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Buildings, Beauty, and the Brain: A Neuroscience
of Architectural Experience

Alex Coburn1,2, Oshin Vartanian3, and Anjan Chatterjee1

Abstract

■ A burgeoning interest in the intersection of neuroscience
and architecture promises to offer biologically inspired insights
into the design of spaces. The goal of such interdisciplinary
approaches to architecture is to motivate construction of envi-
ronments that would contribute to peoples’ flourishing in be-
havior, health, and well-being. We suggest that this nascent
field of neuroarchitecture is at a pivotal point in which neuro-
science and architecture are poised to extend to a neuroscience

of architecture. In such a research program, architectural expe-
riences themselves are the target of neuroscientific inquiry.
Here, we draw lessons from recent developments in neuroaes-
thetics to suggest how neuroarchitecture might mature into an
experimental science. We review the extant literature and offer
an initial framework from which to contextualize such research.
Finally, we outline theoretical and technical challenges that lie
ahead. ■

INTRODUCTION

Two thousand years ago, the Roman architect Vitruvius
highlighted beauty as one of three core dimensions of ar-
chitectural design. His seminal Vitruvian triad (Figure 1)
illustrated that a building must be strong and structurally
stable ( firmitas), meet the functional needs of its occu-
pants (utilitas), and appeal to their aesthetic sensibilities
(venustas; Vitruvius Pollio, Morgan, & Warren, 1914).
Cultures across the globe have regarded aesthetic expe-
rience as a vital consideration in human construction. For
millennia, ancient Eastern construction practices like the
Indian vaastu shastra and the Chinese feng shui offered
concrete guides to creating spatial harmony and aesthetic
coherence in the built environment (Patra, 2009; Mak &
Thomas Ng, 2005). Architectural aesthetics was a topic of
serious inquiry in the European intellectual tradition as
well, generating attention from philosophers like Goethe
and Ruskin (Hultzsch, 2014). The considerable attention
devoted to this subject across time and culture reflects a
shared belief that aesthetic qualities of buildings have a
meaningful impact on human experience.
In the 20th century, the aesthetic dimension of the

built environment was de-emphasized. Modern building
science generally focused on improving utilitarian mea-
sures like fire safety, construction costs, and efficient uses
of space (Vaughan, 2013). Advances in material design
and structural engineering led to the construction of tal-
ler and sturdier buildings than ever before (Ali & Moon,
2007). This trend mirrored a philosophical shift in West-

ern architectural practice that began about a century ago,
when the concept of buildings as machines and the asso-
ciated creed of “form follows function” influenced archi-
tects to optimize the measurable and often mechanistic
aspects of the built environment while discarding long-
observed aesthetic conventions like ornamentation and
human scaling. The minimalist, reductive form that re-
sulted from this philosophy came to embody a new aes-
thetic ideal, reflecting a view of architectural beauty as
nothing more than a byproduct of functionalist design
(Venturi, Scott Brown, Rattenbury, & Hardingham,
2007). This perspective pushed the study of aesthetic ex-
perience to the periphery of architectural investigation.
In Vitruvian terms, venustas was subsumed by utilitas.

Recent decades, however, have witnessed a surge of
interest in the experience of the built environment.
Today, many people spend upwards of 90% of their lives
in buildings (Evans & McCoy, 1998). Studies indicate that
aesthetic qualities of architecture have an impact on our
mood, cognitive functioning, behavior, and even mental
health (Adams, 2014; Cooper, Burton, & Cooper, 2014;
Hartig, 2008; Joye, 2007). This evidence coincides with
a flourish of interest in the intersection of neuroscience
and architecture (Dance, 2017; Robinson & Pallasmaa,
2015; Mallgrave, 2010; Eberhard, 2008). However, rela-
tively little work has been conducted on the neurosci-
ence of architecture. We advocate going beyond
inferences from neuroscientific knowledge applied to
architecture to direct experimental work in which archi-
tectural experience itself is the target of neuroscientific
research.

In this study, we apply lessons from recent develop-
ments in neuroaesthetics, a discipline that investigates
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the neurobiological underpinnings of aesthetic experi-
ences of beauty and art (Chatterjee & Vartanian, 2016),
to the neuroscience of architecture. These ideas and
methods can be used to study aesthetic experiences in
the built environment (Eberhard, 2009). An emerging
“neuroscience of architecture” promises an empirical
platform from which to study the experiential dimen-
sions of architecture that have been largely overlooked
in modern building science.

