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B 
uilt-in self-test techniques are 

gaining ground in the testing of 

logic circuits because they offer a 

cost-effective way to test high-density dig- 

ital devices. The basic philosophy behind 

the BIST technique is “let the hardware 

test itself’ - that is, enhance the func- 

tionality of a logic circuit to test itself. The 

BIST concept was first proposed for com- 

binational circuits, but it later found a quick 

application in the testing of such regular 

structures as random-access memories, 

read-only memories, and programmable 

logic arrays. 

In the early days of memory design, test 

procedures were developed in an ad hoc 

manner. The fault coverages of these ad 

hoc test procedures were limited and often 

indeterminable. This shortcoming, ac- 

knowledged by most researchers, motivated 

the introduction of such fault models as 

stuck-at faults, decoder faults, coupling 

faults, and pattern-sensitive faults. By and 

large, the fault models have been simple. 

Until recently, researchers did not develop 

models covering complex cell interactions, 

because they believed that long tests would 

be required to detect such faults. In con- 

ventional testing environments with exter- 

nal testers, the only tests thought practical 

for large RAMs were those having a linear 

relationship with the number of bits, N, in 

the RAM. Ironically, the larger the RAM, 

the more complex the fault model required 
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An examination of 

BIST schemes 

indicates that 

approaches based on 

test architectures 

rather than on test 

algorithms are more 

versatile and will likely 

predominate in 

the future. 

to effectively model the variety of physical 

failures that could occur because of inter- 

ference between closely packed cells. 

In a BIST environment, relatively inex- 

pensive testers can perform functional test 

for testing RAMs. A BIST tester need only 

power up a chip, initiate the test signal, and 

read the chip’s status. Therefore, much 

longer tests providing higher fault cover- 

age without excessive cost can be applied. 
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The test time estimates in Table 1 (assum- 

ing a IO-megahertz clock) show that for 

large RAMs O(fl)-length tests may be 

unacceptable (an O(Na) test means a test of 

length CNa, where C is a constant). Nev- 

ertheless, O(N”2)-length tests can be 

practical for memories of 4 megabits or 

larger, depending on the extent to which 

the memory’s internal organization can be 

exploited by the BIST logic. 

Judging by the current trends, memory 

size will continue to increase. As memories 

become larger, BIST becomes more of a 

necessity because of the high costs incurred 

by off-line testers for even O ( N )  tests. 

Furthermore, even if the order of test length 

is moderately high, BIST techniques can 

bring down the effective test time by using 

such techniques as parallel testing and line- 

mode testing. 

Another motivation for BIST is that the 

BIST logic incorporated in a chip can be 

used for both manufacture testing and in- 

circuit testing. If the implemented algo- 

rithm’s test length is sufficiently small, the 

same BIST logic can even be used for 

testing RAMs during computer power-on, 

as part of the CPU’s self-test procedures. 

Current BIST implementations cannot, 

however, be used for testing when the chip 

contains useful data. 

Although BIST may still be a high-over- 

head concept (about 20 to 30 percent) for 

general integrated-circuit designs, it requires 
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Table 1. Test time for different test lengths and memory sizes (with a 10-mega- 

hertz clock). 

~ ~~ ~ ~ ~~~ 

Test Memory Size 

Length 1 Mbit 4 Mbits 16 Mbits 

N 0.1 sec. 0.4 sec. 

N log N 2.1 sec. 9.2 sec. 40.3 sec. 

N?/2 1.8 min. 14.3 min. 1.9 hr. 

N2 30.5 hr. 20.3 days 325.8 days 

1.6 sec. 

little overhead (less than 1 percent) for 

application in large RAMs, as a later sec- 

tion shows. Furthermore, recent develop- 

ments in very large scale integrated cir- 

cuitry allow moderately complex test 

algorithms to be built within a chip. 

In this context, the article has four major 

purposes: 

to demonstrate that BIST is a viable 

solution to the problem of testing large 

memories, 

to introduce the notion of generic test 

architectures suitable for implementing 

a wide variety of test algorithms, 

to provide a taxonomy for test archi- 

tectures and use this taxonomy to cat- 

egorize BIST implementations, and 

to survey the important BIST imple- 

mentations reported by universities and 

industry. 

A fair treatment of these four issues 

requires a discussion of the fault models 

and the test algorithms on which the BIST 

implementations are based. 

Fault models for RAMs 

Before discussing the important fault 

models, let’s consider how RAM chips are 

organized. A RAM chip consists of an 

array of memory cells, an address decoder, 

address and data registers, and a read/write 

logic. An N-bit RAM may be organized 

either as a single-bit output RAM (N-word 

x 1-bit RAM) or as a k-bit output RAM (M- 

word x k-bit RAM). Generally, an M-word 

x k-bit RAM is organized as k identical 

partitions. Each M-bit partition may itself 

be organized as 1(1 2 1) two-dimensional 

arraysofmxncells,suchthatM=Imn. Cells 

and their contents in each of these arrays 

are independent of the cells in other arrays. 

By assuming that no interaction can take 

place between cells of different arrays, we 

can model faults considering only a two- 

dimensional array. Therefore, we need only 

test each of these arrays completely, as 

opposed to testing the RAM as a single 

unit. The arrays can be tested sequentially 

or in parallel if the memory organization 

permits. The only restriction is that each 

array must be tested independently of the 

remaining arrays. 

A wide variety of physical failures can 

occur in the memory array, address decoder, 

and read/write logic, causing various fail- 

ures in the memory function. Their causes 

depend on such factors as component 

density, circuit layout, and manufacturing 

method. A number of fault models have 

been developed to capture the effects of 

physical failures in RAMs. In this section, 

we describe the important fault models 

relevant for the functional testing of RAMS 

using BIST. Faults not covered include 

soft faults such as transient faults and in- 

termittent faults. A recent survey paper on 

fault models and functional testing tech- 

niques for RAMs provides more detailed 

descriptions.’ 

