
Building Virtual Sensors and Actuators
over Logical Neighborhoods

Pietro Ciciriello, Luca Mottola and Gian Pietro Picco
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

{ciciriello,mottola,picco}@elet.polimi.it

ABSTRACT
Recent trends in wireless sensor network (WSN) applications ex-
hibit increasing degrees of decentralization. This is particularly
true of scenarios where the data reported by sensors is used to con-
trol actuators affecting the environment. Implementing this control
loop in a decentralized fashion is much more complex than in main-
stream, single-sink, sense-only applications.

In this paper we describe virtual nodes, a programming abstrac-
tion simplifying the development of decentralized WSN applica-
tions. The data acquired by a set of sensors can be collected, pro-
cessed according to an application-provided aggregation function,
and then perceived as the reading of a single virtual sensor. Du-
ally, a virtual actuator provides a single entry point for distributing
commands to a set of real actuator nodes. The set of physical nodes
to be abstracted into a virtual one is specified using logical neigh-
borhoods [11, 12]. Using virtual nodes, the programmer focuses
on the application logic, rather than on low-level implementation
details. We present the programming language constructs support-
ing virtual nodes, exemplify their use, and show that they can be
implemented by making efficient use of communication resources.

Categories and Subject Descriptors
C.2.2 [Network Protocols]; D.2.11 [Software Architectures]

General Terms
Languages

Keywords
Wireless Sensor Networks, Abstractions, Middleware

1. INTRODUCTION
Wireless sensor networks (WSNs) are now becoming a cost-

effective solution to monitor the physical environment. Mainstream
WSN architectures are characterized by a single sink collecting
data reported by sensors. However, there is a growing interest in
scenarios where the WSN also affects the environment through ac-
tuator nodes [1]. These applications focus on a control loop where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-424-3/06/11 ...$5.00.

inputs are the data sensed in a given area of the system, and outputs
are the actions to be executed in a possibly different area. For in-
stance, in a building fire control system [3], illustrated in Figure 1,
sensors and actuators collaborate to perform the following:
Task 1 Actuator nodes controlling water sprinklers monitor the val-

ues of temperature and smoke sensors deployed nearby (e.g.,
in the same room).

Task 2 When temperature and smoke sensors collectively report
values above a safety threshold, actuator nodes i) operate
the attached water sprinklers in the same room as the sen-
sors, and ii) trigger the actuators operating the emergency
signals on the same floor to indicate a safe exit.

Implementing this kind of control loop in a centralized fash-
ion is generally impractical [1]. Therefore, these systems employ
a decentralized coordination of the sensing and acting activities.
This improves performance but increases complexity. The main-
stream programming frameworks are too low-level and force the
programmer to deal with the details of data gathering, bookkeeping,
and communication, instead of focusing on the application logic.
Higher-level programming abstractions are needed to deal with the
complexity of decentralized WSNs.

In this paper we address this issue by introducing virtual nodes.
Our programming constructs enable one to access the data sensed
by a given set of sensors as the reading of a single virtual sensor,
whose value is determined by an application-specified aggregation
function. Dually, one can distribute commands to multiple actuator
nodes from a single entry point, constituted by a virtual actuator.
Virtual nodes allow the programmer to focus on the application
logic by treating multiple nodes as one, therefore hiding the com-
plexity of communication and data management.

Figure 1: A building fire control application. The control al-
gorithm maps sensed inputs to output commands. The sensing
and acting tasks insist on different parts of the system.

Figure 2: The flow of information between real devices and vir-
tual sensors or actuators. Nodes belonging to the same logical
neighborhood are identified with the same dashed lines.

The set of nodes being virtualized is specified by the program-
mer, using the notion of logical neighborhood we developed in
our previous work [11,12] and concisely summarized in Section 2.
Logical neighborhoods replace the physical neighborhood provided
by wireless broadcast with a higher-level, application-defined no-
tion of proximity. The span of a logical neighborhood is specified
declaratively based on the characteristics of nodes, along with re-
quirements about communication costs. The interplay of virtual
nodes and logical neighborhoods is illustrated in Figure 2. Virtual
sensors enable data collection from the sensors belonging to a given
logical neighborhood (e.g., temperature sensors in a given room),
while virtual actuators provide a facility for sending commands to
the nodes in a logical neighborhood (e.g., emergency signals on a
given floor). Therefore, the expressive power of virtual nodes is fur-
ther enhanced by the ability to limit their scope to an arbitrary sub-
sets of nodes with desired characteristics. The key features of the
virtual node programming abstraction are illustrated in Section 3.