Around 2004, neuroaesthetics arrived at a pivotal point
in its development both empirically and theoretically.
The first papers using fMRI to identify neural responses
to art (Vartanian & Goel, 2004) and to critically review
the neuropsychology of art (Chatterjee, 2004a, 2004b)
were published. In concert and perhaps more impor-
tantly early models outlining key cognitive and neural
systems involved in aesthetic experience were set forth
(Chatterjee, 2004a; Leder, Oeberst, Augustin, & Belke,
2004). Previous research had been primarily descriptive
in that most studies generated qualitative observational
claims relating facts of the brain to aesthetic experiences
(Chatterjee & Vartanian, 2014). The pivot initiated a shift
from descriptive hypothesis-generating research to em-
pirical hypothesis-testing studies and helped launch the
discipline into the mainstream of scientific investigation
(Chatterjee, 2011).

We propose that the neuroscience of architecture is on
the verge of a similar pivot. Currently, descriptive re-
search predominates in this young field (Brown & Lee,
2016; Mallgrave, 2010; Eberhard, 2008). Several empirical
studies have recently emerged reporting neurophysiolog-
ical responses to architectural parameters (Choo, Nasar,
Nikrahei, & Walther, 2017; Shemesh et al., 2016;
Marchette, Vass, Ryan, & Epstein, 2015; Vartanian et al.,
2013, 2015). These studies represent a first step. How-
ever, they remain untethered to a general theoretical
framework and are difficult to place in the context of pro-
grammatic research on the neuroscience of architecture.

Here, we apply a general neural model of aesthetic expe-
rience to architectural experience and contextualize past
and future empirical studies. In the process, we also
outline challenges ahead for the field as it matures.

THE AESTHETIC TRIAD

The aesthetic triad, originally created to frame aesthetic ex-
periences in neural terms (Chatterjee, 2013; Shimamura,
2013), also applies in a general way to the neuroscience
of architecture. According to this model, three large-scale
systems generate aesthetic experiences: sensorimotor,
knowledge-meaning, and emotion-valuation systems (Fig-
ure 2). Architecture engages multiple sensory networks,
presumably visual, auditory, somatosensory, olfactory,
and vestibular systems, and triggers motor responses
such as approach and avoidance (Vartanian et al., 2015).
Meaning-knowledge systems informed by personal experi-
ences, culture, and education also shape one’s encounters
with the built environment. Finally, emotion-valuation
networks mediate feelings and emotions engendered by
buildings and urban spaces (Leder et al., 2004).
Below, we discuss each of these systems in greater de-

tail and consider the relative contribution of each to
emergent aesthetic experiences of architecture. We also
consider how these networks might respond differently
to architecture than to visual art. Key differences include
the immersive and multisensory nature of buildings and
the prolonged time span of architectural encounters as
compared with typically 2-D images and brief engage-
ment with artworks. Along the way, we discuss how
aesthetic experiences could mediate the effects of archi-
tecture on behavior, health and well-being, and how dif-
ferences in building types (e.g., homes, hospitals, office
space, museums) might modulate the nature of these
experiences.

Figure 1. The Vitruvian triad.

Figure 2. The aesthetic triad. Adapted from Chatterjee and Vartanian
(2014).
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A general question that arises in neuroaesthetics is
whether art objects are special and whether aesthetic ex-
periences of art are different than aesthetic experiences
of natural or nonart objects. A similar question could be
raised for architecture. We suggest that there are similar-
ities and differences in people’s responses to built versus
natural environments. There are likely systematic differ-
ences in the sensory properties (color, texture, shapes)
of built and natural spaces and that architectural knowl-
edge or familiarity of these spaces are likely to introduce
differences in their respective experience. Understanding
these similarities and differences are themselves of
scientific interest.

Sensory–Motor Systems

Edmund Burke remarked that “beauty is, for the greater
part, some quality in bodies acting mechanically upon the
human mind by intervention of the senses” (Burke, 1767,
p. 175). Indeed, sensory networks can be considered the
gatekeepers of architectural experience. Environmental
features differentially stimulate our visual, auditory,
somatosensory, vestibular, and olfactory neural networks.
These sensations are tied to downstream motor re-
sponses such as the affordances of objects, approach
and avoidance reactions, and navigation through built
spaces.