Invariably, two assumptions have been 

used in the development of all fault models 

and test algorithms: the single-fault as- 

sumption and the nondestructive or fault- 

free read operations assumption. 

The single-fault assumption reduces the 

complexity of test procedures, which be- 

come unwieldy for most fault models if the 

test is designed to detect multiple faults. 

Tests that detect all single faults often 

detect most multiple faults. This justifies 

the use of the single-fault assumption. 

The fault-f iee reads assumption has also 

been used for practical reasons. Test pro- 

cedures for RAMs often have some form of 

embedded checking experiment, that is, the 

application of a sequence of writes to bring 

the memory to a known state and the veri- 

fication of this state by reading the memo- 

ry cells. The test procedure becomes ex- 

tremely complex - and sometimes 

impossible - if the read operations are 

assumed to be faulty or destructive. In 

reality, however, most faults in the read/ 

write logic are easily detected because they 

result in catastrophic failures.’ Simple tests 

can be derived and applied by an external 

tester in the final testing stages to detect 

noncatastrophic faults in the read/write 

logic. 

Stuck-at fault model. A memory cell is 

said to be stuck-at-1 (stuck-at-0) if its 

contents remain fixed at logic 1 (0), irre- 

spective of what is written into it. Stuck-at 

faults are also useful for modeling faults in 

other parts of the memory system, such as 

the decoder. 

Coupling fault model. A pair of mem- 

ory cells is said to be coupled if a transition 

in one of them changes the contents of the 

other cell from 0 to 1 or 1 to 0. Coupling 

faults are of two types. An idempotent 

couplingfault is one in which a transition 

in one cell forces the contents of another 

celltoacertainvalue(either0or I ) ,  whereas 

an inversion coupling fault  is one in which 

the transition causes an inversion in the 

contents of the second cell. Coupling faults 

could also exist between three or more 

cells. 

Pattern-sensitive fault model. A 

memory cell is said to have a pattern- 

sensitive fault if its state is altered by a 

pattern of 0’s and l’s, 0 + 1 transitions, 1 

+ 0 transitions, or both 0 + 1 and 1 + 0 

transitions in a group of other memory 

cells. The group of cells that influences the 

base cell’s behavior is called the neigh- 

borhood of the base cell. The problem of 

pattern sensitivity arises primarily from 

the high component densities of RAMS and 

the related effect of unwanted interacting 

signals. As RAM density increases, the 

cells become physically closer, andpattern- 

sensitive faults become the predominant 

faults. Moreover, other fault classes that 

affect the memory cells - shorts, stuck-at 

faults, andcoupling faults-can be regarded 

as special types of pattern-sensitive faults. 

Testing a RAM for unrestricted pattern- 

sensitive faults is impractical, as it requires 

an 0 ( 2 N )  test.’ This fact has led researchers 

to consider restricted pattern-sensitive fault 

models in which the neighborhood size is 

small. Another restriction is on the positions 

in the array that a neighborhood is allowed 

to take. Often the neighborhood is allowed 

to take only the position that physically 

surrounds the base cell. Traditionally, the 

restricted neighborhoods considered are 

the five-cell and nine-cell physical neigh- 

borhoods. Figure l a  shows the five-cell 

physical neighborhood of a memory cell. 
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Figure 1. Different types of neighborhood: (a) a five-cell neighborhood; (b) a row/column neighborhood. 

Within the context of pattern sensitivity, 

different fault models have been proposed, 

based on the type of interaction between 

the cells. In the static-pattern-sensitive fault 

model, a cell is said to be faulty if its 

contents change when a certain pattern of 

0’s and 1’s exists in the neighborhood cells 

(that is, the pattern to which the cell is 

sensitive is static). A dynamic-pattern- 

sensitive fault is said to occur if the state of 

a cell changes because of a change in its 

neighborhood pattern. Researchers have 

also studied variations of these fault models, 

for example, those using active and passive 

neighborhoods. ’ 

Row/column weight-sensitive fault 

model. The neighborhoods discussed so 

far for restricted pattern-sensitive faults 

are the physical neighborhoods of a cell. 

The row/column weight-sensitive fault 

model is based on the broader rowlcolumn 

neighborhood.’ The row (column) neigh- 

borhood of a cell consists of all the cells in 

the same row (column) but excluding the 

cell. It is related to the electrical neigh- 

borhood of a cell because cells of the same 

row share acommon word line, and cells of 

the same column share a common bit line. 

The row/column neighborhood is much 

larger than the conventional five-cell and 

nine-cell physical neighborhoods described 

earlier. Row weight of a cell is the number 

of 1’s in its row neighborhood; column 

weight is the number of 1’s in its column 

neighborhood. 

Figure l b  shows the row/column neigh- 

borhood, row weight, and column weight 

of a memory cell. The row/column weight- 

sensitive fault model is based on the obser- 

vation that the contents of a cell can be 

affected by the contents of cells in its row 

and column neighborhood. Interference 

could occur between cells of the same 

column or row, since these cells are electri- 

cally connected and share common ad- 

dressing and refresh circuitry. In the row/ 

column weight-sensitive fault model, a 

memory cell is said to be faulty if its con- 

tent is sensitive to any combination of row 

and column weights. 

Besides considering a larger neighbor- 

hood than the conventional five-cell and 

nine-cell neighborhoods, this fault model 

has an additional advantage: Tests that 

detect row/column weight-sensitive faults 

also detect most of the faults modeled by 

other fault models. Furthermore, weight- 

sensitive fault tests are also applicable for 

reconfigurable memory chips, whereas the 

five-cell-neighborhood pattern-sensitive 

fault tests are not. 