We built an implementation of virtual nodes using TinyOS [6].
Our programming language constructs are translated in nesC code,
which is then executed natively. As discussed in Section 4, this is
achieved by extending the translator for the SPIDEY language [12]
supporting logical neighborhoods. From a communication stand-
point, our current implementation assumes that the node requesting
the instantiation of a virtual node (i.e., its anchor) is also the one
managing communication and data collection. The message rout-
ing supporting virtual nodes could rely directly on the routing pro-
tocol for logical neighborhoods we described in [11]. However, in
Section 5 we show how this strategy can be improved for support-
ing virtual nodes, and substantiate our claims about the overhead
improvement with preliminary simulation results.

As mentioned above, logical neighborhoods provide the concep-
tual and implementation foundation for the abstractions proposed
in this paper. Therefore, they are described next.

2. LOGICAL NEIGHBORHOODS
The transmission range determines the devices a node can com-

municate with, i.e., its physical neighborhood. Instead, the nodes
included in a logical neighborhood are specified by the program-
mer based on their characteristics. Programmers can therefore still
reason in terms of neighboring relations, but retain control over
how these are established, independently of the number of phys-
ical hops between the nodes. Logical neighborhoods are defined
using a declarative language we designed, called SPIDEY. This is
conceived to be an extension (not a replacement) of existing pro-
gramming languages, and is not bound to any specific program-
ming framework. Our current language and run-time implementa-
tion is based on TinyOS [6].

node template Sensor
static Function
static Type
static Location
dynamic BatteryPower
dynamic Reading

create node ts from Sensor
Function as "sensor"
Type as "temperature"
Location as "room1"
Reading as getTempReading()
BatteryPower as getBatteryPower()

Figure 3: SPIDEY: node definition and instantiation.

neighborhood template HighTempSensors(threshold)
with Function = "sensor" and

Type = "temperature" and
Reading > threshold

create neighborhood htsn100
from HighTempSensors(threshold: 100)
max hops 2
credits 30

Figure 4: SPIDEY: neighborhood definition and instantiation.

2.1 Abstraction
The definition of logical neighborhoods is based on two con-

cepts: nodes and neighborhoods. Nodes represent the portion of a
real node’s features made available to the definition of any logical
neighborhood. The definition of such a (logical) node is encoded in
a node template, which specifies a node’s exported attributes. This
template is then used to derive actual instances of logical nodes, by
specifying the actual source of data. Figure 3 reports a fragment of
SPIDEY code that defines a template for a generic sensor and in-
stantiates one logical node by binding attributes to constant values
or functions of the target language.

A logical neighborhood can be defined using predicates on node
templates. Analogously to nodes, a neighborhood is first defined
in a template that basically encodes the corresponding membership
function, and then instantiated by specifying where and how the
neighborhood is to be constructed and maintained. For instance,
Figure 4 illustrates the definition of a neighborhood including tem-
perature sensors whose readings are above a given threshold. This
template is then instantiated so that it evaluates the corresponding
predicates only on nodes that are at a maximum of 2 (physical) hops
away from the node defining the neighborhood, and by spending a
maximum of 30 “credits”. The latter is an application-defined mea-
sure of communication costs, which exposes the trade-off between
accuracy and resource consumption up to the application. The more
credits are attached to a logical neighborhood, the higher is the cov-
erage of the system as well as the resources spent to achieve that
coverage. Other features include the use of boolean and set opera-
tors to compose predicates and templates. More details in [12].

Sending messages to a logical neighborhood is accomplished
through a modified version of the native broadcast communication
primitive, as in send(Message m,Neighborhood n), sup-
ported by a dedicated routing protocol concisely described next.

