## Buildings and Classical Groups

## Paul Garrett

School of Mathematics, University of Minnesota, Minneapolis, Minnesota, USA



London · Weinheim · New York · Tokyo · Melbourne · Madras

## Contents

| Introduction                                | ix          |
|---------------------------------------------|-------------|
| 1 Coxeter Groups                            | 1           |
| 1.1 Words, lengths, presentations of groups | 2           |
| 1.2 Coxeter groups, systems, diagrams       | 2<br>2<br>3 |
| 1.3 Reflections, roots                      | 3           |
| 1.4 Roots and the length function           | 6           |
| 1.5 More on roots and lengths               | 9           |
| 1.6 Generalized reflections                 | 11          |
| 1.7 Exchange, Deletion conditions           | 12          |
| 1.8 The Bruhat order                        | 16          |
| 1.9 Special subgroups of Coxeter groups     | 20          |
| 2 Seven Infinite Families                   | 25          |
| 2.1 Three spherical families                | 26          |
| 2.2 Four affine families                    | 27          |
| 3 Chamber Complexes                         | 31          |
| 3.1 Chamber complexes                       | 32          |
| 3.2 The uniqueness lemma                    | 35          |
| 3.3 Foldings, walls, reflections            | 36          |
| 3.4 Coxeter complexes                       | 40          |
| 3.5 Characterization by foldings and walls  | 43          |
| 3.6 Corollaries on foldings                 | 48          |
| 4 Buildings                                 | 51          |
| 4.1 Apartments and buildings: definitions   | 52          |
| 4.2 Canonical retractions to apartments     | 53          |
| 4.3 Apartments are Coxeter complexes        | 54          |
| 4.4 Labels, links                           | 56          |
| 4.5 Convexity of apartments                 | 59          |
| 4.6 Spherical buildings                     | 59          |
| 5 BN-pairs from Buildings                   | 63          |
| 5.1 BN-pairs: definitions                   | 64          |
| 5.2 BN-pairs from buildings                 | 64          |
| 5.3 Parabolic (special) subgroups           | 70          |

| 5.4 Further Bruhat-Tits decompositions        | 71  |
|-----------------------------------------------|-----|
| 5.5 Generalized BN-pairs                      | 73  |
| 5.6 The spherical case                        | 75  |
| 5.7 Buildings from BN-pairs                   | 79  |
| 6 Generic and Hecke Algebras                  | 87  |
| 6.1 Generic algebras                          | 88  |
| 6.2 Iwahori-Hecke algebras                    | 92  |
| 6.3 Generalized Iwahori-Hecke algebras        | 95  |
| 7 Geometric Algebra                           | 101 |
| 7.1 GL(n) (a prototype)                       | 102 |
| 7.2 Bilinear and hermitian forms              | 106 |
| 7.3 Extending isometries                      | 111 |
| 7.4 Parabolics                                | 114 |
| 8 Examples in Coordinates                     | 119 |
| 8.1 Symplectic groups                         | 120 |
| 8.2 Orthogonal groups O(n,n)                  | 123 |
| 8.3 Orthogonal groups O(p,q)                  | 125 |
| 8.4 Unitary groups in coordinates             | 127 |
| 9 Spherical Construction for GL(n)            | 131 |
| 9.1 Construction                              | 132 |
| 9.2 Verification of the building axioms       | 132 |
| 9.3 Action of $GL(n)$ on the building         | 136 |
| 9.4 The spherical BN-pair in GL(n)            | 137 |
| 9.5 Analogous treatment of SL(n)              | 139 |
| 9.6 Symmetric groups as Coxeter groups        | 140 |
| 10 Spherical Construction for Isometry Groups | 143 |
| 10.1 Constructions                            | 144 |
| 10.2 Verification of the building axioms      | 145 |
| 10.3 The action of the isometry group         | 150 |
| 10.4 The spherical BN-pair                    | 151 |
| 10.5 Analogues for similitude groups          | 154 |
| 11 Spherical Oriflamme Complex                | 157 |
| 11.1 Oriflamme construction for SO(n,n)       | 158 |
| 11.2 Verification of the building axioms      | 159 |
| 11.3 The action of $SO(n,n)$                  | 164 |
| 11.4 The spherical BN-pair in SO(n,n)         | 168 |
| 11.5 Analogues for GO(n,n)                    | 170 |