Faults in the decoder and read/write 

logic. Most faults occurring in the address 

decoder and the read/write logic can be 

mapped to faults in the memory cell array; 

that is, during tests of the memory cell 

array, they will behave as faults in the 

memory cell array.’ A stuck-at fault in the 

read/write logic will appear as a large group 

of memory cells with a stuck-at fault. Thus, 

an algorithm that detects stuck-at faults in 

the memory array can easily detect this 

fault. The same arguments are valid for 

coupling faults. Similarly, faults in the 

address decoder can be modeled by faults 

in the memory array, so the decoder faults 

will be detected by tests for the memory 

cell array. 

Test algorithms and 
their fault coverages 

Over the years, several algorithms of 

different complexities have been developed 

to test RAMs. The early algorithms were 

ad hoc; the later algorithms were specifi- 

cally designed to detect faults from various 

fault models. Recently, random pattern 

testing has also been proposed for RAMs. 

In this article, we discuss only those test 

algorithms (ad hoc or specific) that have 

been applied (in original or modified form) 

for BIST implementation in either univer- 

sities or industry. 

All test algorithms consist of a sequence 

of writes and reads applied to the cells in 

the memory array. In our discussion, W, t 

v denotes the operation “Write value v into 

cell i.” Similarly, R, ( = v )  denotes the op- 

eration “Read cell i, with v as the expected 

value.” 

Mscan test. Memory scan is a trivial test 

procedure developed in an ad hoc manner. 

The Mscan test writes each cell, first with 

a 0 and then with a 1 .  Each value is verified 

by reading it before a new value is written. 

The formal algorithm is as follows: 

For i  =0, 1, ..., n - 1 

w, t 0 

R, ( = 0 )  
w, t 1 

R , ( =  1) 

The deterministic fault coverage of this 

test procedure is rather low. All that is 

known at the end is that there is at least one 
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(b) - Write a 0 

Figure 2. Tiling a memory array for the checkerboard test: (a) pattern one; (b) 

pattern two. 

cell in the RAM that can be set to 0 and 1. 

This is because a fault in the decoder may 

cause the same cell to be referenced each 

time. Since the test performs four operations 

on each cell, its length is 4N. 

Marching test. Perhaps the most widely 

used test algorithm in the industry is the 

marching test. A reason for its popularity is 

its simplicity, coupled with a moderate 

fault coverage. The marching-test algorithm 

initializes the memory array to all O’s, and 

then scans the memory cells in ascending 

and descending orders. For each cell, 

scanning involves reading the cell for the 

expected value, writing the complement 

value, and reading it again. 

The idea behind this algorithm is that, 

while scanning the memory in ascending 

order, any direct coupling between the 

current cell and a higher address cell is 

detected when reading the latter. Along 

with this, any error in the higher address 

cell due to decoder faults will also be de- 

tected. Similarly, scanning the memory in 

the descending order detects all the effects 

on lower address cells. 

The formal algorithm is given below; 

the details can be found elsewhere.’ 

Step 1.W, t 0 for i  = 0, 1, ..., n - 1 

S t e p 2 . F o r i = O , l  ,..., n - 1  

R, ( = 0) 
w, t 1 

R , ( = 1 )  

Step 3.For i = n  - 1, n - 2, ..., 0 

R , ( =  1) 
w, t 0 

R,  ( = 0) 

Step 4. Repeat steps 1 through 3, 

interchanging 0’s and 1’s 

The marching test detects all stuck-at 

faults and decoder faults. However, it does 

not detect all single coupling faults. Dif- 

ferent variations of the marching test, all of 

length O(N), have been suggested in the 

literature.’ 

Checkerboard test. This simple algo- 

rithm, developed in an ad hoc manner, is 

designed for two-dimensional memory 

architectures. The algorithm fills the 

memory array with a checkerboard pattern 

by writing 0’s and 1’s in alternate cells. 

Two patterns, as shown in Figures 2a and 

2b, are written. The cells are read after the 

application of each checkerboard pattern. 

Step 1. W(,,,) t 0 for i + j = even 

W(,,,) t 1 for i + j = odd 

Step 2. R(!,,) ( = 0) for i + j = even 

R(,,,) ( = 1) for i + j  = odd 

Step 3.Repeat steps 1 and 2, 

interchanging 0’s and 1’s. 

The deterministic fault coverage of this 

test procedure is rather low. As with the 

Mscan test, a decoder fault may cause only 

four cells at most to be referenced. There- 

fore, all that is known at the end of this 

procedure is that at least four cells in the 

RAM can be set to 0 and 1.  

Five-cell-neighborhood static-pattern- 

sensitive fault test. Many algorithms have 

been proposed to detect five-cell-neigh- 

borhood pattern-sensitive faults. All these 

algorithms are based on tiling the memory 

array. We briefly explain an algorithm re- 

ported by Kinoshita and Saluja, because 

this algorithm was later implemented as a 

built-in self-test.3 Figures 3a and 3b show 

the tiling arrangements used by this algo- 

rithm for the static-pattern-sensitive fault 

test. The unmarked cells are the base cells. 

Each base cell is surrounded by four 

characters (A, B, C, D). The first phase of 

the test uses the tiling arrangement shown 

in Figure 3a. During this phase, the base 

cells are kept fixed at logic 0. The five-cell- 

neighborhood patterns are applied to the 

base cells using all four-tuples (16patterns), 

consisting of variables A, B, C, and D. The 

base cells are read after the application of 

each pattern. The second phase uses the 

tiling arrangement of Figure 3b, and the 

above process is repeated. Then both phases 

are repeated with the base cells at logic 1. 

