
Built-in Self-Testing of
Random-Access Memories

Manoj Franklin and Kewal K. Saluja

University of Wisconsin-Madison

B
uilt-in self-test techniques are

gaining ground in the testing of

logic circuits because they offer a

cost-effective way to test high-density dig-

ital devices. The basic philosophy behind

the BIST technique is “let the hardware

test itself’ - that is, enhance the func-

tionality of a logic circuit to test itself. The

BIST concept was first proposed for com-

binational circuits, but it later found a quick

application in the testing of such regular

structures as random-access memories,

read-only memories, and programmable

logic arrays.

In the early days of memory design, test

procedures were developed in an ad hoc

manner. The fault coverages of these ad

hoc test procedures were limited and often

indeterminable. This shortcoming, ac-

knowledged by most researchers, motivated

the introduction of such fault models as

stuck-at faults, decoder faults, coupling

faults, and pattern-sensitive faults. By and

large, the fault models have been simple.

Until recently, researchers did not develop

models covering complex cell interactions,

because they believed that long tests would

be required to detect such faults. In con-

ventional testing environments with exter-

nal testers, the only tests thought practical

for large RAMs were those having a linear

relationship with the number of bits, N, in

the RAM. Ironically, the larger the RAM,

the more complex the fault model required

October 1990

An examination of

BIST schemes

indicates that

approaches based on

test architectures

rather than on test

algorithms are more

versatile and will likely

predominate in

the future.

to effectively model the variety of physical

failures that could occur because of inter-

ference between closely packed cells.

In a BIST environment, relatively inex-

pensive testers can perform functional test

for testing RAMs. A BIST tester need only

power up a chip, initiate the test signal, and

read the chip’s status. Therefore, much

longer tests providing higher fault cover-

age without excessive cost can be applied.

0018-9 162/90/1000-0045$01 00 0 1990 IEEE

The test time estimates in Table 1 (assum-

ing a IO-megahertz clock) show that for

large RAMs O(fl)-length tests may be

unacceptable (an O(Na) test means a test of

length CNa, where C is a constant). Nev-

ertheless, O(N”2)-length tests can be

practical for memories of 4 megabits or

larger, depending on the extent to which

the memory’s internal organization can be

exploited by the BIST logic.

Judging by the current trends, memory

size will continue to increase. As memories

become larger, BIST becomes more of a

necessity because of the high costs incurred

by off-line testers for even O (N) tests.

Furthermore, even if the order of test length

is moderately high, BIST techniques can

bring down the effective test time by using

such techniques as parallel testing and line-

mode testing.

Another motivation for BIST is that the

BIST logic incorporated in a chip can be

used for both manufacture testing and in-

circuit testing. If the implemented algo-

rithm’s test length is sufficiently small, the

same BIST logic can even be used for

testing RAMs during computer power-on,

as part of the CPU’s self-test procedures.

Current BIST implementations cannot,

however, be used for testing when the chip

contains useful data.

Although BIST may still be a high-over-

head concept (about 20 to 30 percent) for

general integrated-circuit designs, it requires

45

Table 1. Test time for different test lengths and memory sizes (with a 10-mega-

hertz clock).

~ ~~ ~ ~ ~~~

Test Memory Size

Length 1 Mbit 4 Mbits 16 Mbits

N 0.1 sec. 0.4 sec.

N log N 2.1 sec. 9.2 sec. 40.3 sec.

N?/2 1.8 min. 14.3 min. 1.9 hr.

N2 30.5 hr. 20.3 days 325.8 days

1.6 sec.

little overhead (less than 1 percent) for

application in large RAMs, as a later sec-

tion shows. Furthermore, recent develop-

ments in very large scale integrated cir-

cuitry allow moderately complex test

algorithms to be built within a chip.

In this context, the article has four major

purposes:

to demonstrate that BIST is a viable

solution to the problem of testing large

memories,

to introduce the notion of generic test

architectures suitable for implementing

a wide variety of test algorithms,

to provide a taxonomy for test archi-

tectures and use this taxonomy to cat-

egorize BIST implementations, and

to survey the important BIST imple-

mentations reported by universities and

industry.

A fair treatment of these four issues

requires a discussion of the fault models

and the test algorithms on which the BIST

implementations are based.

