
The goals of IBM Research are to advance computer science
by exploring new ways for computer technology to affect
science, business, and society. Roughly three years ago,

IBM Research was looking for a major research challenge to rival
the scientific and popular interest of Deep Blue, the computer
chess-playing champion (Hsu 2002), that also would have clear
relevance to IBM business interests. 

With a wealth of enterprise-critical information being cap-
tured in natural language documentation of all forms, the prob-
lems with perusing only the top 10 or 20 most popular docu-
ments containing the user’s two or three key words are
becoming increasingly apparent. This is especially the case in
the enterprise where popularity is not as important an indicator
of relevance and where recall can be as critical as precision.
There is growing interest to have enterprise computer systems
deeply analyze the breadth of relevant content to more precise-
ly answer and justify answers to user’s natural language ques-
tions. We believe advances in question-answering (QA) tech-
nology can help support professionals in critical and timely
decision making in areas like compliance, health care, business
integrity, business intelligence, knowledge discovery, enterprise
knowledge management, security, and customer support. For

Articles

FALL 2010  59Copyright © 2010, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Building Watson: 
An Overview of the 

DeepQA Project

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, 
James Fan, David Gondek, Aditya A. Kalyanpur, 

Adam Lally, J. William Murdock, Eric Nyberg, John Prager, 
Nico Schlaefer, and Chris Welty

� IBM Research undertook a challenge to build
a computer system that could compete at the
human champion level in real time on the
American TV quiz show, Jeopardy. The extent
of the challenge includes fielding a real-time
automatic contestant on the show, not merely a
laboratory exercise. The Jeopardy Challenge
helped us address requirements that led to the
design of the DeepQA architecture and the
implementation of Watson. After three years of
intense research and development by a core
team of about 20 researchers, Watson is per-
forming at human expert levels in terms of pre-
cision, confidence, and speed at the Jeopardy
quiz show. Our results strongly suggest that
DeepQA is an effective and extensible architec-
ture that can be used as a foundation for com-
bining, deploying, evaluating, and advancing a
wide range of algorithmic techniques to rapidly
advance the field of question answering (QA). 



researchers, the open-domain QA problem is
attractive as it is one of the most challenging in the
realm of computer science and artificial intelli-
gence, requiring a synthesis of information
retrieval, natural language processing, knowledge
representation and reasoning, machine learning,
and computer-human interfaces. It has had a long
history (Simmons 1970) and saw rapid advance-
ment spurred by system building, experimenta-
tion, and government funding in the past decade
(Maybury 2004, Strzalkowski and Harabagiu 2006). 

With QA in mind, we settled on a challenge to
build a computer system, called Watson,1 which
could compete at the human champion level in
real time on the American TV quiz show, Jeopardy.
The extent of the challenge includes fielding a real-
time automatic contestant on the show, not mere-
ly a laboratory exercise.

Jeopardy! is a well-known TV quiz show that has
been airing on television in the United States for
more than 25 years (see the Jeopardy! Quiz Show
sidebar for more information on the show). It pits
three human contestants against one another in a
competition that requires answering rich natural
language questions over a very broad domain of
topics, with penalties for wrong answers. The nature
of the three-person competition is such that confi-
dence, precision, and answering speed are of critical
importance, with roughly 3 seconds to answer each
question. A computer system that could compete at
human champion levels at this game would need to
produce exact answers to often complex natural
language questions with high precision and speed
and have a reliable confidence in its answers, such
that it could answer roughly 70 percent of the ques-
tions asked with greater than 80 percent precision
in 3 seconds or less.

Finally, the Jeopardy Challenge represents a
unique and compelling AI question similar to the
one underlying DeepBlue (Hsu 2002) — can a com-
puter system be designed to compete against the
best humans at a task thought to require high lev-
els of human intelligence, and if so, what kind of
technology, algorithms, and engineering is
required? While we believe the Jeopardy Challenge
is an extraordinarily demanding task that will
greatly advance the field, we appreciate that this
challenge alone does not address all aspects of QA
and does not by any means close the book on the
QA challenge the way that Deep Blue may have for
playing chess. 

The Jeopardy Challenge
Meeting the Jeopardy Challenge requires advancing
and incorporating a variety of QA technologies
including parsing, question classification, question
decomposition, automatic source acquisition and
evaluation, entity and relation detection, logical

form generation, and knowledge representation
and reasoning.

Winning at Jeopardy requires accurately comput-
ing confidence in your answers. The questions and
content are ambiguous and noisy and none of the
individual algorithms are perfect. Therefore, each
component must produce a confidence in its out-
put, and individual component confidences must
be combined to compute the overall confidence of
the final answer. The final confidence is used to
determine whether the computer system should
risk choosing to answer at all. In Jeopardy parlance,
this confidence is used to determine whether the
computer will “ring in” or “buzz in” for a question.
The confidence must be computed during the time
the question is read and before the opportunity to
buzz in. This is roughly between 1 and 6 seconds
with an average around 3 seconds.

Confidence estimation was very critical to shap-
ing our overall approach in DeepQA. There is no
expectation that any component in the system
does a perfect job — all components post features
of the computation and associated confidences,
and we use a hierarchical machine-learning
method to combine all these features and decide
whether or not there is enough confidence in the
final answer to attempt to buzz in and risk getting
the question wrong.

In this section we elaborate on the various
aspects of the Jeopardy Challenge.

The Categories 
A 30-clue Jeopardy board is organized into six
columns. Each column contains five clues and is
associated with a category. Categories range from
broad subject headings like “history,” “science,” or
“politics” to less informative puns like “tutu
much,” in which the clues are about ballet, to actu-
al parts of the clue, like “who appointed me to the
Supreme Court?” where the clue is the name of a
judge, to “anything goes” categories like “pot-
pourri.” Clearly some categories are essential to
understanding the clue, some are helpful but not
necessary, and some may be useless, if not mis-
leading, for a computer.

A recurring theme in our approach is the require-
ment to try many alternate hypotheses in varying
contexts to see which produces the most confident
answers given a broad range of loosely coupled scor-
ing algorithms. Leveraging category information is
another clear area requiring this approach. 

The Questions
There are a wide variety of ways one can attempt to
characterize the Jeopardy clues. For example, by
topic, by difficulty, by grammatical construction,
by answer type, and so on. A type of classification
that turned out to be useful for us was based on the
primary method deployed to solve the clue. The
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The Jeopardy! quiz show is a well-known syndicat-
ed U.S. TV quiz show that has been on the air
since 1984. It features rich natural language ques-
tions covering a broad range of general knowl-
edge. It is widely recognized as an entertaining
game requiring smart, knowledgeable, and quick
players. 

The show’s format pits three human contestants
against each other in a three-round contest of
knowledge, confidence, and speed. All contestants
must pass a 50-question qualifying test to be eligi-
ble to play. The first two rounds of a game use a
grid organized into six columns, each with a cate-
gory label, and five rows with increasing dollar
values. The illustration shows a sample board for a
first round. In the second round, the dollar values
are doubled. Initially all the clues in the grid are
hidden behind their dollar values. The game play
begins with the returning champion selecting a
cell on the grid by naming the category and the
dollar value. For example the player may select by
saying “Technology for $400.”