2.2 Routing
Our routing scheme for logical neighborhood is structure-less

(i.e., there are no overlays explicitly built) and works by period-
ically advertising node profiles containing node templates or por-
tions thereof. These build a distributed state space that provides
each node with enough information to reach the closest node with

create node vts from Sensor
Function as "virtualSensor",
Type as "temperature",
Reading as average(roomTempSensors) every 30

create node vss from Sensor
Function as "virtualSensor",
Type as "smoke",
Reading as average(roomSmokeSensors) every 60

float average(Neighborhood: nhood) {
sum = 0; counter = 0;
for(node in nhood) {sum += node.Reading; counter++;}
return sum/counter;

}

Figure 5: Definitions of virtual sensors.

given attributes. Advertisements are limited to small area of the
system by exploiting the redundancy among similar node profiles.

Messages addressed to a logical neighborhood contain the neigh-
borhood template, thus making explicit the part of the state space
that must be considered. This way, messages “navigate” towards
potential neighborhood members by following paths along which
the cost associated to that portion of the state space is decreasing.
Local minima in the state space are avoided by propagating mes-
sages also in non-decreasing directions, in the hope of finding new
decreasing paths towards different neighborhood members. The
credits specified when instantiating a neighborhood are attached to
each message and “spent” in navigating the state space. The routing
protocol and its performance are illustrated in detail in [11].

3. VIRTUAL SENSORS AND ACTUATORS
We now describe the programming abstractions that constitute

the main topic of this paper.

3.1 Virtual Sensors
Let us recall the fire control example of Section 1. The data

collection necessary to monitoring (Task 1) can be encoded us-
ing the SPIDEY constructs we discussed thus far by defining two
neighborhoods roomTempSensors and roomSmokeSensors
including temperature sensors and smoke detectors in a room, re-
spectively. However, the burden of collecting and processing data
coming from sensors in these neighborhoods involves non-trivial,
error-prone messaging and bookkeeping code, whose development
still rests on the programmer’s shoulders.

We simplify the programmer’s chore by enabling her to instanti-
ate two virtual sensors, as in Figure 5. Each of these virtual sensors
behaves as a normal one, but reports as its reading an aggregation
of the actual sensor readings in the specified neighborhood. Note
how we defined these virtual sensors from the very same Sensor
template we defined earlier in Figure 3. Simply, in the as clause we
bind the attribute Reading to a different, distributed data source.
The latter is represented by an aggregation function—average()
in our case—operating over a logical neighborhood passed as a pa-
rameter, e.g., either of the aforementioned temperature or smoke
neighborhoods. The programmer can also specify the rate at which
data should be gathered from the nodes, using the every clause.

Clearly, to use virtual sensors the programmer inevitably needs
to encode the aggregation semantics into an appropriate function
that embodies the processing to derive the aggregated measure, as
we have shown in average. However, this is done at a much
higher level of abstraction, where the programmer does not deal
explicitly with distribution aspects and keeping track of collected
data.

node template Actuator
static attribute Function
static attribute Type
static attribute Location
dynamic attribute BatteryPower
operation Activate(int tuning)
operation Deactivate()

create node ws from Actuator
Function as "actuator"
Type as "waterSprinkler"
Location as "room1"
BatteryPower as getBatteryPower()
Deactivate() as tuneSprinklerFlow(0)
Activate(int tuning) as tuneSprinklerFlow(tuning)

Figure 6: Definition and instantiation of an actuator node.

neighborhood template RoomSprinklers()
with Function = "actuator" and

Type = "waterSprinkler" and
Location = "room1" and
provides(Activate(int tuning) and
provides(Deactivate())

create neighborhood rs from RoomSprinklers()

Figure 7: A neighborhood including water sprinklers that can
be activated.

3.2 Virtual Actuators
In our example, when Task 1 reports values beyond a safety

threshold, Task 2 activates water sprinklers (in the same room) and
emergency signals (on the same floor). Again, these two sets of
nodes can be addressed by defining two neighborhoods room-
Sprinklers and floorEmergencySignals including the
desired devices. However, the programmer is required to explicitly
implement the distributed processing to control these nodes, e.g.,
by broadcasting to the neighborhood messages containing opcode
and parameters for the operation to be activated.