Fault models for RAMs

Before discussing the important fault

models, let’s consider how RAM chips are

organized. A RAM chip consists of an

array of memory cells, an address decoder,

address and data registers, and a read/write

logic. An N-bit RAM may be organized

either as a single-bit output RAM (N-word

x 1-bit RAM) or as a k-bit output RAM (M-

word x k-bit RAM). Generally, an M-word

x k-bit RAM is organized as k identical

partitions. Each M-bit partition may itself

be organized as 1(1 2 1) two-dimensional

arraysofmxncells,suchthatM=Imn. Cells

and their contents in each of these arrays

are independent of the cells in other arrays.

By assuming that no interaction can take

place between cells of different arrays, we

can model faults considering only a two-

dimensional array. Therefore, we need only

test each of these arrays completely, as

opposed to testing the RAM as a single

unit. The arrays can be tested sequentially

or in parallel if the memory organization

permits. The only restriction is that each

array must be tested independently of the

remaining arrays.

A wide variety of physical failures can

occur in the memory array, address decoder,

and read/write logic, causing various fail-

ures in the memory function. Their causes

depend on such factors as component

density, circuit layout, and manufacturing

method. A number of fault models have

been developed to capture the effects of

physical failures in RAMs. In this section,

we describe the important fault models

relevant for the functional testing of RAMS

using BIST. Faults not covered include

soft faults such as transient faults and in-

termittent faults. A recent survey paper on

fault models and functional testing tech-

niques for RAMs provides more detailed

descriptions.’

Invariably, two assumptions have been

used in the development of all fault models

and test algorithms: the single-fault as-

sumption and the nondestructive or fault-

free read operations assumption.

The single-fault assumption reduces the

complexity of test procedures, which be-

come unwieldy for most fault models if the

test is designed to detect multiple faults.

Tests that detect all single faults often

detect most multiple faults. This justifies

the use of the single-fault assumption.

The fault-f iee reads assumption has also

been used for practical reasons. Test pro-

cedures for RAMs often have some form of

embedded checking experiment, that is, the

application of a sequence of writes to bring

the memory to a known state and the veri-

fication of this state by reading the memo-

ry cells. The test procedure becomes ex-

tremely complex - and sometimes

impossible - if the read operations are

assumed to be faulty or destructive. In

reality, however, most faults in the read/

write logic are easily detected because they

result in catastrophic failures.’ Simple tests

can be derived and applied by an external

tester in the final testing stages to detect

noncatastrophic faults in the read/write

logic.

Stuck-at fault model. A memory cell is

said to be stuck-at-1 (stuck-at-0) if its

contents remain fixed at logic 1 (0), irre-

spective of what is written into it. Stuck-at

faults are also useful for modeling faults in

other parts of the memory system, such as

the decoder.

Coupling fault model. A pair of mem-

ory cells is said to be coupled if a transition

in one of them changes the contents of the

other cell from 0 to 1 or 1 to 0. Coupling

faults are of two types. An idempotent

couplingfault is one in which a transition

in one cell forces the contents of another

celltoacertainvalue(either0or I) , whereas

an inversion coupling fault is one in which

the transition causes an inversion in the

contents of the second cell. Coupling faults

could also exist between three or more

cells.

Pattern-sensitive fault model. A

memory cell is said to have a pattern-

sensitive fault if its state is altered by a

pattern of 0’s and l’s, 0 + 1 transitions, 1

+ 0 transitions, or both 0 + 1 and 1 + 0

transitions in a group of other memory

cells. The group of cells that influences the

base cell’s behavior is called the neigh-

borhood of the base cell. The problem of

pattern sensitivity arises primarily from

the high component densities of RAMS and

the related effect of unwanted interacting

signals. As RAM density increases, the

cells become physically closer, andpattern-

sensitive faults become the predominant

faults. Moreover, other fault classes that

affect the memory cells - shorts, stuck-at

faults, andcoupling faults-can be regarded

as special types of pattern-sensitive faults.

Testing a RAM for unrestricted pattern-

sensitive faults is impractical, as it requires

an 0 (2 N) test.’ This fact has led researchers

to consider restricted pattern-sensitive fault

models in which the neighborhood size is

small. Another restriction is on the positions

in the array that a neighborhood is allowed

to take. Often the neighborhood is allowed

to take only the position that physically

surrounds the base cell. Traditionally, the

restricted neighborhoods considered are

the five-cell and nine-cell physical neigh-

borhoods. Figure l a shows the five-cell

physical neighborhood of a memory cell.