Rowkolumn weight-sensitive fault test. 

Different test algorithms of varying test 

lengths have been proposed for testing 

RAMs for row/column weight-sensitive 

faults.2 All the tests are of length O(N”*) and 

use divide and conquer by recursive parti- 

tioning as the basic strategy. First the border 

cells of an array are tested. Then the two 

middle rows and columns are tested, thereby 

effectively partitioning the array into four, 

as Figure 4 shows. Partitioning continues 

recursively until all the cells of the array 

are tested. Testing the border cells involves 

scanning the memory array as in the 

marching test, and this helps to detect de- 

coder faults. The row/column weight- 

sensitive fault test also detects five-cell- 

neighborhood pattern-sensitive faults. 

Fault coverage. All the algorithms dis- 

cussed so far have been implemented as 

built-in self-tests. Some have also been 

implemented for embedded RAMs in ap- 

plication-specific integrated circuits. Table 

2 lists the complexities and fault-detection 

capabilities of the algorithms. Blank entries 
indicate that those classes of faults are 

either not detected or detected only to a 

small extent. The entries marked “unidi- 

rectional” mean that a cell may be sensitive 
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to one or more patterns or transitions, but 

all of them change the cell’s state from 

either 0 to 1 or 1 to 0. The table shows that 

the fault coverages offered by the Mscan 

test, marching test, and checkerboard test 

are rather poor. 

Test architectures 

Generally, test algorithms for RAMS are 

developed assuming no knowledge of the 

internal organization of the memory array. 

This makes sense, because a test algorithm 

should be generic to be applicable to 

memories with different internal organi- 

zations. Quite often, the internal details of 

a RAM chip are not released by the vendor 

and therefore are not available to custom- 

ers. The BIST logic designer, on the other 

hand, knows the internal organization and 

could use this knowledge to reduce the test 

time and area overhead with possible 

modifications to the test algorithm that do 

not sacrifice the fault coverage. For example, 

for reads and writes the BIST logic may be 

able to access multiple bits of an array in 

parallel if the technology and test algorithm 

allow, instead of accessing the bits serial- 

ly. Similarly, the internal organization might 

permit the testing of multiple arrays in 

parallel. The modifications made to test 

algorithms to suit memory’s internal struc- 

ture are analogous to the modifications 

made to high-level-language computer 

programs by optimizing and vectorizing 

compilers that take advantage of the com- 

puter’s internal organization. 

So far, BIST logic design has been driv- 

en in an ad hoc manner by the desire to 

implement specific test algorithms. That 

Figure 3. Tiling a memory array for the static-pattern-sensitive fault test: 

(a) phase one; (b) phase two. 

Figure 4. Partitioning a memory array into four in the row/column weight-sensi- 

tive fault test: (a) memory array with the border cells tested; (b) memory array 

partitioned into four. 

Table 2. Summary of faults detected by the test algorithms. 

Test Procedure Order of Detected Faults 

Test Length Stuck-at-Faults Coupling Faults Restricted PSF Row/Column WSF 

Mscan Test 00“ Does not detect 

decoder faults 

Marching Test O(N) All Does not detect all 

single coupling faults 

Checkerboard O(N) Does not detect 

decoder faults 

All Unidirectional SPSF Tests OW) 

Unidirectional Unidirectional Unidirectional Row/Column Test O(N3’*) All 

Mscan - memory scan 

PSF - pattern-sensitive faults 

SPSF - static-pattern-sensitive fault 

WSF - weight-sensitive faults 
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Figure 5. Memory cell accesses for (a) single-array single-bit, (b) single-array multiple-bit, (c) multiple-array single-bit, 

and (d) multiple-array multiple-bit architectures. 

is, a new BIST logic design is carried out 

for each new algorithm implemented. Much 

design time goes into the implementation 

of features common to all test algorithms. 

This ad hoc approach also makes it diffi- 

cult to integrate a number of test algo- 

rithms on the same chip. An alternative 

(structured) approach is to develop generic 

test architectures for implementing a number 

of test algorithms. For example, in a mi- 

crocode-based test architecture, it might 

be possible to implement a class of different 

test algorithms by changing the microcode, 

just like changing the microarchitecture of 

acornputer.* The test architecture proposed 

by Matsuda et al. seems to be a step in the 

right d i r e ~ t i o n . ~  

Taxonomy. Although a number of RAMS 

have been implemented with BIST func- 

tions, to the best of our knowledge, no one 

has classified these implementations. Here 

we provide a taxonomy for classifying BIST 

RAM test architectures. The categories in 

a rigorous taxonomy must be exclusive to 

avoid ambiguity and exhaustive to avoid 

incompleteness, providing an unambigu- 

ous category for every instance presented 

to it. Our taxonomy matches the number of 

simultaneously tested arrays and the num- 

ber of simultaneously accessed bits within 

an array. Accordingly, we can classify all 

BIST RAM implementations into one of 

four test architectures: 

single-array single-bit, 

single-array multiple-bit, 

*This concept is similar to the idea of developing 

general-purpose computers (architectures) to d o  a va- 

riety of computations, as opposed to developing a 

special-purpose computer for each computation. 

multiple-array single-bit, and 

multiple-array multiple-bit. 

Single-array single-bit (SASB) test ar- 

chitectures are those in which a single 

array of the RAM chip is tested at a time 

and a single bit of the tested array is accessed 

at a time. Since a maximum of one bit from 

the entire memory chip is accessed at any 

instant, SASB architectures require the 

maximum amount of time for testing. Some 

classes of faults, such as arbitrary coupling 

faults, restrict the choice of test architec- 

ture to SASB architectures. Before the in- 

troduction of design for testability and BIST, 

external tester-based testing also limited 

the choice mostly to SASB architectures, 

because only one address can be transmit- 

ted from the tester to the chip at a time. 