Virtual actuators simplify the control of multiple nodes, as shown
in Figure 6. When used for actuators, node templates also define
the operations a node exports to applications. Similar to attributes,
operations (e.g., Activate) are bound to a function of the target
language. A remote invocation on the exported operation triggers a
local invocation of the bound function, with the same parameters.
Accordingly, neighborhood templates may now also include oper-
ations: the operator provides yields true when evaluated on a
node that exports the operation given as a parameter. This enables
the definition of neighborhoods based not only on the state of target
nodes, but also on the operations they provide. An example with
a neighborhood containing actuators controlling water sprinklers is
given in Figure 7.

3.3 Hierarchies of Virtual Nodes
Once instantiated, virtual nodes can be used like normal ones.

This enables the programmer to recur the process and create hier-
archies of nodes, as shown in Figure 8. In our example, the two
virtual sensors of Figure 5 could be used to define a single “virtual
fire detector”, as shown in Figure 9. Here, we define a new neigh-
borhood for temperature or smoke, containing only virtual sen-
sors. If needed, the latter can be distinguished by the value of their
Function attribute. Then, we create a virtual fire detector node
vfd whose reading is a boolean stating whether a fire is detected,
based on the evaluation of the aggregation function checkFire
over the previously defined neighborhood. Using hierarchies, an
application can detect the presence of a fire or trigger the appro-

Figure 8: A hierarchy of virtual sensors. Physical sensors are
at the bottom.

neighborhood template VirtualTempSmokeSensors(room)
with Function = "virtualSensor" and

Location = room and
(Type = "temperature" or Type = "smoke")

create neighborhood vtss
from VirtualTempSmokeSensors(room : "room1")

create node vfd from Sensor
Function as "sensor",
Type as "fireDetector",
Reading as checkFire(vtss) every 60

Figure 9: Hierarchies of virtual sensors: a fire detector exam-
ple. (checkFire is a function that yields true if at least a
temperature sensor and a smoke sensor report a reading above
a safety threshold).

priate reaction by interacting only with the topmost virtual node.
An application component may not even be aware that it is actually
communicating with a virtual node. Programming is therefore sim-
plified, as a lot of the details concerned with communication, data
collection, and operation invocation are dealt with automatically by
SPIDEY and the associated run-time, described next.

4. LANGUAGE SUPPORT
Language support for virtual nodes builds upon the SPIDEY lan-

guage developed for logical neighborhoods. We extended the SPIDEY-
to-nesC translator to support the constructs described in this paper.

Our modified SPIDEY translator automatically creates a program-
ming entity (e.g., a nesC component in TinyOS) whose interface
provides a way to access the aggregated attributes defined in the vir-
tual sensor. For instance, in the case of the virtual smoke detector
vss we defined in Figure 5, our translator generates a component
providing (in the nesC sense) the following interface:
interface vssInterface {
event result_t Reading(int value);

}

The implementation, automatically generated, signals the Reading
event containing the average temperature every 60 seconds (as spec-
ified in Figure 5). Note how this approach is generally feasible in
common programming languages for WSNs (e.g., [4]), as they all
provide some notion of triggered event or periodic behavior.

A similar translation is performed for neighborhoods involving
predicates over operations, used with actuators. For instance, our
translator generates for the virtual actuator rs in Figure 7 a com-
ponent providing:
interface rsInterface {
command result_t Activate(int regulation);
command result_t Deactivate();

}

(a) A message broadcast to the
logical neighborhood propagates
towards its members (in bold).

(b) A tree is built on the reverse
path.

Figure 10: Building trees from neighborhood members to a
given node.

An application gains access to the desired features of virtual nodes
by listing the corresponding components in a nesC configuration,
and using (in the TinyOS sense) their interfaces—as with any other
component. However, this configuration is generated automatically
by our translator, based on SPIDEY declarations.

Finally, note how the duality between virtual sensors and actua-
tors is mirrored in the relationships between nesC events and com-
mands. Events allow data to flow from the hardware up to the ap-
plication, whereas commands enable the application to control the
hardware. Virtual nodes build upon this duality in a distributed set-
ting. Virtual sensors enable data to be gathered from physical sen-
sors and be aggregated while it flows upward. These data is there-
fore made available as periodic events, as in vssInterface.
Conversely, virtual actuators allow control to flow downward to-
wards the physical hardware facilities, by sending commands to
the physical actuators, as in rsInterface.