Vision

Vision dominates research in perception of architectural
spaces. Basic low-level visual attributes such as lumi-
nance, color, and motion and intermediate levels like
grouping are processed (Chatterjee, 2004a) before inte-
gration into higher-level processing areas such as the
parahippocampal place area, the retrosplenial cortex,
and the occipital place area (Marchette et al., 2015).
The parahippocampal place area responds specifically
to environmental scenes, including landscapes, building
interiors, and urban neighborhoods, and also plays a crit-
ical role in spatial navigation (Mégevand et al., 2014;
Epstein & Kanwisher, 1998). This area also codes for
the expansiveness of spaces (Kravitz, Peng, & Baker,
2011). Recent work suggests that the occipital place area
is involved in processing perceptual features like building
materials, windows, and architectural motifs that might
be relevant to recognizing the interior and exterior of
buildings. By contrast, the retrosplenial cortex retrieves
information that allows people to orient themselves with-
in a remembered or imagined spatial environment
(Marchette et al., 2015). Hippocampal and entorhinal
cortices contribute to different aspects of spatial naviga-
tion, which would be relevant for architectural experi-
ences (Spiers & Barry, 2015).
A prominent idea in visual aesthetics is the notion of

fluency (Reber, Schwarz, & Winkielman, 2004). That is,
by hypothesis, humans prefer configurations with some

degree of complexity that are also processed easily or
fluently. The visual system is sensitive to features like con-
trast, grouping, and symmetry (Ramachandran & Hirstein,
1999). Retinal cells and neurons in the occipital cortex are
more responsive to edges or areas of high visual contrast
than to regions of homogenous luminance in a scene
(Geisler, 2007; Brady & Field, 2000; Ramachandran &
Hirstein, 1999). High-contrast regions often capture visual
attention and interest because they contain a high density
of useful visual information for object identification
(Hagerhall, Purcell, & Taylor, 2004; Leder et al., 2004;
Alexander, 2002; Ramachandran & Hirstein, 1999). Group-
ing, a fundamental Gestalt principle, describes the process
by which the visual system orders repeated, statistically cor-
related information in a scene, like alternating columns and
archways in an architectural colonnade or organized pat-
terns of blue and yellow hues dispersed throughout a
stained glass window (Alexander, 2002). Grouped features
(e.g., of color or form) trigger synchronized action poten-
tials among associated neurons responsible for processing
those features (Ramachandran & Hirstein, 1999; Singer &
Gray, 1995). These visual mechanisms may mediate the
pleasure response associated with viewing ordered pat-
terns of form and color in architecture (Alexander, 2002).

Balance, of which symmetry is the most straightfor-
ward example, also contributes to fluency and aesthetic
preference (Wilson & Chatterjee, 2005). The evolution-
ary importance of symmetrical information as a reproduc-
tive fitness indicator for human survival may underlie
experimentally observed preferences for more symmetri-
cal faces and geometric shapes ( Jacobsen, Schubotz,
Höfel, & Cramon, 2006; Ramachandran & Hirstein,
1999; Rhodes, Proffitt, Grady, & Sumich, 1998; Frith &
Nias, 1974). Alexander and Carey reported that the num-
ber of local symmetries in a given pattern strongly pre-
dicts the ease with which a participant can find,
describe, and remember that pattern (Alexander & Carey,
1968). Patterns with more symmetries enable more effi-
cient recognition. The fundamental importance of sym-
metry may help explain why this pattern appears
ubiquitously in human design and construction at many
scales, from Persian rugs to Shaker furniture to ancient
Greek temples (Alexander, 2002).

The visual system is sensitive to various statistical prop-
erties of images. One such property is fractal geometry,
defined as “fractured shapes [that] possess repeating pat-
terns when viewed at increasingly fine magnifications”
(Hagerhall et al., 2004, p. 247). Fractal geometry provides
a mathematical description of mountains, coastlines, and
many other complex shapes in nature (Hagerhall et al.,
2004). A fractal dimension is a statistical index of com-
plexity. For example a simple curve has a fractal dimen-
sion close to 1, whereas a densely convoluted line that
approximates the appearance of a surface has a fractal di-
mension closer to 2. Aesthetic preferences for natural
scenes, visual art, and computer-generated patterns seem
to correlate moderately with fractal dimensions ranging
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from about 1.3 to 1.5 (Taylor et al., 2005; Spehar, Clifford,
Newell, & Taylor, 2003), although these claims remain
deeply controversial ( Jones-Smith & Mathur, 2006). In
general, quantifiable image statistics do contribute to
the psychophysics of aesthetic responses (Graham,
Schwarz, Chatterjee, & Leder, 2016; Kotabe, Kardan, &
Berman, 2016; Berman et al., 2014; Graham & Redies,
2010; Graham & Field, 2007; Redies, 2007), which would
also apply to built environments.