The clue under the selected cell is revealed to all
the players and the host reads it out loud. Each
player is equipped with a hand-held signaling but-
ton. As soon as the host finishes reading the clue,
a light becomes visible around the board, indicat-
ing to the players that their hand-held devices are
enabled and they are free to signal or “buzz in” for
a chance to respond. If a player signals before the
light comes on, then he or she is locked out for
one-half of a second before being able to buzz in
again.

The first player to successfully buzz in gets a
chance to respond to the clue. That is, the player
must answer the question, but the response must
be in the form of a question. For example, validly
formed responses are, “Who is Ulysses S. Grant?”
or “What is The Tempest?” rather than simply
“Ulysses S. Grant” or “The Tempest.” The Jeopardy
quiz show was conceived to have the host provid-
ing the answer or clue and the players responding
with the corresponding question or response. The
clue/response concept represents an entertaining
twist on classic question answering. Jeopardy clues
are straightforward assertional forms of questions.
So where a question might read, “What drug has
been shown to relieve the symptoms of ADD with

relatively few side effects?” the corresponding
Jeopardy clue might read “This drug has been
shown to relieve the symptoms of ADD with rela-
tively few side effects.” The correct Jeopardy
response would be “What is Ritalin?”

Players have 5 seconds to speak their response,
but it’s typical that they answer almost immedi-
ately since they often only buzz in if they already
know the answer. If a player responds to a clue cor-
rectly, then the dollar value of the clue is added to
the player’s total earnings, and that player selects
another cell on the board. If the player responds
incorrectly then the dollar value is deducted from
the total earnings, and the system is rearmed,
allowing the other players to buzz in. This makes
it important for players to know what they know
— to have accurate confidences in their responses.

There is always one cell in the first round and
two in the second round called Daily Doubles,
whose exact location is hidden until the cell is
selected by a player. For these cases, the selecting
player does not have to compete for the buzzer but
must respond to the clue regardless of the player’s
confidence. In addition, before the clue is revealed
the player must wager a portion of his or her earn-
ings. The minimum bet is $5 and the maximum
bet is the larger of the player’s current score and
the maximum clue value on the board. If players
answer correctly, they earn the amount they bet,
else they lose it.

The Final Jeopardy round consists of a single
question and is played differently. First, a catego-
ry is revealed. The players privately write down
their bet — an amount less than or equal to their
total earnings. Then the clue is revealed. They
have 30 seconds to respond. At the end of the 30
seconds they reveal their answers and then their
bets. The player with the most money at the end
of this third round wins the game. The questions
used in this round are typically more difficult than
those used in the previous rounds.

The Jeopardy! Quiz Show



bulk of Jeopardy clues represent what we would
consider factoid questions — questions whose
answers are based on factual information about
one or more individual entities. The questions
themselves present challenges in determining
what exactly is being asked for and which elements
of the clue are relevant in determining the answer.
Here are just a few examples (note that while the
Jeopardy! game requires that answers are delivered
in the form of a question (see the Jeopardy! Quiz
Show sidebar), this transformation is trivial and for
purposes of this paper we will just show the
answers themselves):

Category: General Science
Clue: When hit by electrons, a phosphor gives off
electromagnetic energy in this form.
Answer: Light (or Photons)

Category: Lincoln Blogs
Clue: Secretary Chase just submitted this to me for
the third time; guess what, pal. This time I’m
accepting it.
Answer: his resignation

Category: Head North
Clue: They’re the two states you could be reentering
if you’re crossing Florida’s northern border.
Answer: Georgia and Alabama

Decomposition. Some more complex clues con-
tain multiple facts about the answer, all of which
are required to arrive at the correct response but
are unlikely to occur together in one place. For
example:

Category: “Rap” Sheet
Clue: This archaic term for a mischievous or annoy-
ing child can also mean a rogue or scamp.
Subclue 1: This archaic term for a mischievous or
annoying child.
Subclue 2: This term can also mean a rogue or
scamp.
Answer: Rapscallion

In this case, we would not expect to find both
“subclues” in one sentence in our sources; rather,
if we decompose the question into these two parts
and ask for answers to each one, we may find that
the answer common to both questions is the
answer to the original clue. 

Another class of decomposable questions is one
in which a subclue is nested in the outer clue, and
the subclue can be replaced with its answer to form
a new question that can more easily be answered.
For example:

Category: Diplomatic Relations
Clue: Of the four countries in the world that the
United States does not have diplomatic relations
with, the one that’s farthest north.
Inner subclue: The four countries in the world that
the United States does not have diplomatic rela-
tions with (Bhutan, Cuba, Iran, North Korea).
Outer subclue: Of Bhutan, Cuba, Iran, and North
Korea, the one that’s farthest north.
Answer: North Korea

Decomposable Jeopardy clues generated require-
ments that drove the design of DeepQA to gener-
ate zero or more decomposition hypotheses for
each question as possible interpretations. 

Puzzles. Jeopardy also has categories of questions
that require special processing defined by the cate-
gory itself. Some of them recur often enough that
contestants know what they mean without
instruction; for others, part of the task is to figure
out what the puzzle is as the clues and answers are
revealed (categories requiring explanation by the
host are not part of the challenge). Examples of
well-known puzzle categories are the Before and
After category, where two subclues have answers
that overlap by (typically) one word, and the
Rhyme Time category, where the two subclue
answers must rhyme with one another. Clearly
these cases also require question decomposition.
For example:

Category: Before and After Goes to the Movies
Clue: Film of a typical day in the life of the Beatles,
which includes running from bloodthirsty zombie
fans in a Romero classic.
Subclue 2: Film of a typical day in the life of the Bea-
tles. 
Answer 1: (A Hard Day’s Night)
Subclue 2: Running from bloodthirsty zombie fans
in a Romero classic. 
Answer 2: (Night of the Living Dead)
Answer: A Hard Day’s Night of the Living Dead

Category: Rhyme Time
Clue: It’s where Pele stores his ball.
Subclue 1: Pele ball (soccer)
Subclue 2: where store (cabinet, drawer, locker, and
so on)
Answer: soccer locker

There are many infrequent types of puzzle cate-
gories including things like converting roman
numerals, solving math word problems, sounds
like, finding which word in a set has the highest
Scrabble score, homonyms and heteronyms, and
so on. Puzzles constitute only about 2–3 percent of
all clues, but since they typically occur as entire
categories (five at a time) they cannot be ignored
for success in the Challenge as getting them all
wrong often means losing a game.

Excluded Question Types. The Jeopardy quiz show
ordinarily admits two kinds of questions that IBM
and Jeopardy Productions, Inc., agreed to exclude
from the computer contest: audiovisual (A/V)
questions and Special Instructions questions. A/V
questions require listening to or watching some
sort of audio, image, or video segment to deter-
mine a correct answer. For example:

Category: Picture This
(Contestants are shown a picture of a B-52 bomber)
Clue: Alphanumeric name of the fearsome machine
seen here.
Answer: B-52
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Special instruction questions are those that are
not “self-explanatory” but rather require a verbal
explanation describing how the question should
be interpreted and solved. For example:

Category: Decode the Postal Codes
Verbal instruction from host: We’re going to give you
a word comprising two postal abbreviations; you
have to identify the states.
Clue: Vain
Answer: Virginia and Indiana

Both present very interesting challenges from an
AI perspective but were put out of scope for this
contest and evaluation.