Single-array multiple-bit (SAMB) ar- 

chitectures test a single array at a time, but 

within the tested array, multiple bits are 

accessed simultaneously. Generally, the 

accessed multiple bits are all from the same 

row; multiple cells from the same column 

are not accessed simultaneously, as this 

slows memory access. Multiple bits can be 

accessed by modifying the address decod- 

er. An SAMB test architecture in which all 

the n cells of a row (word) within an array 

are accessed simultaneously has often been 

referred to as line-mode testing. 

Multiple-array single-bit (MASB) test 

architectures can be used if a memory chip 

is organized as a number of independent 

arrays, allowing multiple arrays to be test- 

ed simultaneously. A single bit from each 

array is accessed at a time. The concept is 

similar to the simultaneous testing of many 

memory chips using external test equip- 

ment. In the MASB architecture, a maxi- 

mum of kl cells can be accessed at a time, 

where kl is the number of arrays in the 

memory chip. 

Multiple-array multiple-bit (MAMB) 

architectures use a combination of multi- 

ple-array and multiple-bit testing. A number 

of arrays are tested simultaneously, with a 

number of cells (normally within a row) in 

each array accessed simultaneously. 

Therefore, as many as kln cells can be ac- 

cessed simultaneously. Sridhar’s parallel 

simultaneous testing of a number of bits 

from all the arrays is an e ~ a m p l e . ~  

Figure 5 illustrates these concepts with a 

RAM organized as four arrays. The above 

discussion demonstrates that the SAMB, 

MASB, and MAMB architectures provide 

a speedup over the SASB architecture. An 

SAMB architecture can, at best, reduce the 

test length by a factor of n, if all the n cells 

in a row within an array are accessed si- 

multaneously. The effective speedup can 

be less than n for certain classes of test 

algorithms because, during some stages of 

testing, these algorithms require the con- 

tents of part of the row to be kept unchanged 

when the rest of the row is being tested. 

Examples are the ping-pong test for cou- 

pling faults6 and the row/column weight- 

sensitive fault test.2 The MASB and MAMB 

architectures can give a maximum speedup 

of kl and kln, respectively. 

Some algorithms are inherently serial 

and therefore do not attain the maximum 

speedup offered by the test architecture. 

Given a test algorithm, the BIST designer 

must choose one of the four architectures, 

considering test time, speedup, and tech- 

nology. Alternatively, given a memory chip 

design, the BIST designer can select a test 

architecture based on the available tech- 

nology and silicon area and then select test 

algorithms that can be implemented on the 
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selected architecture. Such an approach 

uses more efficiently the silicon area set 

aside by the memory designers for the test 

logic. Only algorithms with good fault 

coverage should be selected. 

All the test implementations reported so 

far can be categorized into one of the above 

four test architectures. Memory sizes have 

now reached the stage where an SASB 

architecture is almost impractical. Gener- 

ally, as the memory size increases, the 

number of arrays increases, with the size of 

an array remaining more or less constant. 

Therefore, in the future we can expect 

many more designers to use the MASB and 

MAMB test architectures. 

Modifying test algorithms. If the ar- 

rays are independent of each other and 

cells of different arrays do not interact, an 

algorithm developed for an SASB archi- 

tecture need not be modified for a MASB 

architecture. However, modifications may 

be required to implement a conventional 

SASB algorithm in an SAMB or MAMB 

architecture. 

Most test algorithms can be modified to 

benefit from the simultaneous access of 

multiple bits of a row. When multiple bits 

of an array are accessed simultaneously, 

faults due to interactions between the si- 

multaneously accessed cells may not be 

detected, unless special care is taken. Sridhar 

describes a method to detect errors caused 

by interactions between cells accessed si- 

m~ltaneously.~ 

BIST logic 

Memory chip designers generally use 

aggressive design rules to maximize the 

number of cells in a chip and to minimize 

the memory access time. This imposes rather 

hard constraints on the BIST logic design- 

er. In general, the BIST logic designer tries 

to minimize 

the area occupied by the BIST hard- 

ware, 

the performance penalty incurred for 

the normal memory operation, 

the number of additional pins required, 

the disparity between the functional 

the test time, by using the memory’s 

speed and testing speed, and 

internal structure. 

Conceptually, the BIST logic can be 

divided into four parts: control logic, ad- 

dress-generation logic, data-generation and 

response-verification logic, and test-trig- 

ger logic. Figure 6 (based on Ohsawa et 

1 Address 
buffers 

I I  
, 

I I  - - - l r - - - - - l I  
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Figure 6. A generic block diagram of random-logic-based BIST logic for RAMS 

(based on Ohsawa et al.’). 

aL7) shows a generic BIST organization 

for testing RAMs. We have modified the 

figure to show the main parts of the BIST 

logic clearly. 

Control logic. The control logic initiates 

and stops testing and supervises the control 

flow of the test algorithm. It can be imple- 

mented using random logic or microcode. 

Random logic offers higher speed and has 

traditionally been used for designing the 

control logic; nevertheless, recent designs 

seem to prefer microcode-based control. 

For large memories (4megabits andmore), 

microcode-based BIST design has been 

shown to have an area overhead which 

does not exceed that of random-logic-based 

 design^.^ Therefore, the flexibility and 

implementational ease offered by micro- 

code makes it superior to random logic for 

large RAMs. 

Microcode fits well with RAM technol- 

ogy because of its regular structure. For 

BIST RAMs, it may be even more area 

efficient than random logic, because the 

aggressive design rules used for RAM cells 

can also be used for the microcode array. 