5. ROUTING FOR VIRTUAL NODES
In this section we discuss how to implement efficiently our ab-

straction from a communication standpoint. In principle, virtual
nodes can be implemented in many ways, (e.g., using replication
or probabilistic methods). Here, we assume that the node (called
anchor) creating the virtual node is also the one managing the re-
lated communication and data collection. In the case of virtual sen-
sors, this does not allow in-network aggregation. However, not ev-
ery aggregation function can be computed in a distributed fashion.
The approach proposed here is independent of the aggregation se-
mantics, and can therefore accommodate complex data processing
mechanisms regardless of their peculiar properties. Devising dedi-
cated routing mechanisms to enable in-network processing is in our
immediate research agenda, and is discussed further in Section 7.

5.1 Leveraging off Logical Neighborhoods
Logical Neighborhoods provide a first viable solution to the im-

plementation of virtual nodes. In addition to the send operation,
the logical neighborhood run-time provides a reply operation a
neighborhood member can use to send a message back to the broad-
casting node. Figure 10(a) illustrates this. During message prop-
agation, whose details are in [11], each node routing a message
stores a pointer to the physical neighbor the message came from.
Each of these reverse paths leads to the sender; collectively, they
constitute a tree with the broadcasting node as root and the neigh-
borhood members as leaves, as shown in Figure 10(b).

This base routing for logical neighborhoods is enough to support

(a) Initial situation: two trees
corresponding to two virtual sen-
sors are built independently.

(b) Final situation: our adaptive
algorithm changed the trees, in-
creasing their overlapping.

Figure 11: A sample execution of our adaptive algorithm that
mutates multiple trees to increase the number of overlapping
links. (Neighborhood members are circled in bold).

virtual nodes. An operation on a virtual actuator generates a mes-
sage with the appropriate opcode and parameters, broadcast to the
logical neighborhood using send. Conversely, in virtual sensors
data flows backwards from neighborhood members to the anchor.
Thus, send is used only to activate the data collection process.
After receiving this control message, neighborhood members peri-
odically report their readings to anchors using reply. The code
for packing the messages on the sender, and handle them on the
receiver by invoking the appropriate operations, is generated auto-
matically by our translator.

The aforementioned design provides an immediate implementa-
tion path for our abstraction. In the case of virtual sensors, however,
a more efficient solution can be devised. This is described next.

5.2 More Efficient Data Collection
In the presence of multiple virtual sensors, it is likely that their

associated neighborhoods overlap and therefore data sources must
report the same reading to multiple anchors. With the aforemen-
tioned use of reply, each message from a data source would
travel independently, wasting a sensible amount of network band-
width. We devised a simple adaptive scheme that periodically “mu-
tates” the branches of the trees to increase the number of over-
lapping paths—and therefore reduce overhead. Our protocol over-
hears messages sent by neighboring nodes, and performs local ad-
justments if a better route is found, based on a predefined cost met-
ric. Many metrics can be used. Here we consider simply the num-
ber of overlapping tree branches.

The problem and its solution are illustrated in Figure 11. Fig-
ure 11(a) shows a scenario before adaptation, where the trees used
for reporting data to anchors are largely disjoint. As messages flow
from the neighborhood members to anchors, carrying data and met-
ric information, each node along the path seeks opportunities for
changing the tree and minimize the metric. As illustrated in Fig-
ure 11(b), the nodes in the middle detect that an increase in the
number of overlapping paths can be obtained by merging two par-
allel tree branches, and change their tree parent accordingly.

This strategy enables the nodes on the shared path to pack in a
single message readings from multiple sources, reducing the com-
munication costs. Indeed, in WSNs this cost is determined mostly
by the activation and setup of the wireless channel [14]. By packing
multiple readings in a single message, reducing the overall number
of messages, the impact of this cost is reduced. Moreover, the mes-
sage header is also “wasted” only once for multiple readings.

