported (until recently)
are CHAR and NUM there can be no guarantees
provided by the system that Jjoins are over

semantically compatible domains. In our
implementation, the validate function 1is
replaced by an interactive component which

elicits only valid information reflecting the
current database data dictionary state.

An interface is provably correct if the spec is
valid and the core grammar and 1lexicon are
correct. The proof that core grammar and
lexicon covers a target underlying software
system requires arguing along the following
lines: functionality in the target language is
identified and then natural language
constructions are identified that translate to
those 1identified target functions. After
verifying coverage, the well-formedness test can
be applied to show that the core grammar and
lexicon are well-formed. No proof of
naturalness of an interface language is
possible; the naturalness of the 1interface
language can only be ascertained by human
factors testing or by reference to known results
of human factors tests.

3.0 ADVANTAGES AND LIMITATIONS

The menu approach to natural language input has
many advantages over the traditional typing

approach. Most importantly, every sentence that
is input is wunderstood. The fact that the
menu-based natural language understanding

systems guide the user to the input he desires

is beneficial for two other reasons. First,
confused users who don't know how to formulate
their input need not compose their input in a
vacuum. They only need to recognize their input
by looking at the menus. Second, the extent of
the system's conceptual coverage will Dbe
apparent. The user will immediately know what
the system knows about and what it does not know
about,

Some advantages accrue because the grammars
required can be small. Firat, implementation
time is greatly decreased. Generally, writing a
thorough grammar for an application of a natural
language understanding system consumes most of
the development time. Second, it has also

proved to be feasible to put the NLMENU

on a microcomputer. Third, parse time is small,
since parse time is a function of grammar size,

Quratam
wysSvelt

Several questions arise with respect to a
menu-based approach to building natural language
interfaces. First, can users successfully use
an NLMENU interface in which they have only one
way to state their query? We have run a series
of pilot studies using Tennant's methodology for

evaluating natural language understanding
systems, All subjects were successfully able to
solve all of their problems. Comments from

subjects indicated that although the phrasing of
a query is at times stilted, subjects were not
bothered by this and could find the alternative
phrasing without any difficulty.

A second question arises: Since the size of the
lexicon determines the number of items that need
to be displayed on an NLMENU screen, is menu
size a problem? Menus must not become too big or
the user will be swamped with choices and will
be unable to find the right one. For most of
the interfaces we have generated, this has not
been a problem, since choices earlier in a
sentence tend to restrict later choices to a

manageable few. Only for interfaces with a
large number of relations (over 10, say) or with

relations with a large number of attributes
(over 20, say) do 'recognition problems' start
to occur. All our menus are scrollable. Other
interaction techniques can be used to put off
the problem. But eventually, menu size does
limit the sort of interfaces one can use the
NLMENU approach for.

The BUILD INTERFACES natural language interface
generator described here enjoys several
practical and theoretical advantages:

1) END-USERS can construct natural language
interfaces to their om data in minutes, not
weeks or years, and without the aid of a grammar
specialist.

2) The interface builder can control coverage.
He can decide to make an interface that covers
only a semantically related subset of his
tables. He can choose to include some

50

attributes and hide other attributes so that
they cannot be mentioned. He can choose to
support various kinds of Jjoins with natural
language phrases. He can mirror the access
rights of a user in his interface, so that the
interface will allow him to insert, delete, and
modify as well as just retrieve and only from
those tables that he has the specified
privileges on. Thus, interfaces are highly
tunable and the term "semantic coverage" can be
given precise definition,

3) Automatically generated natural language
interfaces are robust with respect to database
changes; Iinterfaces are easy to change if the
user adds or deletes tables or changes table
descriptions. One need only modify the portable
spec to reflect the changes and regenerate the

interface.

4) Automatically generated NLMENU interfaces are
guaranteed to be correct (bug-free). The BUILD
INTERFACES interface (see section 2.2), in which
users specify the parameters defining an
interface, insures that parameters are valid
(correspond to real tables, attributes, and
domains). A well-formedness test detects bugs
in semantic grammars and lexicons, so a core
grammar and lexicon can be debugged easily.
Once debugged, a core grammar and a valid spec
can be combined and the resulting interface will
be correct.