Beyond formal mathematical definitions, colloquial no-
tions of complexity, defined as “the volume of informa-
tion present in a space” (Dosen & Ostwald, 2016, p. 3),
may influence the ease with which we identify objects
and extract information from the built environment. Sal-
ingaros suggested that buildings stripped of visual com-
plexity, like prisons, deny the information-seeking visual
system access to meaningful information (Salingaros,
2003). Empirical findings tentatively support this view,
suggesting that people generally prefer at least a moder-
ate level of visual complexity when viewing both art and
architectural interiors (Dosen & Ostwald, 2016; Leder
et al., 2004; Frith & Nias, 1974). As Berlyne postulated
many years ago, preferences tend to follow an inverted
U-shaped curve in relation to complexity (Güçlütürk,
Jacobs, & van Lier, 2016; Imamoglu, 2000; Berlyne,
1970, 1971). More recent evidence suggests that the re-
lationship between complexity and aesthetic preference
varies as a function of how the former is conceptualized
(e.g., amount, variety or organization of elements within
a scene; Nadal, Munar, Marty, & Cela-Conde, 2010).
Excess architectural complexity may also overwhelm the
visual system, particularly if the information is experi-
enced as disorganized (Kotabe et al., 2016; Salingaros,
2003, 2007).

Appleton’s habitat theory offers an evolutionary frame-
work to explain psychological responses to architectural
spaces. According to habitat theory, humans evolved to
prefer landscapes containing visual features and spatial
configurations that favor survival (Appleton, 1975). Peo-
ple may have an innate visual preference for moderately
complex, savannah-like environments ( Joye, 2007;
Balling & Falk, 1982), because these areas signal both
safety and nourishment. The frequent patches of trees
scattered throughout the savannah (Joye, 2007) likely of-
fered early hominids places to hide from predators and
survey the plains in search of resources, mates, and prey
(Appleton, 1975). A review by Dosen and Ostwald indi-
cates that both prospect (a clear view of the environment)
and refuge (safe places to hide) predict visual preferences
for natural settings and that these preferences also extend
to built environments (Dosen & Ostwald, 2016). People
often prefer architectural interiors and urban spaces that
are more open and visually connected to their surround-
ings compared with enclosed environments (Dosen &
Ostwald, 2016). In an fMRI study of architectural interiors,
we found that participants judged open rooms as more
beautiful than enclosed rooms (Vartanian et al., 2015).

Open interiors activated structures in the temporal lobes
associated with perceived visual motion, including the left
middle temporal gyrus and the right superior temporal
gyrus (Vartanian et al., 2015). Participants in this study
also preferred rooms with higher ceilings over those with
lower ceilings, which could be interpreted as a preference
for greater visual prospect. Supporting this interpretation,
high ceilings activated structures associated with visuo-
spatial attention and exploration, including the left precu-
neus and the left middle frontal gyrus (Vartanian et al.,
2015).
E.O. Wilson’s biophilia hypothesis proposes that our

sensory systems developed heightened sensitivity to liv-
ing and life-like stimuli of the natural world (Wilson,
1984). Kaplan and colleagues proposed that inherently
fascinating visual stimuli in natural landscapes, like vege-
tation, wildlife, and “the motion of leaves in the breeze”
(Kaplan, 1995, p. 174), capture the attention of our visual
system in a bottom–up fashion (Berman et al., 2014;
Berman, Jonides, & Kaplan, 2008; Ulrich & Parsons,
1992). This body of work suggests that within nature
humans are more likely to orient and attend to these
“soft fascinations” (Kaplan, 1995, p. 174) associated with
living objects.
Biomorphic features are also prevalent in human con-

struction. Builders throughout history have often en-
dowed their structures with nature-like visual qualities
by drawing inspiration from the “monumental design
model” (Kellert, 2003, p. 36) of plants and animals in the
design of ornamentation, scaling, proportionality, and
even structural support schemes (Joye, 2007; Alexander,
2002). Several authors have speculated about the
potential sensory and emotional benefits of naturalistic
patterns in architecture, like curvilinear form and fractal
scaling (Joye, 2007; Salingaros, 2007; Alexander, 2002).
We, for instance, found that images of curvilinear archi-
tectural interiors activated the lingual and the calcarine
gyrus in the visual cortex more than images of rectilinear
interiors when participants made approach-avoidance
choices (Vartanian et al., 2013).

Nonvisual Experiences of Architecture

Relatively little empirical research has been conducted on
nonvisual aspects of architectural experiences. Odor af-
fects an occupant’s emotional response to a building
(Barbara & Perliss, 2006), perhaps because of the direct
link between the olfactory and limbic system (Ward,
2015). Olfaction can revive memories of past experiences
in a place, like a childhood home, by activating neural
structures governing memory, affect, and meaning
(Lehrer, 2008).
Acoustics also play a key role in shaping an occupant’s

experience. Audition helps provide inhabitants with useful
information about the size and shape of an architectural
space (Ward, 2015). Acoustic parameters like reverberation
time affect the fullness and complexity of the sound
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perceived and probably contributes to whether a place is
designed for contemplation as in a monastery or for excite-
ment as in a stadium.
The somatosensory cortex mediates an occupant’s

tactile and thermal sensations of buildings. A building’s
temperature, for instance, influences an occupant’s
comfort, emotional state, and perception of beauty
(Thorsson, Honjo, Lindberg, Eliasson, & Lim, 2007; Nicol
& Humphreys, 2002; Fanger, 1973). The tactile nature of
materials used undoubtedly plays a role in the experience
of interior spaces, but this sensory quality has not
received experimental scrutiny.