5.3 Simulation Results
To evaluate the effectiveness of the above approach, we per-

formed an initial evaluation using TOSSIM [8]. We defined a set of
synthetic scenarios1 with a variable number of nodes placed 35 ft
apart and with a communication range of 50 ft. Four virtual sensors
(anchors) are placed randomly in the system, each gathering data
from the same neighborhood. Each neighborhood includes 10% of
the nodes in the system, and its members are configured to sense
and send a reading to each anchor every 60 s. Each simulation
lasted 2000 s, and was repeated 5 times.

The difference in message delivery (i.e., number of sensor read-
ings received by anchors) between the two approaches is negligi-
ble, with the adaptive routing performing a little better. Neverthe-
less, as shown in Figure 12(a), the adaptive routing significantly
reduces the cost in terms of messages forwarded at the network
layer, with higher improvements as the scale increases. Indeed,
the base solution is often forced to send readings in separate mes-
sages routed independently. Instead, the adaptive one leverages the
greater overlapping among trees, and can exploit the same physical
link to deliver readings to multiple anchors using less messages. A
quantification of this ability is shown in Figure 12(b), where we
compare the overall number of physical links exploited by the two
approaches. The adaptive routing relies on only half of the phys-
ical links used by the base approach. Remarkably, this measure
exhibits the same trends of Figure 12(a), confirming that the over-
head reduction is indeed enabled by the link overlapping.

Figure 12(c) further analyzes the number τ of trees insisting on
each physical link, by showing the ratio τadaptive/τbase . As ex-
pected, the average number of trees insisting on the same physical
link is significantly incremented using our adaptive technique. For
instance, with 225 nodes the number of links shared among four
trees is over 6 times more than in the base protocol. Interestingly,
Figure 12(c) shows also that as the network size increases (while
anchors do not) it is no longer convenient to merge different tree
branches, as the trees could be too far from each other.

6. RELATED WORK
The closest relationship is with Regiment [13], a functional macro-

programming framework based on Abstract Regions [16]. Pro-
grammers apply an application-defined function to data in a region,
while regarding space and time as first-class data types combined
to obtain complex streams of values. This macro-programming
approach completely abstracts away the behavior of single nodes.
However, it also loses fine-grained control over single nodes, e.g.,
to control a specific actuator. In this sense, our work strikes a bal-
ance between macro- and node-level programming, by giving the
ability to perceive multiple nodes as a single virtual one, without
loosing the ability to address specific real (or virtual) nodes. More-
over, our work relies on the more general notion of logical neigh-
borhoods to partition the system, while Abstract Regions require a
dedicated implementation for each region needed.

TAG [9] and TinyDB [10], along with extensions like [15], pro-
vide data aggregation through a SQL-like interface. The program-
ming model is inherently data-centric and focuses on data aggre-
gation, entirely lacking constructs to deal with actuators. These
proposals enable in-network processing by assuming an a-priori
deployment of all aggregation operators on every node. Our work
does not require a system-wide deployment of aggregation func-
tions, making the addition of new operators easier, although it may
miss routing optimizations as discussed in Section 7.

1We used the TinyOS’ LossyBuilder to generate topology files
with transmission error probabilities taken from real testbeds.

 0

 2000

 4000

 6000

 8000

 10000

 100 150 200 250 300

N
et

w
or

k
O

ve
rh

ea
d

(N
um

be
r

of
 M

es
sa

ge
s)

Nodes

Base
Adaptive

(a) Network overhead (forwarded messages).

 50

 100

 150

 200

 250

 300

 350

 400

 100 150 200 250 300

N
um

be
r

of
 E

xp
lo

ite
d

Li
nk

s

Nodes

Base
Adaptive

(b) Number of links exploited.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300

O
ve

rla
pp

in
g

R
at

io

Nodes

No overlapping
2 trees overlapping
3 trees overlapping
4 trees overlapping

(c) Ratio of overlapping tree branches.

Figure 12: Comparing the performance of routing for virtual sensors: base (logical neighborhood) vs. adaptive routing.

At the routing layer, efficient data aggregation is a topic of in-
tense investigation. The work in [2] studied the placement of ag-
gregation operators to minimize network traffic. Instead, the work
in [5] studied, from a theoretical standpoint, the maximum rate at
which sensor readings can be processed and communicated to a
sink. Data aggregation in the presence of multiple, mobile sinks
is investigated in [7] using an adaptive shared tree topology. The
problem we in this work is different from the ones above. We do
not take mobility into account, as we target systems deployed in
controlled environments, e.g., buildings. Moreover, we consider
scenarios with both multiple data sources (neighborhood members)
and multiple sinks (anchors). However, we are evaluating if some
of the techniques above can be borrowed and adapted to our goals.