| Contents |
|----------|
|----------|

| 12 Refl | ections, Root Systems and Weyl Groups | 173 |
|---------|---------------------------------------|-----|
|         | Hyperplanes, chambers, walls          | 174 |
|         | Reflection groups are Coxeter groups  | 177 |
|         | Finite reflection groups              | 181 |
|         | Affine reflection groups              | 186 |
|         | Affine Weyl groups                    | 190 |
|         |                                       |     |
| 13 Affi | ne Coxeter Complexes                  | 197 |
|         | Tits' cone model of Coxeter complexes | 198 |
| 13.2    | Positive-definite (spherical) case    | 202 |
| 13.3    | A lemma from Perron-Frobenius         | 203 |
| 13.4    | Local finiteness of Tits' cones       | 205 |
| 13.5    | Definition of geometric realizations  | 207 |
| 13.6    | Criterion for affineness              | 209 |
| 13.7    | The canonical metric                  | 214 |
| 13.8    | The seven infinite families           | 216 |
| 14 Affi | ne Buildings                          | 221 |
| 14.1    | Affine buildings, trees: definitions  | 222 |
| 14.2    | Canonical metrics on affine buildings | 222 |
| 14.3    | Negative curvature inequality         | 225 |
| 14.4    | Contractibility                       | 227 |
| 14.5    | Completeness                          | 228 |
| 14.6    | Bruhat-Tits fixed-point theorem       | 229 |
| 14.7    | Maximal compact subgroups             | 230 |
| 14.8    | Special vertices, compact subgroups   | 235 |
| 15 Com  | binatorial Geometry                   | 239 |
| 15.1    | Minimal and reduced galleries         | 240 |
| 15.2    | Characterizing apartments             | 241 |
| 15.3    | Existence of prescribed galleries     | 242 |
| 15.4    | Configurations of three chambers      | 244 |
| 15.5    | Subsets of apartments                 | 247 |
| 16 Sph  | erical Building at Infinity           | 253 |
| 16.1    | Sectors                               | 254 |
| 16.2    | Bounded subsets of apartments         | 255 |
|         | Lemmas on isometries                  | 256 |
| 16.4    | Subsets of apartments                 | 260 |
|         | Configurations of chamber and sector  | 265 |
|         | Sector and three chambers             | 267 |
| 16.7    | Configurations of two sectors         | 270 |
|         | Geodesic rays                         | 274 |

## vii

| 16.9 The spherical building at infinity                                                                   | 277        |
|-----------------------------------------------------------------------------------------------------------|------------|
| 16.10 Induced maps at infinity                                                                            | 284        |
| 17 Applications to Course                                                                                 | 200        |
| 17 Applications to Groups                                                                                 | 289        |
| <ul><li>17.1 Induced group actions at infinity</li><li>17.2 BN-pairs, parahorics and parabolics</li></ul> | 290<br>291 |
| 17.2 BN-paris, paranones and parabones<br>17.3 Translations and Levi components                           | 291        |
| 17.5 Translations and Levi components<br>17.4 Levi filtration by sectors                                  | 293<br>294 |
|                                                                                                           | 294<br>297 |
| <ul><li>17.5 Bruhat and Cartan decompositions</li><li>17.6 Iwasawa decomposition</li></ul>                | 297        |
| 17.0 Twasawa decomposition<br>17.7 Maximally strong transitivity                                          | 297        |
| 17.7 Maximally strong transitivity<br>17.8 Canonical translations                                         |            |
| 17.8 Canonical translations                                                                               | 301        |
| 18 Lattices, p-adic Numbers, Discrete Valuations                                                          | 305        |
| 18.1 p-adic numbers                                                                                       | 306        |
| 18.2 Discrete valuations                                                                                  | 309        |
| 18.3 Hensel's Lemma                                                                                       | 311        |
| 18.4 Lattices                                                                                             | 313        |
| 18.5 Some topology                                                                                        | 314        |
| 18.6 Iwahori decomposition for GL(n,k)                                                                    | 317        |
| 19 Affine Building for SL(n)                                                                              | 321        |
| 19.1 Construction                                                                                         | 322        |
| 19.2 Verification of the building axioms                                                                  | 324        |
| 19.3 The action of SL(V)                                                                                  | 329        |
| 19.4 The Iwahori subgroup 'B'                                                                             | 330        |
| 19.5 The maximal apartment system                                                                         | 332        |
| 20 Affine Buildings for Isometry Groups                                                                   | 335        |
| 20.1 Affine buildings for alternating spaces                                                              | 336        |
| 20.2 The double oriflamme complex                                                                         | 338        |
| 20.3 The (affine) single oriflamme complex                                                                | 340        |
| 20.4 Verification of the building axioms                                                                  | 344        |
| 20.5 Group actions on the buildings                                                                       | 347        |
| 20.6 Iwahori subgroups                                                                                    | 349        |
| 20.7 The maximal apartment systems                                                                        | 351        |
| Bibliography                                                                                              | 353        |
| 2                                                                                                         |            |
| Index                                                                                                     | 371        |

-

•