The Domain
As a measure of the Jeopardy Challenge’s breadth of
domain, we analyzed a random sample of 20,000
questions extracting the lexical answer type (LAT)
when present. We define a LAT to be a word in the
clue that indicates the type of the answer, inde-
pendent of assigning semantics to that word. For
example in the following clue, the LAT is the string
“maneuver.”

Category: Oooh….Chess
Clue: Invented in the 1500s to speed up the game,
this maneuver involves two pieces of the same col-
or.
Answer: Castling

About 12 percent of the clues do not indicate an
explicit lexical answer type but may refer to the
answer with pronouns like “it,” “these,” or “this”
or not refer to it at all. In these cases the type of

answer must be inferred by the context. Here’s an
example:

Category: Decorating
Clue: Though it sounds “harsh,” it’s just embroi-
dery, often in a floral pattern, done with yarn on
cotton cloth.
Answer: crewel

The distribution of LATs has a very long tail, as
shown in figure 1. We found 2500 distinct and
explicit LATs in the 20,000 question sample. The
most frequent 200 explicit LATs cover less than 50
percent of the data. Figure 1 shows the relative fre-
quency of the LATs. It labels all the clues with no
explicit type with the label “NA.” This aspect of the
challenge implies that while task-specific type sys-
tems or manually curated data would have some
impact if focused on the head of the LAT curve, it
still leaves more than half the problems unaccount-
ed for. Our clear technical bias for both business and
scientific motivations is to create general-purpose,
reusable natural language processing (NLP) and
knowledge representation and reasoning (KRR)
technology that can exploit as-is natural language
resources and as-is structured knowledge rather
than to curate task-specific knowledge resources. 

The Metrics
In addition to question-answering precision, the
system’s game-winning performance will depend
on speed, confidence estimation, clue selection,
and betting strategy. Ultimately the outcome of

Articles

FALL 2010  63

Figure 1. Lexical Answer Type Frequency.
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the public contest will be decided based on
whether or not Watson can win one or two games
against top-ranked humans in real time. The high-
est amount of money earned by the end of a one-
or two-game match determines the winner. A play-
er’s final earnings, however, often will not reflect
how well the player did during the game at the QA
task. This is because a player may decide to bet big
on Daily Double or Final Jeopardy questions. There
are three hidden Daily Double questions in a game
that can affect only the player lucky enough to
find them, and one Final Jeopardy question at the
end that all players must gamble on. Daily Double
and Final Jeopardy questions represent significant
events where players may risk all their current
earnings. While potentially compelling for a pub-
lic contest, a small number of games does not rep-
resent statistically meaningful results for the sys-
tem’s raw QA performance.

While Watson is equipped with betting strate-
gies necessary for playing full Jeopardy, from a core
QA perspective we want to measure correctness,
confidence, and speed, without considering clue
selection, luck of the draw, and betting strategies.
We measure correctness and confidence using pre-
cision and percent answered. Precision measures
the percentage of questions the system gets right

out of those it chooses to answer. Percent answered
is the percentage of questions it chooses to answer
(correctly or incorrectly). The system chooses
which questions to answer based on an estimated
confidence score: for a given threshold, the system
will answer all questions with confidence scores
above that threshold. The threshold controls the
trade-off between precision and percent answered,
assuming reasonable confidence estimation. For
higher thresholds the system will be more conser-
vative, answering fewer questions with higher pre-
cision. For lower thresholds, it will be more aggres-
sive, answering more questions with lower
precision. Accuracy refers to the precision if all
questions are answered.

Figure 2 shows a plot of precision versus percent
attempted curves for two theoretical systems. It is
obtained by evaluating the two systems over a
range of confidence thresholds. Both systems have
40 percent accuracy, meaning they get 40 percent
of all questions correct. They differ only in their
confidence estimation. The upper line represents
an ideal system with perfect confidence estima-
tion. Such a system would identify exactly which
questions it gets right and wrong and give higher
confidence to those it got right. As can be seen in
the graph, if such a system were to answer the 50
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Perfect confidence estimation (upper line) and no confidence estimation (lower line).



percent of questions it had highest confidence for,
it would get 80 percent of those correct. We refer to
this level of performance as 80 percent precision at
50 percent answered. The lower line represents a
system without meaningful confidence estimation.
Since it cannot distinguish between which ques-
tions it is more or less likely to get correct, its pre-
cision is constant for all percent attempted. Devel-
oping more accurate confidence estimation means
a system can deliver far higher precision even with
the same overall accuracy.

The Competition: 
Human Champion Performance

A compelling and scientifically appealing aspect of
the Jeopardy Challenge is the human reference
point. Figure 3 contains a graph that illustrates
expert human performance on Jeopardy It is based
on our analysis of nearly 2000 historical Jeopardy
games. Each point on the graph represents the per-
formance of the winner in one Jeopardy game.2 As
in figure 2, the x-axis of the graph, labeled “%
Answered,” represents the percentage of questions

the winner answered, and the y-axis of the graph,
labeled “Precision,” represents the percentage of
those questions the winner answered correctly.

In contrast to the system evaluation shown in
figure 2, which can display a curve over a range of
confidence thresholds, the human performance
shows only a single point per game based on the
observed precision and percent answered the win-
ner demonstrated in the game. A further distinc-
tion is that in these historical games the human
contestants did not have the liberty to answer all
questions they wished. Rather the percent
answered consists of those questions for which the
winner was confident and fast enough to beat the
competition to the buzz. The system performance
graphs shown in this paper are focused on evalu-
ating QA performance, and so do not take into
account competition for the buzz. Human per-
formance helps to position our system’s perform-
ance, but obviously, in a Jeopardy game, perform-
ance will be affected by competition for the buzz
and this will depend in large part on how quickly
a player can compute an accurate confidence and
how the player manages risk.
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The center of what we call the “Winners Cloud”
(the set of light gray dots in the graph in figures 3
and 4) reveals that Jeopardy champions are confi-
dent and fast enough to acquire on average
between 40 percent and 50 percent of all the ques-
tions from their competitors and to perform with
between 85 percent and 95 percent precision. 

The darker dots on the graph represent Ken Jen-
nings’s games. Ken Jennings had an unequaled
winning streak in 2004, in which he won 74 games
in a row. Based on our analysis of those games, he
acquired on average 62 percent of the questions
and answered with 92 percent precision. Human
performance at this task sets a very high bar for
precision, confidence, speed, and breadth. 

Baseline Performance
Our metrics and baselines are intended to give us
confidence that new methods and algorithms are
improving the system or to inform us when they
are not so that we can adjust research priorities.