Motor Responses to Architecture

Navigating buildings involves planning and execution of
movement, and it is likely that architectural design differ-
entially impacts neural areas responsible for motor
planning and navigation. Beauty evaluations of architec-
ture can vary with neural activity in the global pallidus
(Vartanian et al., 2013), perhaps suggestive of motor re-
sponses (Nambu, Tokuno, & Takada, 2002). Aesthetic
parameters like enclosure has an impact on decisions
to approach or avoid a space (Vartanian et al., 2015),
which may be governed by reward and emotion process-
ing areas like the nucleus accumbens, the anterior insula,
and the basolateral amygdala (Vartanian et al., 2013). In-
triguingly, Joye and Dewitte found that exposure to im-
ages of tall buildings—which were associated with
heightened feelings of awe—caused participants to expe-
rience greater immobility and to respond more slowly on
a manual clicking task than exposure to images of low
buildings (Joye & Dewitte, 2016). These findings suggest
that our evaluations of architectural stimuli can propel or
inhibit motor activity and influence the specific qualities
of the viewers’ experiences.

Knowledge-meaning Systems

Education, memories, and the context in which a person
encounters an aesthetic object or a built environment
can have an impact on the person’s experience. Exper-
tise, for instance, is known to influence aesthetic experi-
ences. In one fMRI study, architecture students recruited
different cortical areas when viewing buildings than stu-
dents from other disciplines (Wiesmann & Ishai, 2011).
Another experiment showed that architects, compared
with nonarchitects, had increased activation of reward
circuitry, including the bilateral medial OFC and the sub-
callosal cingulate gyrus, when making aesthetic judg-
ments about buildings (Kirk, Skov, Christensen, &
Nygaard, 2009). Architects also exhibited greater activa-
tion of the hippocampus and precuneus compared with
control participants when viewing buildings but not
faces, suggesting that memories rendered by education
and professional experience contributed to their affective
responses.

A person’s past experiences in a built environment can
modulate their present interactions with that space. Expo-
sure to an environment generates a cognitive map using
place and grid cells of the hippocampus (McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006; O’keefe & Nadel,
1978), which in turn facilitates more efficient navigation in
future encounters (Astur, Taylor, Mamelak, Philpott, &
Sutherland, 2002; Maguire et al., 2000). Grid cells encode
memories of both events and the places in which they
occur (Edelstein et al., 2008). Because familiarity influ-
ences liking (Montoya, Horton, Vevea, Citkowicz, &
Lauber, 2017), we suspect that familiarity and ease of nav-
igation would influence the aesthetic experience of
spaces. Howmight expectations, context, and meaning af-
fect a person’s architectural experience? Expectations
about control influence thermal comfort. Occupants
who control environmental parameters affecting building
temperature, such as operable windows, fans, and ther-
mostats, tolerate a wider range of indoor temperatures
than inhabitants with restricted control over their indoor
climate (Nicol & Humphreys, 2002). The mere perception
of environmental control can increase the range of tem-
peratures within which an occupant feels comfortable
(Brager, Paliaga, & De Dear, 2004; Bauman et al., 1994).
Context and cultural meaning also have an impact on aes-
thetic experience (Leder et al., 2004). Kirk and colleagues
found that participants were more likely to judge abstract
visual art as beautiful if they were labeled as gallery pieces
than if they were classified as computer-generated images
(Kirk, Skov, Hulme, Christensen, & Zeki, 2009). Art ran-
domly assigned the “gallery” label generated increased ac-
tivity in prefrontal, orbitofrontal, and entorhinal cortices
than those assigned the “computer” label, indicating that
participants’ expectations about the aesthetic value of the
artworks influenced their emotional responses.

Similar to the gallery condition for art, a building’s ad-
vertised cultural significance could shape an occupant’s
expectations and alter his or her experience of the space.
For example, this effect might bias people to enjoy and
appreciate expensive buildings, buildings designed by
famous architects, buildings perceived as sustainable, or
buildings associated with a particular historical period,
event, or style. Knowledge of a structure’s intended func-
tion could similarly bias an occupant’s expectations be-
fore their architectural encounter. The prospect of
visiting a prison, for example, would likely bring on a dif-
ferent frame of mind than when preparing to enter a
Buddhist temple. Thus, the knowledge and expectations
that a person brings to the space they occupy almost cer-
tainly influences their aesthetic experience of that space.