7. CONCLUSIONS AND FUTURE WORK
We presented a set of programming abstractions that allow a pro-

grammer to interact with several nodes (specified in a declarative
way) as if they were a single virtual node. We maintain that this
approach provides the expressive power and flexibility necessary
to program reactive and decentralized WSN applications. This is
achieved by relieving programmers from the details of data collec-
tion, allowing them to focus on the application logic. We provided
details about the implementation of our approach, and showed an
initial evaluation of its performance.

Additional improvements can be obtained for virtual sensors by
pushing the evaluation of aggregation functions closer to neighbor-
hood members, as in [9]. However, this is not always feasible, and
often requires intrinsic knowledge on the mathematical properties
of the aggregation function. We are currently investigating ways
to enable the programmer to specify the mathematical properties
of aggregation functions, so that the compiler can select among the
most appropriate routing protocol available in the run-time. Finally,
we are investigating the trade-offs of alternative implementations
that do not rely on anchor nodes.

8. REFERENCES
[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor

networks: Research challenges. Ad Hoc Networks Journal,
2(4):351–367, October 2004.

[2] B. J. Bonfils and P. Bonnet. Adaptive and decentralized
operator placement for in-network query processing. In Proc.
of the 2nd Int. Workshop on Information Processing in
Sensor Networks (IPSN), 2003.

[3] M. Dermibas. Wireless sensor networks for monitoring of
large public buildings, 2005. Tech. Report, University of
Buffalo. Available at www.cse.buffalo.edu/
tech-reports/2005-26.pdf.

[4] A. Dunkels, O. Schmidt, and T. Voigt. Using protothreads for
sensor node programming. In Proc. of the Workshop on
Real-World Wireless Sensor Networks (REALWSN), 2005.

[5] A. Giridhar and P. R. Kumar. Computing and communicating
functions over sensor networks. IEEE Journal on Selected
Areas in Communications, 23(4):755–764, 2005.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In ASPLOS-IX: Proc. of the 9nt Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000.

[7] K. Hwang, J. In, and D. Eom. Distributed dynamic shared
tree for minimum energy data aggregation of multiple mobile
sinks in wireless sensor networks. In Proc. of 3rd European
Wkshp. on Wireless Sensor Networks (EWSN), 2006.

[8] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate
and scalable simulation of entire TinyOS applications. In
Proc. of the 5th Symp. on Operating Systems Design and
Implementation (OSDI), pages 131–146, 2002.

[9] S. Madden, M. J. Frankiln, J. M. Hellerstein, and W. Hong.
TAG: a tiny aggregation service for ad-hoc sensor networks.
In Proc. of the 1st Int. Conf. on Embedded Networked Sensor
Systems (SenSys), pages 126–137, 2003.

[10] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for sensor
networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

[11] L. Mottola and G. P. Picco. Logical Neighborhoods: A
programming abstraction for wireless sensor networks. In
Proc. of the the 2st Int. Conf. on Distributed Computing on
Sensor Systems (DCOSS), 2006.

[12] L. Mottola and G. P. Picco. Programming wireless sensor
networks with logical neighborhoods. In Proc. of the the 1st

Int. Conf. on Integrated Internet Ad hoc and Sensor
Networks (InterSense), 2006.

[13] R. Newton and M. Welsh. Region streams: functional
macroprogramming for sensor networks. In Proc. of the 1st

Int. Wkshp. on Data management for sensor networks, 2004.
[14] G. J. Pottie and W. J. Kaiser. Wireless integrated network

sensors. Commun. ACM, 43(5):51–58, 2000.
[15] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.

Medians and beyond: new aggregation techniques for sensor
networks. In Proc. of the 2nd Int. Conf. on Embedded
networked sensor systems (SENSYS), 2004.

[16] M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. In Proc. of 1st Symp. on Networked
Systems Design and Implementation (NSDI), 2004.