46 COMPUTER

Figure 1. Different types of neighborhood: (a) a five-cell neighborhood; (b) a row/column neighborhood.

Within the context of pattern sensitivity,

different fault models have been proposed,

based on the type of interaction between

the cells. In the static-pattern-sensitive fault

model, a cell is said to be faulty if its

contents change when a certain pattern of

0’s and 1’s exists in the neighborhood cells

(that is, the pattern to which the cell is

sensitive is static). A dynamic-pattern-

sensitive fault is said to occur if the state of

a cell changes because of a change in its

neighborhood pattern. Researchers have

also studied variations of these fault models,

for example, those using active and passive

neighborhoods. ’

Row/column weight-sensitive fault

model. The neighborhoods discussed so

far for restricted pattern-sensitive faults

are the physical neighborhoods of a cell.

The row/column weight-sensitive fault

model is based on the broader rowlcolumn

neighborhood.’ The row (column) neigh-

borhood of a cell consists of all the cells in

the same row (column) but excluding the

cell. It is related to the electrical neigh-

borhood of a cell because cells of the same

row share acommon word line, and cells of

the same column share a common bit line.

The row/column neighborhood is much

larger than the conventional five-cell and

nine-cell physical neighborhoods described

earlier. Row weight of a cell is the number

of 1’s in its row neighborhood; column

weight is the number of 1’s in its column

neighborhood.

Figure l b shows the row/column neigh-

borhood, row weight, and column weight

of a memory cell. The row/column weight-

sensitive fault model is based on the obser-

vation that the contents of a cell can be

affected by the contents of cells in its row

and column neighborhood. Interference

could occur between cells of the same

column or row, since these cells are electri-

cally connected and share common ad-

dressing and refresh circuitry. In the row/

column weight-sensitive fault model, a

memory cell is said to be faulty if its con-

tent is sensitive to any combination of row

and column weights.

Besides considering a larger neighbor-

hood than the conventional five-cell and

nine-cell neighborhoods, this fault model

has an additional advantage: Tests that

detect row/column weight-sensitive faults

also detect most of the faults modeled by

other fault models. Furthermore, weight-

sensitive fault tests are also applicable for

reconfigurable memory chips, whereas the

five-cell-neighborhood pattern-sensitive

fault tests are not.

Faults in the decoder and read/write

logic. Most faults occurring in the address

decoder and the read/write logic can be

mapped to faults in the memory cell array;

that is, during tests of the memory cell

array, they will behave as faults in the

memory cell array.’ A stuck-at fault in the

read/write logic will appear as a large group

of memory cells with a stuck-at fault. Thus,

an algorithm that detects stuck-at faults in

the memory array can easily detect this

fault. The same arguments are valid for

coupling faults. Similarly, faults in the

address decoder can be modeled by faults

in the memory array, so the decoder faults

will be detected by tests for the memory

cell array.

Test algorithms and
their fault coverages

Over the years, several algorithms of

different complexities have been developed

to test RAMs. The early algorithms were

ad hoc; the later algorithms were specifi-

cally designed to detect faults from various

fault models. Recently, random pattern

testing has also been proposed for RAMs.

In this article, we discuss only those test

algorithms (ad hoc or specific) that have

been applied (in original or modified form)

for BIST implementation in either univer-

sities or industry.

All test algorithms consist of a sequence

of writes and reads applied to the cells in

the memory array. In our discussion, W, t

v denotes the operation “Write value v into

cell i.” Similarly, R, (= v) denotes the op-

eration “Read cell i, with v as the expected

value.”

Mscan test. Memory scan is a trivial test

procedure developed in an ad hoc manner.

The Mscan test writes each cell, first with

a 0 and then with a 1 . Each value is verified

by reading it before a new value is written.

The formal algorithm is as follows:

For i =0, 1, ..., n - 1

w, t 0

R, (= 0)
w, t 1

R , (= 1)

The deterministic fault coverage of this

test procedure is rather low. All that is

known at the end is that there is at least one

October 1990 47

(b) - Write a 0

Figure 2. Tiling a memory array for the checkerboard test: (a) pattern one; (b)

pattern two.

cell in the RAM that can be set to 0 and 1.