Emotion-valuation Systems

The emotions people feel in the presence of beautiful
architecture are likely mediated by the brain’s reward
circuitry. In a meta-analysis of neuroimaging studies
investigating positive-valence aesthetic appraisal, Brown
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and colleagues proposed that the processing of aesthetic
emotions occurs through a core neural circuit involving
the OFC, the BG, the ACC, and the anterior insula
(Brown, Gao, Tisdelle, Eickhoff, & Liotti, 2011). Our
study revealed that curvilinear building interiors are
judged as more beautiful and pleasing than rectilinear
spaces and that beauty ratings of curved rooms corre-
lated with increased activation of ACC (Vartanian et al.,
2013). ACC is connected with both the OFC and anterior
insula and is often coactivated with these regions in
neuroimaging studies rewards (Brown et al., 2011).

A follow-up experiment found that participants’ incli-
nations to exit enclosed rooms, compared with open
rooms, were associated with activation of the anterior
midcingulate cortex (Vartanian et al., 2015). The anterior
midcingulate cortex receives direct projections from the
amygdala (Vogt & Pandya, 1987) and is involved in fear
processing (Whalen et al., 1998), pointing out that brain
circuitry governing negative emotions almost certainly
play a role in architectural experience. Another group
of researchers found that study participants immersed
in a virtual simulation of an enclosed room without win-
dows exhibited greater reactivity to a stress test than par-
ticipants who undertook the test in a virtual room with
windows (Fich et al., 2014). Those who took the test in
the enclosed virtual space experienced both heightened
and prolonged spikes in salivary cortisol compared with
participants immersed in the more open environment. In
these two studies, the same design parameter, enclosure,
produced both fear and elevated levels of stress hor-
mones, presumably because emotion-regulating limbic
structures like the amygdala modulate downstream
activity of the neuroendocrine and autonomic nervous
systems (Ulrich-Lai & Herman, 2009). The close associa-
tion between the limbic system and stress responses rep-
resents a key pathway by which chronic exposure to
maladaptive built environments might negatively impact
an occupant’s long-term health (Joye, 2007).

The idea that the visual and limbic systems work in
concert to rapidly identify and evaluate incoming visual
information is consistent with Ulrich’s framework, which
proposes that initial affective responses toward environ-
ments are primarily influenced by automatic, uncon-
scious processing (Ulrich, 1983). Some studies suggest
that positive and negative emotional responses to envi-
ronmental scenes occur rapidly and automatically (Joye
& Dewitte, 2016; Valtchanov & Ellard, 2015; Hietanen &
Korpela, 2004; Korpela, Klemettilä, & Hietanen, 2002).
Such a quick emotional response could be adaptive by
relieving people of the cost imposed by learning an envi-
ronment through actual lived experience ( Joye, 2007;
Kaplan, 1987; Ulrich, 1983).

If there is indeed an evolutionary basis for aesthetic
sensation and emotion, then architects could manipulate
the design parameters of their buildings to heighten these
adaptive responses. Builders throughout history may
have been doing just that. Alexander and colleagues

identified a series of visual patterns—including contrast,
grouping, and symmetry—which, they contend, appear
ubiquitously throughout global vernacular architecture
precisely because of their inherent emotional appeal
(Salingaros, 2007; Alexander, 1977, 2002). Further re-
search is needed to understand the neural underpinnings
of complex emotional responses to architecture like
contemplation, comfort, curiosity, and awe.
In addition to emotions, aesthetics researchers often

measure judgments as a means of gauging a participant’s
evaluative response to art or architecture. Participants are
typically asked to judge visual stimuli on dimensions such
as beauty or attractiveness. In one study, beauty judg-
ments of architecture were shown to vary with activity
in various regions of the pFC, including the frontopolar
cortex and the superior frontal gyrus, as well as brain re-
gions involved in memory retrieval, such as the parahip-
pocampus (Vartanian et al., 2013). These neural regions
are somewhat distinct from reward circuitry associated
with emotions. Activation of the pFC suggests that con-
scious reasoning and analysis can play a significant role in
aesthetic judgment, whereas parahippocampal activation
may mean that memories generated from education or
past experience may influence this analytical process. In-
creased activity in both of these neural regions implies
that aesthetic judgment may be particularly influenced
by inputs from the knowledge-meaning systems such as
expertise, cultural trends, and an understanding of a
building’s intended function.
If evaluative and emotional responses to architecture

involve distinct neural circuitry, then it would be reason-
able to expect that what an occupant thinks about a
building could be different from how they feel while
spending time there.1 These two dimensions of architec-
tural experience could also have important influences on
each other. For example, Do Dio and colleagues found
that aesthetic judgment tasks actually diminish emotional
responses to visual art. Participants who were asked to
rate the beauty of Renaissance sculptures showed de-
creased activation in the right insula compared with
those who were merely instructed to passively observe
the sculptures (Di Dio, Macaluso, & Rizzolatti, 2007). Un-
derstanding potential interactions between aesthetic
emotion and evaluation will be an important area of
inquiry for future research in the neuroscience of
architecture.