5) Natural language interfaces are constructed
from semantically related tables that the user
owns or has been granted and they reflect his
access privileges (retrieval, insertion, ete).
By extension, natural language interfaces become
database objects in their own right. They are
sharable (grantable and revokable) in a
controlled way. A user can have several such
NLMENU interfaces. Each gives him a user-view
of a semantically related set of data, This
notion of a view is 1like the notion of a

database schema found in network and
hierarchical but not relational systems. In
relational systems, there 1is no convenient way
for grouping tables together that are
semantically related. Furthermore, an NLMENU

interface can be treated as an object and can be
GRANTed to other wusers, so a user acting as a

database administrator can make NLMENU
interfaces for classes of users too naive to
build them themselves (like executives).
Furthermore, interfaces can be combined by

merging portable specs and so user's can combine
different, related user-views if they wish. The
ability to combine interfaces is also useful for
incrementally building up a larger interface
from a set of component interfaces.

6) Since an 1interface covers exactly and only
the data and operations that the user chooses,
it can be considered to be a "model of the user"
in that it provide a well-bounded language that
reflects a semantically related view of the

user's data and operations. Similarly, one can
easily imagine a complicated language (like sQL)
partitioned into a "ten statement SQL" core for
novice users and a collection of add-on modules
(for GRANTing or making INDEXes).

7) The last advantage is that even if an
automatically generated interface is for some
reason not quite what is needed for some
application, it is much easier to first generate
an interface this way and then modify it to suit
specific needs than it i1s to build the entire
interface by hand.

Taken together, the advantages listed above pave
the way for low cost, maintainable, easy-to-use
interfaces to relational database systems (and
to a wide variety of other kinds of software as
well). Many of the advantages are novel when
considered with respect to past work. The
significance of this work is that it makes it
possible for a MUCH broader class of users and
applications to use menu-based, natural language
interfaces to databases.

Much work remains to be done., At present, we
are beginning another round of human factors
testing. And we are beginning to explore a
number of features from traditional natural
language approaches in the context of the NLMENU
paradigm,

BIBLIOGRAPHY

Burton, Richard. "Semantic Grammar: An
Engineering Technique for Constructing Natural
Language Understanding Systems", PhD Thesis,
BBN Report #3453, BBN, Cambridge, MA, December,

1976.

Codd, E F, R S Arnold, J M Cadiou, C L Chang,
and N Roussopoulos. "RENDEVOUS Version 1: An
Experimental English Language Query Formulation
System for Casual Users of Relational
Databases". RJ2144 (29407), IBM San Jose,
January 1978.

Database
#1)

An Introduction to
edition,

Date, C. J.
Systems. (second
Addison-Wesley, 1981.

vol

Grosz, Barbara, Doug Appelt, Alex Archbold, Bob
Morre, Gary Hendrix, Jerry Hobbs, Paul Martin,

Jane Robinson, Daniel Sagalowicz, and Paul
Warren. "TEAM: A Transportable Natural
Language System". Technical Note 263, SRI

_International, Menlo Park, CA, April, 1982,

Harris, Larry. "Experience with ROBOT in 12
Commercial Natural Language Database Query
Applications". Proceedings of the Sixth

International Joint Conference on Artificial
Intelligence, Tokyo, Japan, August, 1979.

51

.Tennant, H. R., K. M.

Hendrix, Gary and William Lewis. "Transportable
Natural Language Interfaces to Databases".
Proceedings of the 19th Association for
Computational Linguistics, Stanford, June, 1981.

Kaplan, S Jerrold. "Cooperative Responses from
a Portable Natural Language Query System". PhD
Thesis, University of Pemnsylvania, July 1979.

Ross, Kenneth. "An Improved Left-Corner Parsing

Algorithm". Proceedings of COLING 82, 1982, pp
333-338.
Tennant, Harry R. "Evaluation of Natural

Language Processors". PhD Thesis, Department of
Computer Science, University of Illinois, 1980.