This is because a fault in the decoder may

cause the same cell to be referenced each

time. Since the test performs four operations

on each cell, its length is 4N.

Marching test. Perhaps the most widely

used test algorithm in the industry is the

marching test. A reason for its popularity is

its simplicity, coupled with a moderate

fault coverage. The marching-test algorithm

initializes the memory array to all O’s, and

then scans the memory cells in ascending

and descending orders. For each cell,

scanning involves reading the cell for the

expected value, writing the complement

value, and reading it again.

The idea behind this algorithm is that,

while scanning the memory in ascending

order, any direct coupling between the

current cell and a higher address cell is

detected when reading the latter. Along

with this, any error in the higher address

cell due to decoder faults will also be de-

tected. Similarly, scanning the memory in

the descending order detects all the effects

on lower address cells.

The formal algorithm is given below;

the details can be found elsewhere.’

Step 1.W, t 0 for i = 0, 1, ..., n - 1

S t e p 2 . F o r i = O , l ,..., n - 1

R, (= 0)
w, t 1

R , (= 1)

Step 3.For i = n - 1, n - 2, ..., 0

R , (= 1)
w, t 0

R, (= 0)

Step 4. Repeat steps 1 through 3,

interchanging 0’s and 1’s

The marching test detects all stuck-at

faults and decoder faults. However, it does

not detect all single coupling faults. Dif-

ferent variations of the marching test, all of

length O(N), have been suggested in the

literature.’

Checkerboard test. This simple algo-

rithm, developed in an ad hoc manner, is

designed for two-dimensional memory

architectures. The algorithm fills the

memory array with a checkerboard pattern

by writing 0’s and 1’s in alternate cells.

Two patterns, as shown in Figures 2a and

2b, are written. The cells are read after the

application of each checkerboard pattern.

Step 1. W(,,,) t 0 for i + j = even

W(,,,) t 1 for i + j = odd

Step 2. R(!,,) (= 0) for i + j = even

R(,,,) (= 1) for i + j = odd

Step 3.Repeat steps 1 and 2,

interchanging 0’s and 1’s.

The deterministic fault coverage of this

test procedure is rather low. As with the

Mscan test, a decoder fault may cause only

four cells at most to be referenced. There-

fore, all that is known at the end of this

procedure is that at least four cells in the

RAM can be set to 0 and 1.

Five-cell-neighborhood static-pattern-

sensitive fault test. Many algorithms have

been proposed to detect five-cell-neigh-

borhood pattern-sensitive faults. All these

algorithms are based on tiling the memory

array. We briefly explain an algorithm re-

ported by Kinoshita and Saluja, because

this algorithm was later implemented as a

built-in self-test.3 Figures 3a and 3b show

the tiling arrangements used by this algo-

rithm for the static-pattern-sensitive fault

test. The unmarked cells are the base cells.

Each base cell is surrounded by four

characters (A, B, C, D). The first phase of

the test uses the tiling arrangement shown

in Figure 3a. During this phase, the base

cells are kept fixed at logic 0. The five-cell-

neighborhood patterns are applied to the

base cells using all four-tuples (16patterns),

consisting of variables A, B, C, and D. The

base cells are read after the application of

each pattern. The second phase uses the

tiling arrangement of Figure 3b, and the

above process is repeated. Then both phases

are repeated with the base cells at logic 1.

Rowkolumn weight-sensitive fault test.

Different test algorithms of varying test

lengths have been proposed for testing

RAMs for row/column weight-sensitive

faults.2 All the tests are of length O(N”*) and

use divide and conquer by recursive parti-

tioning as the basic strategy. First the border

cells of an array are tested. Then the two

middle rows and columns are tested, thereby

effectively partitioning the array into four,

as Figure 4 shows. Partitioning continues

recursively until all the cells of the array

are tested. Testing the border cells involves

scanning the memory array as in the

marching test, and this helps to detect de-

coder faults. The row/column weight-

sensitive fault test also detects five-cell-

neighborhood pattern-sensitive faults.