Furthermore, the designer can use such 

microcode-optimization techniques as 

microprocedures, microstacks, and encod- 

ing by grouping of microinstruction fields, 

developed for microcode-based comput- 

ers. 

Address-generation logic. Almost all 

test algorithms require the addresses to be 

generated in a fairly uniform manner. The 

control logic can be designed to generate 

the addresses, but leaving this task to a 

separate unit is better. For most algorithms, 

address generation can be achieved by lin- 

ear-feedback shift registers, registers, or 

counters, with occasional intervention from 

the control logic. With the MASB and 

MAMB architectures, a single address- 

generation unit can be used for testing 

multiple arrays. 

Data-generation and response-verifi- 

cation logic. The data-generation unit 

produces the test pattern(s) to be written in 

the cells. Given a test architecture, differ- 
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ent strategies can be used for data genera- 

tion as well as response verification. Lin- 

ear-feedback shift registers or counters as- 

sisted by the control logic can generate 

data. In an SASB architecture, the correct- 

ness of the read values can be verified 

either by comparing them against the ex- 

pected values or by signature analysis. 

Direct comparison is superior, because it 

can locate single stuck-at faults. Further- 

more, with signature analysis, some faults 

may go undetected because of aliasing er- 

Tors. For the SAMB, MASB, and MAMB 

architectures, other fault-detection meth- 

ods - in addition to comparison against 

expected values -are comparison of val- 

ues read from multiple bits, AND reading, 

and OR reading. 

In the MASB and MAMB architectures 

another convenient verification method is 

comparing the outputs of symmetrically 

Then they developed procedures to apply 
these patterns using optimal test length 
sequences. The grouping of the patterns 

microcode-based 

using signature analyz- 
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the end of the test. In the write mode, the 
value stored in the analyzer is written to a 
number of bit lines in parallel. Finally, in 
the signature mode, the contents of the 
memory cells written earlier are read, and 

ture is generated. This 
ines whether an error 

Ily BlST scheme, be- 

cause lt requires the scanning in of data 
from outside the chip. The scheme uses 
the marching-test algorithm, modified to 

testing. It can be categorized 
approach, as the parallel sig- 

nature analyzer can access multiple bits 
from multiple arrays simultaneously. The 
MAMB architecture results in very fast 
testing. 

A potential problem with the scheme is 
that it requires an externat tester to scan 
in the data. Another problem is the low 
fault coverage offered by the marching 
test. If a wide enough parallel signature 
analyzer is used, then the probability for 
aliasing errors will be very low. The error- 
detection capability can be significantly 
enhanced by monitoring the quotient bit of 
the analyzer, in addition to verifying the 

2.2 percent; for a 64-kilobit static RAM, 
1.8 to 2.9 percent. 

Self-te?btlng dynamic RAM. You and 
Hayes proposed another type of parallel 

figuring the cells of an array 
shift register and using a 

built-in test generator to test multiple bits 
~oncurrently.~ The dynamic RAM is orga- 
nized as two identical arrays, and the ar- 
rays are tested in parallel to reduce the 

each array to act as a circular shift regis- 
ter during testing. When a row (that is, a 
word line) within an array is activated, the 
contents of the n cells of the row are 
transferred to n bit lines, sensed by n 
sense amplifiers, and then written to the 

he same row. Each n- 
as an n-bit shift register. 

ut from the right-most 

is stored in the left-most cell of the next 
row in the next shift cycle. 

ier IS saved in a flip-flop and 

Thus, all m rows of an array effectively 
form an mn-bit shift register. By saving 
the initial contents of the right-most cell of 
the last row, the array realizes an mn-bit 
circular shift register. The standard sense 
amplifier circuits are modified so that 
when a bit value is read from one cell, it 
can be written into the adjacent cell in the 
same row. This is accomplished by intro- 

ducing pass transistors between the phys- 
ically adjacent bit lines and may adversely 

es of the sense ampli- 
fiers and the RAM access time in the nor- 
mal operation mode. 

An on-chip comparison circuit consist- 
ing of exclusive-OR gates detects faults 
by comparing the outputs of symmetrically 
placed cells of the two arrays. The self- 
testing dynamic RAM implementation can 
be categorized as a MAMB test architec- 
ture, since two arrays are tested in paral- 
lel and multiple bits of an array (all the 
bits of a row) are accessed simultaneous- 
ly. This scheme detects bit-line imbalance 
faults and restricted types of pattern-sen- 
sitive faults in which a write operation be- 
comes faulty in the presence of a few 
specific patterns in the cell's adjacent 
cells. It does not detect faults caused by 
transitions in the neighborhood. The area 
overhead for a 4-kilobit dynamic RAM is 
about 12 percent, and the estimated over- 
head for a 1 -megabit dynamic RAM is 
about 5 percent. 

Paraliel testing for VLSl memories. 
lnoue et al. proposed the line-mode test, 
a special case of SAMB te~t ing .~  In the 
line-mode test, all cells connected to a 
word line are tested simultaneously. The 
on-chip test circuit can perform parallel 
write and parallel compare. The parallel 
write circuit writes data into all cells con- 
nected to a word line, and the parallel 
compare circuit compares the data in par- 
allel with the expected data. Apart from 
the memory cell arrays, separate tests 
check the decoders, the test logic, and 
the I/O circuits. The memory cells are 
tested with the marching-test algorithm. 