HEALTH AND WELL-BEING

Research linking architecture and health often focuses on
identifying sources of illness. For instance, chronic expo-
sure to unwanted noise can increase blood pressure
(Payne, Potter, & Cain, 2014) and hinder adolescent neu-
ral development (Gilbert & Galea, 2014). Insufficient day-
light may affect circadian rhythms and impair sleep
quality (Dutton, 2014). However, the design of the built
environment can also modulate positive aspects of
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psychological functioning such as learning, social behav-
ior, and emotional wellness (Cooper & Burton, 2014).
For example, immersion in red environments may im-
prove performance on detail-oriented cognitive tasks
whereas blue spaces might be associated with enhanced
creative thinking (Mehta & Zhu, 2009). Likewise, green-
ery and other natural features in the built environment
may improve mood (Bowler, Buyung-Ali, Knight, & Pullin,
2010), enhance working memory (Bratman, Daily, Levy,
& Gross, 2015), and accelerate recovery from stress
(Ulrich et al., 1991) and surgery (Ulrich, 1984). Monoto-
nous interior architectural composition can make pa-
tients with Alzheimer’s disease more likely to get lost,
whereas incorporating frequent visual reference points
and exterior views can improve their navigation (Passini,
Pigot, Rainville, & Tétreault, 2000). These studies repre-
sent just a few examples of how aesthetics and design of
the built environment can have an impact on mental and
physiological health.

CHALLENGES AND FUTURE DIRECTIONS

As outlined above, we believe that the neuroscience of
architecture is poised to make a transition in which the
prevalent descriptive approach can be extended and
grounded in experimental research programs. Here, we
outline three related challenges ahead, which we refer
to as the double framing, the psychology, and the mea-
surement problems. Advances in each of these areas will
provide structure to the field as it matures.

Double Framing

This problem refers to the need for both general and
specific frames to guide research. As mentioned earlier,
having a theoretical framework is critical to placing
experimental work in context. Without such a framework,
individual studies remain isolated findings untethered to
programmatic advances in understanding. Neuroaes-
thetics was helped by the introduction of general psycho-
logical and neuroscientific models that have since been
debated and refined (Chatterjee & Vartanian, 2016; Tinio,
2013; Nadal, Munar, Capó, Rosselló, & Cela-Conde, 2008;
Jacobsen, 2006; Chatterjee, 2004a; Leder et al., 2004).
Here, we apply one such general framework, the aes-
thetic triad, to architecture. However, architectural spaces
encompass different functions in a way that art typically
does not. For a hospital, a school, a museum, a train sta-
tion, and a home, what makes the space beautiful might
differ and be related to its function. Furthermore, the
context in which these spaces are experienced makes a
difference. The anxiety of a patient in a hospital, the de-
sire to learn in a school, the navigational demands of a
train station, and the comfort and safety of a home might
all be relevant factors in the experience of a person within
those spaces. This variability based on the purpose of
the building and the inhabitants’ expectations and states

of mind need to be considered in any research involving
the experience of such spaces.

Psychology of Architecture

Empirical aesthetics has a long and rich scholarly tradi-
tion of research in the psychology of aesthetics and the
arts. This tradition includes Fechner’s original contribu-
tions emphasizing the experience of the viewer as a crit-
ical variable in aesthetic understanding (Fechner, 1876),
as well as Arnheim’s perceptual psychology (Arnheim,
1954), Berlyne’s concerns with complexity and arousal
(Berlyne, 1971), and Martindale’s historical-cultural anal-
ysis (Martindale, 1990), among many others. Neuroscien-
tists can draw on this rich body of scholarship in guiding
experimental work. Although there are relevant pockets
of research in environmental and human factors psychol-
ogy (Graham, Gosling, & Travis, 2015), a similarly rich
tradition of research situated specifically within a psychol-
ogy of architecture does not exist. We do not think that
an insightful neuroscience of architecture can develop
without a well-developed psychology of architecture. Re-
cent academic meetings suggest that such a discipline
might yet develop,2 which would undoubtedly bolster
the neuroscience of architecture.