Fault coverage. All the algorithms dis-

cussed so far have been implemented as

built-in self-tests. Some have also been

implemented for embedded RAMs in ap-

plication-specific integrated circuits. Table

2 lists the complexities and fault-detection

capabilities of the algorithms. Blank entries
indicate that those classes of faults are

either not detected or detected only to a

small extent. The entries marked “unidi-

rectional” mean that a cell may be sensitive

48 COMPUTER

to one or more patterns or transitions, but

all of them change the cell’s state from

either 0 to 1 or 1 to 0. The table shows that

the fault coverages offered by the Mscan

test, marching test, and checkerboard test

are rather poor.

Test architectures

Generally, test algorithms for RAMS are

developed assuming no knowledge of the

internal organization of the memory array.

This makes sense, because a test algorithm

should be generic to be applicable to

memories with different internal organi-

zations. Quite often, the internal details of

a RAM chip are not released by the vendor

and therefore are not available to custom-

ers. The BIST logic designer, on the other

hand, knows the internal organization and

could use this knowledge to reduce the test

time and area overhead with possible

modifications to the test algorithm that do

not sacrifice the fault coverage. For example,

for reads and writes the BIST logic may be

able to access multiple bits of an array in

parallel if the technology and test algorithm

allow, instead of accessing the bits serial-

ly. Similarly, the internal organization might

permit the testing of multiple arrays in

parallel. The modifications made to test

algorithms to suit memory’s internal struc-

ture are analogous to the modifications

made to high-level-language computer

programs by optimizing and vectorizing

compilers that take advantage of the com-

puter’s internal organization.

So far, BIST logic design has been driv-

en in an ad hoc manner by the desire to

implement specific test algorithms. That

Figure 3. Tiling a memory array for the static-pattern-sensitive fault test:

(a) phase one; (b) phase two.

Figure 4. Partitioning a memory array into four in the row/column weight-sensi-

tive fault test: (a) memory array with the border cells tested; (b) memory array

partitioned into four.

Table 2. Summary of faults detected by the test algorithms.

Test Procedure Order of Detected Faults

Test Length Stuck-at-Faults Coupling Faults Restricted PSF Row/Column WSF

Mscan Test 00“ Does not detect

decoder faults

Marching Test O(N) All Does not detect all

single coupling faults

Checkerboard O(N) Does not detect

decoder faults

All Unidirectional SPSF Tests OW)

Unidirectional Unidirectional Unidirectional Row/Column Test O(N3’*) All

Mscan - memory scan

PSF - pattern-sensitive faults

SPSF - static-pattern-sensitive fault

WSF - weight-sensitive faults

October 1990 49

Figure 5. Memory cell accesses for (a) single-array single-bit, (b) single-array multiple-bit, (c) multiple-array single-bit,

and (d) multiple-array multiple-bit architectures.

is, a new BIST logic design is carried out

for each new algorithm implemented. Much

design time goes into the implementation

of features common to all test algorithms.

This ad hoc approach also makes it diffi-

cult to integrate a number of test algo-

rithms on the same chip. An alternative

(structured) approach is to develop generic

test architectures for implementing a number

of test algorithms. For example, in a mi-

crocode-based test architecture, it might

be possible to implement a class of different

test algorithms by changing the microcode,

just like changing the microarchitecture of

acornputer.* The test architecture proposed

by Matsuda et al. seems to be a step in the

right d i r e ~ t i o n . ~

Taxonomy. Although a number of RAMS

have been implemented with BIST func-

tions, to the best of our knowledge, no one

has classified these implementations. Here

we provide a taxonomy for classifying BIST

RAM test architectures. The categories in

a rigorous taxonomy must be exclusive to

avoid ambiguity and exhaustive to avoid

incompleteness, providing an unambigu-

ous category for every instance presented

to it. Our taxonomy matches the number of

simultaneously tested arrays and the num-

ber of simultaneously accessed bits within

an array. Accordingly, we can classify all

BIST RAM implementations into one of

four test architectures:

single-array single-bit,

single-array multiple-bit,

*This concept is similar to the idea of developing

general-purpose computers (architectures) to d o a va-

riety of computations, as opposed to developing a

special-purpose computer for each computation.

multiple-array single-bit, and

multiple-array multiple-bit.