The test circuit occupies less than 1 

percent of the chip area for a 2-megabit 
dynamic RAM. The parallel write opera- 
tion allows only certain patterns to be ap- 
plied to the cells; therefore, the technique 
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placed bits in the tested arrays. An advan- 

tage of the parallel comparison methods is 

that the expected values need not be gener- 

ated. A basic assumption is that all bits 

would not simultaneously have erroneous 

values. In large dynamic RAMS, memory 

cell pitches are very small. Thus, the addi- 

tional area of parallel write and parallel 

compare circuits should be small enough 

to be arranged in the small pitch. 

inactive and one or more test modes in 

which the BIST logic is active. The test 

modes can be entered using overvoltages, 

extra package pins, or unique timing se- 

quences with such inputs as Chip Enable, 

Write Enable, Row Address Strobe, and 
Test trigger logic. All BISTRAMs have 

a normal mode in which the BIST logic is 

cannot clearly identify interference be- 
tween memory cells. 

Parallel testing for pattern-sensitive 
faults. Mazumder and Patel proposed a 
BlST parallel testing scheme in which a 
number of cells on the same word line are 
accessed simultane~usly.~ The decoder is 
modified so that in the test mode multiple 
bit lines are selected, allowing the same 
data to be simultaneously written to multi- 
ple cells of the same word line. In the 
read mode, a multibit comparator concur- 
rently compares the outputs of the bit 
lines. The additional hardware is designed 
to fit within the intercell pitch. The algo- 
rithm detects both static- and dynamic- 
pattern-sensitive faults over the nine-cell 
neighborhood of every cell. Mazumder 
and Patel estimate the area overhead for 
a 256-kilobit RAM to be about 0.4 per- 
cent. 

Built-in processor for self-test. Ritter 
and Muller have reported a BlST scheme 
in which a built-in processor tests and re- 
pairs large  RAMS.^ Repair requires fault 
localization and computation of a repair 
plan, calling for an intelligent self-test 
concept. This and the demand for high 
flexibility necessitated a test processor. 
The test processor also allows for easier 
and faster adaptation to various types of 
memory technology and organization. 
Furthermore, complex algorithms can be 
incorporated later, when new memory 
technologies are developed or new types 
of faults and fault models (not yet consid- 
ered) are introduced during product life. 
The test function can be applied not only 
at manufacturing time, but also during in- 
coming inspection and system-mainte- 
nance service. The main components of 
the test processor are RAM cells, ROM 
cells, and decoders. The size of the ROM 
holding the test program is 512 x 14 bits. 
The area overhead for a 1-megabit RAM 
is about 5 percent, and the test architec- 
ture can be classified as an SAMB archi- 
tecture. 

CMOS dynamic RAM with BlST func- 
tion. Perhaps the first fully BlST imple- 
mentation in the industry was the one re- 
ported by Ohsawa et al. for a 4-megabit 
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Block diagram of microcode-based BET logic for the rowlcolumn weight- 
sensitive fault test. 

RAM7 Their scheme implements a check- 
erboard test pattern and its complement, 
and their test architecture falls under the 
MAMB category. The RAM is divided into 
eight arrays, two of which are activated in 
a read/write cycle. From each of the test- 
ed arrays, eight bits are accessed simul- 
taneously. A data comparator compares 
the read pattern with the expected pat- 
tern. The control logic is implemented by 
random logic. The BlST mode is entered 
through a unique timing sequence. Figure 
6 in the main text shows a block diagram 
of this scheme. The area overhead for the 
BlST logic is less than 1 percent. A poten- 
tial problem is the low fault coverage of 
the checkerboard test. 

Rowkolumn pattern-sensitive fault 
test implementation. The row/column 
weight-sensitive fault test algorithm has 
been implemented using both random- 
logic-based and microcode-based de- 
signs.e Both schemes use the SASB ar- 
chitecture. We shall briefly describe the 
microcode-based implementation to pro- 
vide more insight into the workings of mi- 
crocode-based BIST. The figure above 
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Column Address Strobe. Using unique 

timing sequences is better than using over- 

voltages and extra package pins, because 

the latter methods may be incompatible 

with existing systems. Also, the overvolt- 

age method requires either an additional 

power supply or the generation of an addi- 

tional voltage signal. Voss et al. describe 

an implementation of a 256-kilobit x 1-bit 

static RAM with multiple test modes in 

which the test modes are entered by a 

unique timing sequence.8 They also de- 

scribe how a particular test mode can be 

selected using the normal address input 

pins, ifthere are multiple test modes. Miyaji 

et al. describe the design and implementa- 

tion of a test trigger circuit for megabit 

static RAMS that uses the Chip Enable and 

Write Enable signals to generate a unique 

timing sequence for entering the testmode.9 

10-bit control store, which controls the ini- 
tialization, sequencing, and completion of 
testing. The control store is conceptually 
divided into four microroutines. Control 
passes from one microroutine to another 
when the former issues a call signal to the 
latter; control passes back to the former 
when the latter issues a return signal. A 
microstack stores the return addresses in 
the proper order during nested calls. A 4- 
bit microprogram counter points to the mi- 
croinstruction currently being executed. 

The address-generation logic consists 
of a register file and some combinational 

logic (glue logic). The registers hold the 
row and column addresses of the cell be- 
ing tested and the cell being read or writ- 
ten. The width of the registers depends on 
the memory organization and the size of 
the cell array. The microcode initializes 
and updates the register file. 

A major innovation of this scheme is the 
implementation of a moderately complex 
algorithm with a small control store, using 
microcode-optimizing techniques such as 
microprocedures and microstacks. The 
row/column weight-sensitive fault test has 
higher fault coverage than the other algo- 

rithms (see table below). A potential prob- 
lem with the SASB implementation is that 
the test time is comparatively long. How- 
ever, the test time can be reduced by us- 
ing the MASB or MAMB test architectures. 
The area overhead of the random logic 
design for a 4-megabit RAM is less than 
0.8 percent. 