Measurement Challenges

Four aspects of a neuroscience of architecture make
measurement especially challenging. These aspects are
dimensionality, multimodality, temporality, and depth
of psychological processing. To some extent, these as-
pects are relevant to the neuroscience of art, but they
are magnified when considering architecture.

Most neuroaesthetics research involves 2-D images.
This makes sense when the stimuli viewed are flat paint-
ings, although issues of scale and visual texture remain
relevant in so far as experiments are typically conducted
on a computer screen in a laboratory. Even architecture-
specific investigations have relied on flat visual stimuli to
represent 3-D architectural space and thus might be
treated more like artwork than buildings in these exper-
iments. Real buildings induce more immersive and mul-
tisensory experiences than images of architecture or
visual art. The specific experience of being in such a
space might be more difficult to capture experimentally.
A similar issue arises with installation art, which has not
been investigated in any systematic way in neuroaes-
thetics. Perhaps in the near future virtual reality tech-
niques will permit a reasonable approximation of the
experience of immersion in an architectural space.

We mentioned earlier the multidimensional nature of
architectural experiences. Yet, research has focused
primarily on visual aspects of architecture. How to incorpo-
rate different modalities and probe the neural underpin-
nings of an integrated sensory–motor experience remains
a challenge to be addressed.
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People inhabit architectural spaces. This ongoing en-
gagement with space differs from our engagement with
art. Investigators have probed early and a slightly later re-
sponse to artwork, but such research is still confined to
experiences that last less than a few seconds in duration
(Cela-Conde et al., 2013). There is recognition that aes-
thetic experiences vary over longer durations than a
few seconds (Chatterjee, 2014; Leder & Nadal, 2014),
although the average museum patron spends less than
20 sec engaging with works of art (Smith, Smith, & Tinio,
2017; Smith & Smith, 2001). Architectural encounters, by
contrast, tend to be prolonged and are often habitual in
the case of frequently visited buildings like one’s home,
school, or office. How best to sample neurophysiological
data over time and “in the field” is a question that will
need to be resolved over time (Gramann, Ferris, Gwin,
& Makeig, 2014). Mobile EEG has begun to be used in
museum studies and innovative approaches to data col-
lection have begun to emerge (Kontson et al., 2015;
Tröndle & Tschacher, 2012). Technological issues of sam-
pling and separating signal from noise and theoretical
issues of how best to use such technology in a hypothesis-
testing framework remain, but these methods have great
promise.

Within empirical aesthetics, there is an increasing ap-
preciation that the field needs to expand its scope be-
yond the study of simple preferences to include a focus
on deeper psychological states (Silvia, 2012). This need is
also relevant within the context of the neuroscience of
architecture. For example, certain built spaces have the
ability to facilitate deep contemplation that extends be-
yond mere preference, and it is important to understand
design features that drive such effects. Other spaces
might be designed to induce social cohesion or a sense
of refuge and comfort, and poorly designed spaces might
increase individual alienation. The field would benefit
from the development of ecologically valid approaches
to the measurement of mental states that capture deep
psychological engagement with built spaces.

Conclusions

Philosophers since ancient Roman times have empha-
sized the experiential importance of architectural aes-
thetics. Only in the past decade or so have scientists
started to investigate this topic with rigor. Here, we de-
scribe how an existing model—the aesthetic triad—can
serve as a useful initial framework for researching venus-
tas, the relatively neglected dimension of the Vitruvian
triad. We suggest that sensory and emotional response
patterns shaped by bioevolutionary forces may form the
foundation of architectural experience, but also that this
experience is substantially modified by a person’s educa-
tion, cultural upbringing, and personal experience.

Despite individual differences, consistent patterns of
neural activity are emerging from this line of research
that in the future could help architects design brain-

informed buildings. Researchers in environmental psy-
chology and social epidemiology have tried to identify
design characteristics that might improve our physical
and mental health. Increasing evidence from these in-
vestigations suggests that “attractiveness is a key element
in how the built environment affects our wellbeing”
(Cooper & Burton, 2014, p. 13). In conjunction with in-
creased precision in defining design concepts (Stamps,
1999), the neuroscience of architecture is well positioned
to study the biology of architectural beauty. Much work
remains to be done. The hope is to improve human ex-
perience and well-being by optimizing built structures
that surround us for much of our lives.
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Notes

1. By no means is this a new idea. The merits of these poten-
tially distinct modes of architectural experience, thinking and
feeling, were infamously argued by two leading architectural
theorists, Christopher Alexander and Peter Eisenmann, in a
heated debate at Harvard University in 1982.
2. See, for instance, www.psychologyofarchitecture.org/.
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