Our most obvious baseline is the QA system
called Practical Intelligent Question Answering
Technology (PIQUANT) (Prager, Chu-Carroll, and
Czuba 2004), which had been under development
at IBM Research by a four-person team for 6 years
prior to taking on the Jeopardy Challenge. At the
time it was among the top three to five Text
Retrieval Conference (TREC) QA systems. Devel-
oped in part under the U.S. government AQUAINT
program3 and in collaboration with external teams
and universities, PIQUANT was a classic QA
pipeline with state-of-the-art techniques aimed
largely at the TREC QA evaluation (Voorhees and
Dang 2005). PIQUANT performed in the 33 per-
cent accuracy range in TREC evaluations. While
the TREC QA evaluation allowed the use of the
web, PIQUANT focused on question answering
using local resources. A requirement of the Jeopardy
Challenge is that the system be self-contained and
does not link to live web search.

The requirements of the TREC QA evaluation
were different than for the Jeopardy challenge.
Most notably, TREC participants were given a rela-
tively small corpus (1M documents) from which
answers to questions must be justified; TREC ques-
tions were in a much simpler form compared to
Jeopardy questions, and the confidences associated
with answers were not a primary metric. Further-
more, the systems are allowed to access the web
and had a week to produce results for 500 ques-
tions. The reader can find details in the TREC pro-
ceedings4 and numerous follow-on publications. 

An initial 4-week effort was made to adapt
PIQUANT to the Jeopardy Challenge. The experi-
ment focused on precision and confidence. It
ignored issues of answering speed and aspects of
the game like betting and clue values.

The questions used were 500 randomly sampled
Jeopardy clues from episodes in the past 15 years.
The corpus that was used contained, but did not
necessarily justify, answers to more than 90 per-
cent of the questions. The result of the PIQUANT
baseline experiment is illustrated in figure 4. As
shown, on the 5 percent of the clues that PI -
QUANT was most confident in (left end of the
curve), it delivered 47 percent precision, and over
all the clues in the set (right end of the curve), its
precision was 13 percent. Clearly the precision and
confidence estimation are far below the require-
ments of the Jeopardy Challenge.

A similar baseline experiment was performed in
collaboration with Carnegie Mellon University
(CMU) using OpenEphyra,5 an open-source QA
framework developed primarily at CMU. The
framework is based on the Ephyra system, which
was designed for answering TREC questions. In our
experiments on TREC 2002 data, OpenEphyra
answered 45 percent of the questions correctly
using a live web search.

We spent minimal effort adapting OpenEphyra,
but like PIQUANT, its performance on Jeopardy
clues was below 15 percent accuracy. OpenEphyra
did not produce reliable confidence estimates and
thus could not effectively choose to answer ques-
tions with higher confidence. Clearly a larger
investment in tuning and adapting these baseline
systems to Jeopardy would improve their perform-
ance; however, we limited this investment since
we did not want the baseline systems to become
significant efforts.

The PIQUANT and OpenEphyra baselines
demonstrate the performance of state-of-the-art
QA systems on the Jeopardy task. In figure 5 we
show two other baselines that demonstrate the
performance of two complementary approaches
on this task. The light gray line shows the per-
formance of a system based purely on text search,
using terms in the question as queries and search
engine scores as confidences for candidate answers
generated from retrieved document titles. The
black line shows the performance of a system
based on structured data, which attempts to look
the answer up in a database by simply finding the
named entities in the database related to the
named entities in the clue. These two approaches
were adapted to the Jeopardy task, including iden-
tifying and integrating relevant content. 

The results form an interesting comparison. The
search-based system has better performance at 100
percent answered, suggesting that the natural lan-
guage content and the shallow text search tech-
niques delivered better coverage. However, the flat-
ness of the curve indicates the lack of accurate
confidence estimation.6 The structured approach
had better informed confidence when it was able
to decipher the entities in the question and found
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the right matches in its structured knowledge
bases, but its coverage quickly drops off when
asked to answer more questions. To be a high-per-
forming question-answering system, DeepQA must
demonstrate both these properties to achieve high
precision, high recall, and an accurate confidence
estimation.

The DeepQA Approach
Early on in the project, attempts to adapt
PIQUANT (Chu-Carroll et al. 2003) failed to pro-
duce promising results. We devoted many months
of effort to encoding algorithms from the litera-
ture. Our investigations ran the gamut from deep
logical form analysis to shallow machine-transla-
tion-based approaches. We integrated them into
the standard QA pipeline that went from question
analysis and answer type determination to search
and then answer selection. It was difficult, howev-
er, to find examples of how published research
results could be taken out of their original context
and effectively replicated and integrated into dif-
ferent end-to-end systems to produce comparable
results. Our efforts failed to have significant impact

on Jeopardy or even on prior baseline studies using
TREC data. 

We ended up overhauling nearly everything we
did, including our basic technical approach, the
underlying architecture, metrics, evaluation proto-
cols, engineering practices, and even how we
worked together as a team. We also, in cooperation
with CMU, began the Open Advancement of Ques-
tion Answering (OAQA) initiative. OAQA is
intended to directly engage researchers in the com-
munity to help replicate and reuse research results
and to identify how to more rapidly advance the
state of the art in QA (Ferrucci et al 2009).

As our results dramatically improved, we
observed that system-level advances allowing rap-
id integration and evaluation of new ideas and
new components against end-to-end metrics were
essential to our progress. This was echoed at the
OAQA workshop for experts with decades of
investment in QA, hosted by IBM in early 2008.
Among the workshop conclusions was that QA
would benefit from the collaborative evolution of
a single extensible architecture that would allow
component results to be consistently evaluated in
a common technical context against a growing
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variety of what were called “Challenge Problems.”
Different challenge problems were identified to
address various dimensions of the general QA
problem. Jeopardy was described as one addressing
dimensions including high precision, accurate
confidence determination, complex language,
breadth of domain, and speed. 

The system we have built and are continuing to
develop, called DeepQA, is a massively parallel
probabilistic evidence-based architecture. For the
Jeopardy Challenge, we use more than 100 differ-
ent techniques for analyzing natural language,
identifying sources, finding and generating
hypotheses, finding and scoring evidence, and
merging and ranking hypotheses. What is far more
important than any particular technique we use is
how we combine them in DeepQA such that over-
lapping approaches can bring their strengths to
bear and contribute to improvements in accuracy,
confidence, or speed. 

DeepQA is an architecture with an accompany-
ing methodology, but it is not specific to the Jeop-
ardy Challenge. We have successfully applied
DeepQA to both the Jeopardy and TREC QA task.
We have begun adapting it to different business

applications and additional exploratory challenge
problems including medicine, enterprise search,
and gaming. 

The overarching principles in DeepQA are mas-
sive parallelism, many experts, pervasive confi-
dence estimation, and integration of shallow and
deep knowledge.

Massive parallelism: Exploit massive parallelism
in the consideration of multiple interpretations
and hypotheses.

Many experts: Facilitate the integration, applica-
tion, and contextual evaluation of a wide range of
loosely coupled probabilistic question and content
analytics.

Pervasive confidence estimation: No component
commits to an answer; all components produce
features and associated confidences, scoring differ-
ent question and content interpretations. An
underlying confidence-processing substrate learns
how to stack and combine the scores.