Ross, R. M. Saenz, and C.
Ww. Thompson. "Menu-Based Natural Language
Understanding". 21st Annual Meeting of the
Association for Computational Linguistics, MIT,
June 15-17, 1983.

commands nouns experts modifiers
Find Delete courses (specific course departments whose course department is
insert sections (specific titles> whose course title is
atiributes Instructors <specitic section departments whose section department ls
credits interests ¢specific scction#s> whose section# Is
department prerequisites ¢specific start-hours) whose start-hour is
ttle <specific courses)> ¢specific end-hours) whose end~-hour is
section® <specific sections) ¢specific roorns) whose room is
start-hour <specific instructors) ¢specific instructors) whose instructor is
end-hour Lspecific interests) (specific instructor names> whose name is
room <specitic prerequisites) ¢specific spouses> whose spouse is
instructor <specific Instructor ranks> whose rank s
name conparisons ¢specific carnpus addresses) whose campus aduress is
spouse betvscen <specific extensions) whose extension Is
rank greater than (SPBGI! ic faculty> of
campus address less than ¢speific intcrests> which are
extension greater than or equal to <specific prerequisite departm| whose prerequisite department is
interests fess than or equal to <specific prerequisite departm| whose prerequisite department?2 is
department2 equal to whose course course# is
course# whose section course# is
course#2 whose prerequisite course# Is
whose prerequisite course#2 is
whose number of credits is
which are interests of
system commands
Re-start Rubout Show query EXxecute EXxit system
Refresh Save Q Retrieve Q Dit. Q’s Play Q

course title

find instructors who offer courses whose course departnent
is DATO BASE HANAGEMENT

SYSTENS or ARTIFICIAL

is CS and uhose

IHNTELLIGENCE

Dieplay window

Figure 1:

A University Interface

52

conmands nouns experta’s.dfk T modifi "\swhuo e
suppliers t > part
J:::t fotete parts (qruﬂﬂstauor-)) whose color is
attributes shipmonts Cepecific part names> MMMM::
woight <specitic suppllers> Capecific part part#s> whose part part
ity <specific parts)> <apecific supplier citys) whose supplier city s
*::; <specific shipments> Capecific supplier names> whoss supplier name s
color <a now supplier> Capecitic supplier supplier#s> whese supplier supplier# s
name <a new part> <specific shipment part#s) whose shipment part? ls
P <a new shipment) <specific shipment suppiler #3> whose shipment suppilier# s
n::;;r# <specitic number> whose supplier status ls
status whose part weight ls
compar) sons whoee shipment quantity s
between which are shipments of
greater than which were shipped by
less than “::°'Nb
-l Ty i e e vy
equal to onnectors
and
or,
system commands
Re-start Rubout Show query [Execute] EXxit system
Refresh Save Q Retrieve Q Dlt. Q’s Play Q

Find parts which are supplied by suppliers whose supplier status is less
than 18880 and whose color is red, green, or blue

[Type ®ESED to flush additional output at rxsMOREx &% prompt)
Executing

RELATION PART-1-~(cardinality S5)

| PART # | NANE | COLOR JWEIGHT | CITY |

|P#l |nut |red | 12} London |
[P#2 |bolt |green | 17|Paris |
|P#3 |screw |blue | 17| Rome |
|P#4 |screw |red | 14| London |
P85S |cam |blue | 12{Paris |

Execution completed.

Display window

Figure 2: A Supplier-Parts Interface

53

comnands nouns experts modiflers
rind insert neighborhoods {specific neighborhood wards) whose neighborhood ward is
Uetete Change parcels <spocific neighborhood biocks whose noighbarhood block is
STiributes <a now parcel> (specific neighborhood naines whose neightortiood name Is