Serial interfacing for embedded- 
memory testing. Nadeau-Dostie, Silburt, 
and Agarwal proposed a serial interfacing 
scheme for testing embedded  RAMS.^ 
Embedded RAMs are on-chip RAMs 

Summary of different implementations. (Fault coverage for each implementation can be inferred from Table 2 in the main 
text, which shows the coverage for each type of algorithm.) 

Implementation Algorithm Test Architecture Control Logic Type of RAM 

On-chip compact test scheme SPSF test SASB 

Parallel test using signature analyzer Marching test MAMB 

Self-testing DRAM Restricted PSF test MAMB 

Parallel test for VLSl memories Marching test SAMB 

Parallel test for PSFs PSF test SAMB 

Built-in processor for self-test Not specified SAMB 

CMOS DRAM with BET Checkerboard test MAMB 

Row/column test implementation Row/column test SASB 

Embedded-memory testing Marching test MAMB 

Galpat 

Walk 

16-Mbit CMOS DRAM Marching test SAMB 

Mscan test 

Random logic 

microcode 

Random logic 

Random logic 

Random logic 

Random logic 

Processor 

Random logic 

Random logic 

microcode 

Random logic 

Microcode 

SRAM 

SRAM, DRAM 

DRAM 

DRAM 

DRAM 

DRAM 

SRAM 

SRAM 

DRAM 

MAMB - multiple-array multiple-bit 
SAMB - single-array multiple-bit 
SASB - single-array single-bit 
SPSF - static-pattern-sensitive fault 
PSF - pattern-sensitive fault 
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Future trends describe how these areas are likely to be 

affected. 

BIST technology combines several dif- 

ferent areas: fault models, test algorithms, 

test implementation, and fault diagnosis. 

Changes can be expected in each of these 

areas as technology progresses. Below, we 

Fault models. State-of-the-art memory 

chips are designed with spare rows and 

columns meant for reconfiguration. Dur- 

ing manufacture, the memory is tested and 

whose address, data, and read/write 
controls cannot be directly controlled or 
observed through the chip’s I/O pins, 
making them good targets for BlST ap- 
piications. The implemented scheme in- 
volves shifting data from one memory 
cell to another, similar to the self-testing 
dynamic RAM method described eqrlier. 
Although both schemes use the MAMB 
architecture, there are Some differences. 
While the self-testing dynamic RAM ’ 
scheme shifted data only within an array 
and independently tested two arrays in 
parallel, the new scheme shifts data 
within an array as well as across arrays, 
by shifting the data at the end of one ar- 
ray to the beginning bf next array in a 
daisy-chained fashion. This makes shar- 
ing the BlST logic among multiple arrays 

easier, because fewer interconnection 
lines need to be routed between the 
BlST logic and the RAM blocks. Further- 
more, in the serial interfacing scheme, 
multiplexers implement the shifting 
along the I/O data path. Therefore, no 
modification is required in the RAM. The 
implemented algorithms are adaptations 
of the marching test, Galpat (galloping 
patterns), and walk algorithms. 

16-Mbit CMOS DRAM with BIST 
function. Using microcode-based con- 
trol logic, Takeshima et al. have imple- 
mented the marching test ahd a scan 
read/write test with a checkerboard pat- 
tern for a %-megabit dynamic RAM.’O 
The size of the control store is 18 x 10 
bits. Perhaps theirs is the first industrial 
BlST RAM implementation using micro- 
code. The dynamic RAM enters the test 
mode through a unique timing se- 
quence. 
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repaired (if necessary) by bringing in the 

spare rows and columns. With such new 

fault-tolerance techniques as dynamic re- 

configuration, fault models based on logi- 

cal adjacency become irrelevant, whereas 

those based on physical adjacency and 

electrical connectivity become more rele- 

vant. Future fault models must consider 

the effects of such reconfiguration within 

memory chips. With the new high-speed 

RAM realizations, such as gallium arsenide 

RAMs, future models must also consider 

delay faults. 

Test algorithms. When a memory chip 

is reconfigured, physically adjacent cells 

may no longer have consecutive addresses. 

Test algorithms for the detection of physi- 

cal neighborhood pattern-sensitive faults 

have to account for this fact. Furthermore, 

we believe that there will be a trend to find 

optimal or near-optimal, yet simple, test 

algorithms. These will save testing time as 

memory size continues to grow, and BIST 

logic will be used for maintenance testing 

of RAMs embedded in a system. 

Test implementation. When a memory 

chip is being used in a system (that is, when 

the chip contains valid data), it cannot be 

tested on line because the test procedure 

might destroy the memory contents. Fu- 

ture systems may implement BIST algo- 

rithms that have on-line test capabilities. 

Further research is required not only to 

develop such algorithms, but also to deter- 

mine the merits and demerits of such an 

approach, especially since most memory 

systems use error-correction code at some 

level. 

Fault diagnosis and self-reconfigura- 

tion. In general, current BIST implemen- 

tations cannot diagnose faults. In the fu- 

ture, BIST will potentially be used in field 

diagnosis. Such diagnosis will help in re- 

configuration of memory chips and repair 

of multichip memory modules (silicon mass 

storages). 

T 
he separation of test algorithm and 

test architecture clearly shows the 

range of possible implementations 

for a given test algorithm. The test archi- 

tecture-based approach is more versatile 

than the ad hoc design approach for BIST 

logic design, especially with various de- 

sign constraints. It also facilitates the inte- 

gration of a number of test algorithms within 

the same chip. 

Our taxonomy for classifying BIST ar- 
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chitectures provides a framework to de- 

scribe widely differing implementations at 

a level of abstraction that eliminates many 

algorithm-related details, while preserv- 

ing the important implementation charac- 

teristics. We expect that most future imple- 

mentations in large RAMS will use the 

test-architecture-based approach, since 

it can easily adapt to changes in tech- 

nology. 
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