Integrate shallow and deep knowledge: Balance the
use of strict semantics and shallow semantics,
leveraging many loosely formed ontologies.

Figure 6 illustrates the DeepQA architecture at a
very high level. The remaining parts of this section
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provide a bit more detail about the various archi-
tectural roles.

Content Acquisition
The first step in any application of DeepQA to
solve a QA problem is content acquisition, or iden-
tifying and gathering the content to use for the
answer and evidence sources shown in figure 6. 

Content acquisition is a combination of manu-
al and automatic steps. The first step is to analyze
example questions from the problem space to pro-
duce a description of the kinds of questions that
must be answered and a characterization of the
application domain. Analyzing example questions
is primarily a manual task, while domain analysis
may be informed by automatic or statistical analy-
ses, such as the LAT analysis shown in figure 1.
Given the kinds of questions and broad domain of
the Jeopardy Challenge, the sources for Watson
include a wide range of encyclopedias, dictionar-
ies, thesauri, newswire articles, literary works, and
so on. 

Given a reasonable baseline corpus, DeepQA
then applies an automatic corpus expansion
process. The process involves four high-level steps:
(1) identify seed documents and retrieve related
documents from the web; (2) extract self-contained
text nuggets from the related web documents; (3)
score the nuggets based on whether they are

informative with respect to the original seed docu-
ment; and (4) merge the most informative nuggets
into the expanded corpus. The live system itself
uses this expanded corpus and does not have
access to the web during play.

In addition to the content for the answer and
evidence sources, DeepQA leverages other kinds of
semistructured and structured content. Another
step in the content-acquisition process is to identi-
fy and collect these resources, which include data-
bases, taxonomies, and ontologies, such as dbPe-
dia,7 WordNet (Miller 1995), and the Yago8

ontology.

Question Analysis
The first step in the run-time question-answering
process is question analysis. During question
analysis the system attempts to understand what
the question is asking and performs the initial
analyses that determine how the question will be
processed by the rest of the system. The DeepQA
approach encourages a mixture of experts at this
stage, and in the Watson system we produce shal-
low parses, deep parses (McCord 1990), logical
forms, semantic role labels, coreference, relations,
named entities, and so on, as well as specific kinds
of analysis for question answering. Most of these
technologies are well understood and are not dis-
cussed here, but a few require some elaboration.
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Question Classification. Question classification is
the task of identifying question types or parts of
questions that require special processing. This can
include anything from single words with poten-
tially double meanings to entire clauses that have
certain syntactic, semantic, or rhetorical function-
ality that may inform downstream components
with their analysis. Question classification may
identify a question as a puzzle question, a math
question, a definition question, and so on. It will
identify puns, constraints, definition components,
or entire subclues within questions.

Focus and LAT Detection. As discussed earlier, a
lexical answer type is a word or noun phrase in the
question that specifies the type of the answer with-
out any attempt to understand its semantics.
Determining whether or not a candidate answer
can be considered an instance of the LAT is an
important kind of scoring and a common source of
critical errors. An advantage to the DeepQA
approach is to exploit many independently devel-
oped answer-typing algorithms. However, many of
these algorithms are dependent on their own type
systems. We found the best way to integrate pre-
existing components is not to force them into a
single, common type system, but to have them
map from the LAT to their own internal types.

The focus of the question is the part of the ques-
tion that, if replaced by the answer, makes the ques-
tion a stand-alone statement. Looking back at some
of the examples shown previously, the focus of
“When hit by electrons, a phosphor gives off elec-
tromagnetic energy in this form” is “this form”; the
focus of “Secretary Chase just submitted this to me
for the third time; guess what, pal. This time I’m
accepting it” is the first “this”; and the focus of
“This title character was the crusty and tough city
editor of the Los Angeles Tribune” is “This title char-
acter.” The focus often (but not always) contains
useful information about the answer, is often the
subject or object of a relation in the clue, and can
turn a question into a factual statement when
replaced with a candidate, which is a useful way to
gather evidence about a candidate.

Relation Detection. Most questions contain rela-
tions, whether they are syntactic subject-verb-
object predicates or semantic relationships
between entities. For example, in the question,
“They’re the two states you could be reentering if
you’re crossing Florida’s northern border,” we can
detect the relation borders(Florida,?x,north). 

Watson uses relation detection throughout the
QA process, from focus and LAT determination, to
passage and answer scoring. Watson can also use
detected relations to query a triple store and direct-
ly generate candidate answers. Due to the breadth
of relations in the Jeopardy domain and the variety
of ways in which they are expressed, however,
Watson’s current ability to effectively use curated

databases to simply “look up” the answers is limit-
ed to fewer than 2 percent of the clues. 

Watson’s use of existing databases depends on
the ability to analyze the question and detect the
relations covered by the databases. In Jeopardy the
broad domain makes it difficult to identify the
most lucrative relations to detect. In 20,000 Jeop-
ardy questions, for example, we found the distri-
bution of Freebase9 relations to be extremely flat
(figure 7). Roughly speaking, even achieving high
recall on detecting the most frequent relations in
the domain can at best help in about 25 percent of
the questions, and the benefit of relation detection
drops off fast with the less frequent relations.
Broad-domain relation detection remains a major
open area of research.

Decomposition. As discussed above, an important
requirement driven by analysis of Jeopardy clues
was the ability to handle questions that are better
answered through decomposition. DeepQA uses
rule-based deep parsing and statistical classifica-
tion methods both to recognize whether questions
should be decomposed and to determine how best
to break them up into subquestions. The operating
hypothesis is that the correct question interpreta-
tion and derived answer(s) will score higher after
all the collected evidence and all the relevant algo-
rithms have been considered. Even if the question
did not need to be decomposed to determine an
answer, this method can help improve the system’s
overall answer confidence.

DeepQA solves parallel decomposable questions
through application of the end-to-end QA system
on each subclue and synthesizes the final answers
by a customizable answer combination compo-
nent. These processing paths are shown in medi-
um gray in figure 6. DeepQA also supports nested
decomposable questions through recursive appli-
cation of the end-to-end QA system to the inner
subclue and then to the outer subclue. The cus-
tomizable synthesis components allow specialized
synthesis algorithms to be easily plugged into a
common framework.

Hypothesis Generation
Hypothesis generation takes the results of question
analysis and produces candidate answers by
searching the system’s sources and extracting
answer-sized snippets from the search results. Each
candidate answer plugged back into the question is
considered a hypothesis, which the system has to
prove correct with some degree of confidence.

We refer to search performed in hypothesis gen-
eration as “primary search” to distinguish it from
search performed during evidence gathering
(described below). As with all aspects of DeepQA,
we use a mixture of different approaches for pri-
mary search and candidate generation in the Wat-
son system.
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Primary Search. In primary search the goal is to
find as much potentially answer-bearing content
as possible based on the results of question analy-
sis — the focus is squarely on recall with the expec-
tation that the host of deeper content analytics
will extract answer candidates and score this con-
tent plus whatever evidence can be found in sup-
port or refutation of candidates to drive up the pre-
cision. Over the course of the project we continued
to conduct empirical studies designed to balance
speed, recall, and precision. These studies allowed
us to regularly tune the system to find the number
of search results and candidates that produced the
best balance of accuracy and computational
resources. The operative goal for primary search
eventually stabilized at about 85 percent binary
recall for the top 250 candidates; that is, the system
generates the correct answer as a candidate answer
for 85 percent of the questions somewhere within
the top 250 ranked candidates.