<a new neighborhood> ¢specific neighborhood assocla] whose nzighborhood assoclation is
<specific neighborhood census| whose neighborhood census tract is
(specific parcel wards) whaose parcel ward Is
<specific parcel blocks) whase parcel bloick Is .
<specific parcel descriptions) whose parcel description
:o‘;fp.:‘::mgspﬁ?s <specific owners> whose parcel owncrs is
height Cspecific parcel planning areas whose parcel planning area is
area in 5q ft <specific parcel subplanning ar] whose parcel suliptanning area is
gross floor area in sjcOnpar|sons <specific addresses) whose address is

ground floor arsa in between <specific zones) whose parcel zone is

sewer assessment i

school assessrnent |

assessed value in §
of stories

reater than (speciﬁc parcet lot) whose lot is
bte::‘::pia::, n v u;s than (specl!’lc parce! parcel#> whose parcel# is

ward greater than or equal to <specific parcel account#> whose parcel account# is

block less than or equal to whose parcel fand use code is

nare equal to onnectors 1 parcel state property code is
association not equal to Tl whose sewer assessinent in $ is
census tract or whose school asseszinent in $ is
description whose assessed value in $ is

owners whose # of storics is
whose # of dv/clling anits is
zystem commands

Re-start Rubout IS!)OW query] Execute EXxit systcm

{find parcels whuse area in sq ft is less than 1UBY and whose ## of stories
is greater than or equal to 3

Nusber of parsesz; |

letect * From PARCEL where (AREA_IN_SO_FT < 1009 and MUM_UF_STORIES >= 3);

Misplay window

Figure 3: A TQA-like Interface

54

Choose an NLMENU interface:

System Commands:
Tutorial

—
Guided SUL -- Oracle 3.8

Execute Saved Queries
Report Hriter

EXIT NLMENU SYSTEM

User ~ouned Interfaces:

Congressnen Toy Deno THONPSON (R-TI-2) ©1-08-83 14:49:05
+ Courses THONPSO (R-TI-2) 12-28-82 15:22:19
Courses THOUPSON (R-TI-1) 12-28-82 13:29:20
Courses THONPSON (R-S0L) 12-20-82 14:22:34
EG deno THOMPSON (A-EB) 12-20-82 14:00:00
0ST Packages THONPSON (A-TI-2) 12-20-82 14:080:00
Suppl ier-Parts THOUPSON (A-TI-2) 12-16-82 10:18:45
Suppl ier-Parts THOMPSON (R-TI-1) 12-16-82 10:35:20
Suppl ier-Parts THOMPSON (A-SQL) 12-16-82 10:56:30
TI DBHS Survey THONPSON (A-T1-2) 12-28-82 14:00:00
Upconing Cont'erences THONPSON (A-T1-2) ©B1-14-83 19:22:56
Blue File THONPSON (R-1I-2) ©3-14-83 09:51:36
T0R THONPSON (A-TI-2) @3-83-83 12:36:16
+« TOR THOMPSOH (A-S0L) ©3-03-83 12:36:16
Interfaces Granted to the wser:
Supplicer-Parts SRENZ (") 12-16-82 89:45:32
Public Interfaces:
Jobshop demo DAVIS (A-TI-1) 12-25-82 16:27:32
Jobshop demo DARVIS (R-TI-2) 12-25-82 17:10:28
Jobshap demo DRVIS (R-SAL) 12-29-82 14:09:09
Baseboll deno ROSS {R-TI-1) 12-18-82 12:40:23
Baseball deno ROSS (A-T1-2) 12-25-82 13:37:01
Basebal! deno ROSS (R-SUL) 12-18-82 12:23:24
+ = Loaded Interface
M = Manually Generated, A = RAutomatically Generated
TI = Lisp Machine translations, SOL = SOL translations

TEXAS INSTRUMENTS, INC

Figure 4: The General

Sessioner Menu

perations on lnierraces

'Sfpec Ification Categories

Tutorial List interfaces (COVERED TAELES>
Modify interface CACCESS RIGHTS)
BNAING Combine interfaces CCLASSIFY ATTRIDUTES)>
Drop interface(s) Show portable spec(s) CGOENTIFYING ATTRIBUTES>
Grant interface(s) Revoke interface CTABLE JOINS)>
Commit
Experts Operators
<new interface name) using
Cexisting owned interface name) by changing
Cexisting owned interface(s)> giving
Cexisting droppabie interface(s)> to
Cexisting interface(s)> to be
Cexisting granted interface(s)> from
{users)>
<granted users)
Figure 5: The BUILD INTERFACES Interface
Conmands
{ Re-start Rubout EXxit system

55