A variety of search techniques are used, includ-
ing the use of multiple text search engines with dif-
ferent underlying approaches (for example, Indri
and Lucene), document search as well as passage
search, knowledge base search using SPARQL on
triple stores, the generation of multiple search
queries for a single question, and backfilling hit

lists to satisfy key constraints identified in the
question. 

Triple store queries in primary search are based
on named entities in the clue; for example, find all
database entities related to the clue entities, or
based on more focused queries in the cases that a
semantic relation was detected. For a small number
of LATs we identified as “closed LATs,” the candi-
date answer can be generated from a fixed list in
some store of known instances of the LAT, such as
“U.S. President” or “Country.” 

Candidate Answer Generation. The search results
feed into candidate generation, where techniques
appropriate to the kind of search results are applied
to generate candidate answers. For document
search results from “title-oriented” resources, the
title is extracted as a candidate answer. The system
may generate a number of candidate answer vari-
ants from the same title based on substring analy-
sis or link analysis (if the underlying source con-
tains hyperlinks). Passage search results require
more detailed analysis of the passage text to iden-
tify candidate answers. For example, named entity
detection may be used to extract candidate
answers from the passage. Some sources, such as a
triple store and reverse dictionary lookup, produce
candidate answers directly as their search result.
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If the correct answer(s) are not generated at this
stage as a candidate, the system has no hope of
answering the question. This step therefore signifi-
cantly favors recall over precision, with the expec-
tation that the rest of the processing pipeline will
tease out the correct answer, even if the set of can-
didates is quite large. One of the goals of the sys-
tem design, therefore, is to tolerate noise in the
early stages of the pipeline and drive up precision
downstream. 

Watson generates several hundred candidate
answers at this stage.

Soft Filtering
A key step in managing the resource versus preci-
sion trade-off is the application of lightweight (less
resource intensive) scoring algorithms to a larger
set of initial candidates to prune them down to a
smaller set of candidates before the more intensive
scoring components see them. For example, a
lightweight scorer may compute the likelihood of
a candidate answer being an instance of the LAT.
We call this step soft filtering.

The system combines these lightweight analysis
scores into a soft filtering score. Candidate answers
that pass the soft filtering threshold proceed to
hypothesis and evidence scoring, while those can-
didates that do not pass the filtering threshold are
routed directly to the final merging stage. The soft
filtering scoring model and filtering threshold are
determined based on machine learning over train-
ing data.

Watson currently lets roughly 100 candidates pass
the soft filter, but this a parameterizable function.

Hypothesis and Evidence Scoring
Candidate answers that pass the soft filtering
threshold undergo a rigorous evaluation process
that involves gathering additional supporting evi-
dence for each candidate answer, or hypothesis,
and applying a wide variety of deep scoring ana-
lytics to evaluate the supporting evidence. 

Evidence Retrieval. To better evaluate each candi-
date answer that passes the soft filter, the system
gathers additional supporting evidence. The archi-
tecture supports the integration of a variety of evi-
dence-gathering techniques. One particularly
effective technique is passage search where the
candidate answer is added as a required term to the
primary search query derived from the question.
This will retrieve passages that contain the candi-
date answer used in the context of the original
question terms. Supporting evidence may also
come from other sources like triple stores. The
retrieved supporting evidence is routed to the deep
evidence scoring components, which evaluate the
candidate answer in the context of the supporting
evidence. 

Scoring. The scoring step is where the bulk of the

deep content analysis is performed. Scoring algo-
rithms determine the degree of certainty that
retrieved evidence supports the candidate answers.
The DeepQA framework supports and encourages
the inclusion of many different components, or
scorers, that consider different dimensions of the
evidence and produce a score that corresponds to
how well evidence supports a candidate answer for
a given question. 

DeepQA provides a common format for the scor-
ers to register hypotheses (for example candidate
answers) and confidence scores, while imposing
few restrictions on the semantics of the scores
themselves; this enables DeepQA developers to
rapidly deploy, mix, and tune components to sup-
port each other. For example, Watson employs
more than 50 scoring components that produce
scores ranging from formal probabilities to counts
to categorical features, based on evidence from dif-
ferent types of sources including unstructured text,
semistructured text, and triple stores. These scorers
consider things like the degree of match between a
passage’s predicate-argument structure and the
question, passage source reliability, geospatial loca-
tion, temporal relationships, taxonomic classifica-
tion, the lexical and semantic relations the candi-
date is known to participate in, the candidate’s
correlation with question terms, its popularity (or
obscurity), its aliases, and so on. 

Consider the question, “He was presidentially
pardoned on September 8, 1974”; the correct
answer, “Nixon,” is one of the generated candi-
dates. One of the retrieved passages is “Ford par-
doned Nixon on Sept. 8, 1974.” One passage scor-
er counts the number of IDF-weighted terms in
common between the question and the passage.
Another passage scorer based on the Smith-Water-
man sequence-matching algorithm (Smith and
Waterman 1981), measures the lengths of the
longest similar subsequences between the question
and passage (for example “on Sept. 8, 1974”). A
third type of passage scoring measures the align-
ment of the logical forms of the question and pas-
sage. A logical form is a graphical abstraction of
text in which nodes are terms in the text and edges
represent either grammatical relationships (for
example, Hermjakob, Hovy, and Lin [2000];
Moldovan et al. [2003]), deep semantic relation-
ships (for example, Lenat [1995], Paritosh and For-
bus [2005]), or both . The logical form alignment
identifies Nixon as the object of the pardoning in
the passage, and that the question is asking for the
object of a pardoning. Logical form alignment
gives “Nixon” a good score given this evidence. In
contrast, a candidate answer like “Ford” would
receive near identical scores to “Nixon” for term
matching and passage alignment with this passage,
but would receive a lower logical form alignment
score.
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Another type of scorer uses knowledge in triple
stores, simple reasoning such as subsumption and
disjointness in type taxonomies, geospatial, and
temporal reasoning. Geospatial reasoning is used
in Watson to detect the presence or absence of spa-
tial relations such as directionality, borders, and
containment between geoentities. For example, if
a question asks for an Asian city, then spatial con-
tainment provides evidence that Beijing is a suit-
able candidate, whereas Sydney is not. Similarly,
geocoordinate information associated with entities
is used to compute relative directionality (for
example, California is SW of Montana; GW Bridge
is N of Lincoln Tunnel, and so on). 

Temporal reasoning is used in Watson to detect
inconsistencies between dates in the clue and
those associated with a candidate answer. For
example, the two most likely candidate answers
generated by the system for the clue, “In 1594 he
took a job as a tax collector in Andalusia,” are
“Thoreau” and “Cervantes.” In this case, temporal
reasoning is used to rule out Thoreau as he was not
alive in 1594, having been born in 1817, whereas
Cervantes, the correct answer, was born in 1547
and died in 1616.

Each of the scorers implemented in Watson,
how they work, how they interact, and their inde-

pendent impact on Watson’s performance deserves
its own research paper. We cannot do this work jus-
tice here. It is important to note, however, at this
point no one algorithm dominates. In fact we
believe DeepQA’s facility for absorbing these algo-
rithms, and the tools we have created for exploring
their interactions and effects, will represent an
important and lasting contribution of this work.

To help developers and users get a sense of how
Watson uses evidence to decide between compet-
ing candidate answers, scores are combined into an
overall evidence profile. The evidence profile
groups individual features into aggregate evidence
dimensions that provide a more intuitive view of
the feature group. Aggregate evidence dimensions
might include, for example, Taxonomic, Geospa-
tial (location), Temporal, Source Reliability, Gen-
der, Name Consistency, Relational, Passage Sup-
port, Theory Consistency, and so on. Each
aggregate dimension is a combination of related
feature scores produced by the specific algorithms
that fired on the gathered evidence.

Consider the following question: Chile shares its
longest land border with this country. In figure 8
we see a comparison of the evidence profiles for
two candidate answers produced by the system for
this question: Argentina and Bolivia. Simple search
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engine scores favor Bolivia as an answer, due to a
popular border dispute that was frequently report-
ed in the news. Watson prefers Argentina (the cor-
rect answer) over Bolivia, and the evidence profile
shows why. Although Bolivia does have strong
popularity scores, Argentina has strong support in
the geospatial, passage support (for example, align-
ment and logical form graph matching of various
text passages), and source reliability dimensions.

Final Merging and Ranking
It is one thing to return documents that contain
key words from the question. It is quite another,
however, to analyze the question and the content
enough to identify the precise answer and yet
another to determine an accurate enough confi-
dence in its correctness to bet on it. Winning at
Jeopardy requires exactly that ability.

The goal of final ranking and merging is to eval-
uate the hundreds of hypotheses based on poten-
tially hundreds of thousands of scores to identify
the single best-supported hypothesis given the evi-
dence and to estimate its confidence — the likeli-
hood it is correct.

Answer Merging
Multiple candidate answers for a question may be
equivalent despite very different surface forms.
This is particularly confusing to ranking tech-
niques that make use of relative differences
between candidates. Without merging, ranking
algorithms would be comparing multiple surface
forms that represent the same answer and trying to
discriminate among them. While one line of
research has been proposed based on boosting con-
fidence in similar candidates (Ko, Nyberg, and Luo
2007), our approach is inspired by the observation
that different surface forms are often disparately
supported in the evidence and result in radically
different, though potentially complementary,
scores. This motivates an approach that merges
answer scores before ranking and confidence esti-
mation. Using an ensemble of matching, normal-
ization, and coreference resolution algorithms,
Watson identifies equivalent and related hypothe-
ses (for example, Abraham Lincoln and Honest
Abe) and then enables custom merging per feature
to combine scores.

Ranking and Confidence Estimation 
After merging, the system must rank the hypothe-
ses and estimate confidence based on their merged
scores. We adopted a machine-learning approach
that requires running the system over a set of train-
ing questions with known answers and training a
model based on the scores. One could assume a
very flat model and apply existing ranking algo-
rithms (for example, Herbrich, Graepel, and Ober-
mayer [2000]; Joachims [2002]) directly to these

score profiles and use the ranking score for confi-
dence. For more intelligent ranking, however,
ranking and confidence estimation may be sepa-
rated into two phases. In both phases sets of scores
may be grouped according to their domain (for
example type matching, passage scoring, and so
on.) and intermediate models trained using
ground truths and methods specific for that task.
Using these intermediate models, the system pro-
duces an ensemble of intermediate scores. Moti-
vated by hierarchical techniques such as mixture
of experts (Jacobs et al. 1991) and stacked general-
ization (Wolpert 1992), a metalearner is trained
over this ensemble. This approach allows for itera-
tively enhancing the system with more sophisti-
cated and deeper hierarchical models while retain-
ing flexibility for robustness and experimentation
as scorers are modified and added to the system. 

Watson’s metalearner uses multiple trained
models to handle different question classes as, for
instance, certain scores that may be crucial to iden-
tifying the correct answer for a factoid question
may not be as useful on puzzle questions. 

Finally, an important consideration in dealing
with NLP-based scorers is that the features they
produce may be quite sparse, and so accurate con-
fidence estimation requires the application of con-
fidence-weighted learning techniques. (Dredze,
Crammer, and Pereira 2008).

Speed and Scaleout
DeepQA is developed using Apache UIMA,10 a
framework implementation of the Unstructured
Information Management Architecture (Ferrucci
and Lally 2004). UIMA was designed to support
interoperability and scaleout of text and multi-
modal analysis applications. All of the components
in DeepQA are implemented as UIMA annotators.
These are software components that analyze text
and produce annotations or assertions about the
text. Watson has evolved over time and the num-
ber of components in the system has reached into
the hundreds. UIMA facilitated rapid component
integration, testing, and evaluation. 

Early implementations of Watson ran on a single
processor where it took 2 hours to answer a single
question. The DeepQA computation is embarrass-
ing parallel, however. UIMA-AS, part of Apache
UIMA, enables the scaleout of UIMA applications
using asynchronous messaging. We used UIMA-AS
to scale Watson out over 2500 compute cores.
UIMA-AS handles all of the communication, mes-
saging, and queue management necessary using
the open JMS standard. The UIMA-AS deployment
of Watson enabled competitive run-time latencies
in the 3–5 second range. 

To preprocess the corpus and create fast run-
time indices we used Hadoop.11 UIMA annotators
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were easily deployed as mappers in the Hadoop
map-reduce framework. Hadoop distributes the
content over the cluster to afford high CPU uti-
lization and provides convenient tools for deploy-
ing, managing, and monitoring the corpus analy-
sis process. 

Strategy
Jeopardy demands strategic game play to match
wits against the best human players. In a typical
Jeopardy game, Watson faces the following strate-
gic decisions: deciding whether to buzz in and
attempt to answer a question, selecting squares
from the board, and wagering on Daily Doubles
and Final Jeopardy.

The workhorse of strategic decisions is the buzz-
in decision, which is required for every non–Daily
Double clue on the board. This is where DeepQA’s
ability to accurately estimate its confidence in its
answer is critical, and Watson considers this confi-
dence along with other game-state factors in mak-
ing the final determination whether to buzz.
Another strategic decision, Final Jeopardy wagering,
generally receives the most attention and analysis
from those interested in game strategy, and there
exists a growing catalogue of heuristics such as
“Clavin’s Rule” or the “Two-Thirds Rule” (Dupee
1998) as well as identification of those critical score
boundaries at which particular strategies may be
used (by no means does this make it easy or rote;
despite this attention, we have found evidence
that contestants still occasionally make irrational
Final Jeopardy bets). Daily Double betting turns out
to be less studied but just as challenging since the
player must consider opponents’ scores and pre-
dict the likelihood of getting the question correct
just as in Final Jeopardy. After a Daily Double, how-
ever, the game is not over, so evaluation of a wager
requires forecasting the effect it will have on the
distant, final outcome of the game.

These challenges drove the construction of sta-
tistical models of players and games, game-theo-
retic analyses of particular game scenarios and
strategies, and the development and application of
reinforcement-learning techniques for Watson to
learn its strategy for playing Jeopardy. Fortunately,
moderate samounts of historical data are available
to serve as training data for learning techniques.
Even so, it requires extremely careful modeling and
game-theoretic evaluation as the game of Jeopardy
has incomplete information and uncertainty to
model, critical score boundaries to recognize, and
savvy, competitive players to account for. It is a
game where one faulty strategic choice can lose the
entire match.

Status and Results
After approximately 3 years of effort by a core algo-
rithmic team composed of 20 researchers and soft-
ware engineers with a range of backgrounds in nat-
ural language processing, information retrieval,
machine learning, computational linguistics, and
knowledge representation and reasoning, we have
driven the performance of DeepQA to operate
within the winner’s cloud on the Jeopardy task, as
shown in figure 9. Watson’s results illustrated in
this figure were measured over blind test sets con-
taining more than 2000 Jeopardy questions. 

After many nonstarters, by the fourth quarter of
2007 we finally adopted the DeepQA architecture.
At that point we had all moved out of our private
offices and into a “war room” setting to dramati-
cally facilitate team communication and tight col-
laboration. We instituted a host of disciplined
engineering and experimental methodologies sup-
ported by metrics and tools to ensure we were
investing in techniques that promised significant
impact on end-to-end metrics. Since then, modulo
some early jumps in performance, the progress has
been incremental but steady. It is slowing in recent
months as the remaining challenges prove either
very difficult or highly specialized and covering
small phenomena in the data.

By the end of 2008 we were performing reason-
ably well — about 70 percent precision at 70 per-
cent attempted over the 12,000 question blind
data, but it was taking 2 hours to answer a single
question on a single CPU. We brought on a team
specializing in UIMA and UIMA-AS to scale up
DeepQA on a massively parallel high-performance
computing platform. We are currently answering
more than 85 percent of the questions in 5 seconds
or less — fast enough to provide competitive per-
formance, and with continued algorithmic devel-
opment are performing with about 85 percent pre-
cision at 70 percent attempted.

We have more to do in order to improve preci-
sion, confidence, and speed enough to compete
with grand champions. We are finding great results
in leveraging the DeepQA architecture capability
to quickly admit and evaluate the impact of new
algorithms as we engage more university partner-
ships to help meet the challenge.

An Early Adaptation Experiment
Another challenge for DeepQA has been to demon-
strate if and how it can adapt to other QA tasks. In
mid-2008, after we had populated the basic archi-
tecture with a host of components for searching,
evidence retrieval, scoring, final merging, and
ranking for the Jeopardy task, IBM collaborated
with CMU to try to adapt DeepQA to the TREC QA
problem by plugging in only select domain-spe-
cific components previously tuned to the TREC
task. In particular, we added question-analysis
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components from PIQUANT and OpenEphyra that
identify answer types for a question, and candidate
answer-generation components that identify
instances of those answer types in the text. The
DeepQA framework utilized both sets of compo-
nents despite their different type systems — no
ontology integration was performed. The identifi-
cation and integration of these domain specific
components into DeepQA took just a few weeks.

The extended DeepQA system was applied to
TREC questions. Some of DeepQA’s answer and
evidence scorers are more relevant in the TREC
domain than in the Jeopardy domain and others are
less relevant. We addressed this aspect of adapta-
tion for DeepQA’s final merging and ranking by
training an answer-ranking model using TREC
questions; thus the extent to which each score
affected the answer ranking and confidence was
automatically customized for TREC.

Figure 10 shows the results of the adaptation
experiment. Both the 2005 PIQUANT and 2007
OpenEphyra systems had less than 50 percent
accuracy on the TREC questions and less than 15

percent accuracy on the Jeopardy clues. The Deep-
QA system at the time had accuracy above 50 per-
cent on Jeopardy. Without adaptation DeepQA’s
accuracy on TREC questions was about 35 percent.
After adaptation, DeepQA’s accuracy on TREC
exceeded 60 percent. We repeated the adaptation
experiment in 2010, and in addition to the
improvements to DeepQA since 2008, the adapta-
tion included a transfer learning step for TREC
questions from a model trained on Jeopardy ques-
tions. DeepQA’s performance on TREC data was 51
percent accuracy prior to adaptation and 67 per-
cent after adaptation, nearly level with its per-
formance on blind Jeopardy data.

The result performed significantly better than
the original complete systems on the task for
which they were designed. While just one adapta-
tion experiment, this is exactly the sort of behav-
ior we think an extensible QA system should
exhibit. It should quickly absorb domain- or task-
specific components and get better on that target
task without degradation in performance in the
general case or on prior tasks.
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Figure 9. Watson’s Precision and Confidence Progress as of the Fourth Quarter 2009.



Summary 
The Jeopardy Challenge helped us address require-
ments that led to the design of the DeepQA archi-
tecture and the implementation of Watson. After 3
years of intense research and development by a core
team of about 20 researcherss, Watson is perform-
ing at human expert levels in terms of precision,
confidence, and speed at the Jeopardy quiz show.

Our results strongly suggest that DeepQA is an
effective and extensible architecture that may be
used as a foundation for combining, deploying,
evaluating, and advancing a wide range of algorith-
mic techniques to rapidly advance the field of QA. 

The architecture and methodology developed as
part of this project has highlighted the need to
take a systems-level approach to research in QA,
and we believe this applies to research in the
broader field of AI. We have developed many dif-
ferent algorithms for addressing different kinds of
problems in QA and plan to publish many of them
in more detail in the future. However, no one algo-
rithm solves challenge problems like this. End-to-

end systems tend to involve many complex and
often overlapping interactions. A system design
and methodology that facilitated the efficient inte-
gration and ablation studies of many probabilistic
components was essential for our success to date.
The impact of any one algorithm on end-to-end
performance changed over time as other tech-
niques were added and had overlapping effects.
Our commitment to regularly evaluate the effects
of specific techniques on end-to-end performance,
and to let that shape our research investment, was
necessary for our rapid progress.

Rapid experimentation was another critical
ingredient to our success. The team conducted
more than 5500 independent experiments in 3
years — each averaging about 2000 CPU hours and
generating more than 10 GB of error-analysis data.
Without DeepQA’s massively parallel architecture
and a dedicated high-performance computing
infrastructure, we would not have been able to per-
form these experiments, and likely would not have
even conceived of many of them.
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Tuned for the Jeopardy Challenge, Watson has
begun to compete against former Jeopardy players
in a series of “sparring” games. It is holding its
own, winning 64 percent of the games, but has to
be improved and sped up to compete favorably
against the very best. 

We have leveraged our collaboration with CMU
and with our other university partnerships in get-
ting this far and hope to continue our collabora-
tive work to drive Watson to its final goal, and help
openly advance QA research.
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