Single-array single-bit (SASB) test ar-

chitectures are those in which a single

array of the RAM chip is tested at a time

and a single bit of the tested array is accessed

at a time. Since a maximum of one bit from

the entire memory chip is accessed at any

instant, SASB architectures require the

maximum amount of time for testing. Some

classes of faults, such as arbitrary coupling

faults, restrict the choice of test architec-

ture to SASB architectures. Before the in-

troduction of design for testability and BIST,

external tester-based testing also limited

the choice mostly to SASB architectures,

because only one address can be transmit-

ted from the tester to the chip at a time.

Single-array multiple-bit (SAMB) ar-

chitectures test a single array at a time, but

within the tested array, multiple bits are

accessed simultaneously. Generally, the

accessed multiple bits are all from the same

row; multiple cells from the same column

are not accessed simultaneously, as this

slows memory access. Multiple bits can be

accessed by modifying the address decod-

er. An SAMB test architecture in which all

the n cells of a row (word) within an array

are accessed simultaneously has often been

referred to as line-mode testing.

Multiple-array single-bit (MASB) test

architectures can be used if a memory chip

is organized as a number of independent

arrays, allowing multiple arrays to be test-

ed simultaneously. A single bit from each

array is accessed at a time. The concept is

similar to the simultaneous testing of many

memory chips using external test equip-

ment. In the MASB architecture, a maxi-

mum of kl cells can be accessed at a time,

where kl is the number of arrays in the

memory chip.

Multiple-array multiple-bit (MAMB)

architectures use a combination of multi-

ple-array and multiple-bit testing. A number

of arrays are tested simultaneously, with a

number of cells (normally within a row) in

each array accessed simultaneously.

Therefore, as many as kln cells can be ac-

cessed simultaneously. Sridhar’s parallel

simultaneous testing of a number of bits

from all the arrays is an e ~ a m p l e . ~

Figure 5 illustrates these concepts with a

RAM organized as four arrays. The above

discussion demonstrates that the SAMB,

MASB, and MAMB architectures provide

a speedup over the SASB architecture. An

SAMB architecture can, at best, reduce the

test length by a factor of n, if all the n cells

in a row within an array are accessed si-

multaneously. The effective speedup can

be less than n for certain classes of test

algorithms because, during some stages of

testing, these algorithms require the con-

tents of part of the row to be kept unchanged

when the rest of the row is being tested.

Examples are the ping-pong test for cou-

pling faults6 and the row/column weight-

sensitive fault test.2 The MASB and MAMB

architectures can give a maximum speedup

of kl and kln, respectively.

Some algorithms are inherently serial

and therefore do not attain the maximum

speedup offered by the test architecture.

Given a test algorithm, the BIST designer

must choose one of the four architectures,

considering test time, speedup, and tech-

nology. Alternatively, given a memory chip

design, the BIST designer can select a test

architecture based on the available tech-

nology and silicon area and then select test

algorithms that can be implemented on the

50 COMPUTER

selected architecture. Such an approach

uses more efficiently the silicon area set

aside by the memory designers for the test

logic. Only algorithms with good fault

coverage should be selected.

All the test implementations reported so

far can be categorized into one of the above

four test architectures. Memory sizes have

now reached the stage where an SASB

architecture is almost impractical. Gener-

ally, as the memory size increases, the

number of arrays increases, with the size of

an array remaining more or less constant.

Therefore, in the future we can expect

many more designers to use the MASB and

MAMB test architectures.

Modifying test algorithms. If the ar-

rays are independent of each other and

cells of different arrays do not interact, an

algorithm developed for an SASB archi-

tecture need not be modified for a MASB

architecture. However, modifications may

be required to implement a conventional

SASB algorithm in an SAMB or MAMB

architecture.

Most test algorithms can be modified to

benefit from the simultaneous access of

multiple bits of a row. When multiple bits

of an array are accessed simultaneously,

faults due to interactions between the si-

multaneously accessed cells may not be

detected, unless special care is taken. Sridhar

describes a method to detect errors caused

by interactions between cells accessed si-

m~ltaneously.~

BIST logic

Memory chip designers generally use

aggressive design rules to maximize the

number of cells in a chip and to minimize

the memory access time. This imposes rather

hard constraints on the BIST logic design-

er. In general, the BIST logic designer tries

to minimize

the area occupied by the BIST hard-

ware,

the performance penalty incurred for

the normal memory operation,

the number of additional pins required,

the disparity between the functional

the test time, by using the memory’s

speed and testing speed, and

internal structure.

Conceptually, the BIST logic can be

divided into four parts: control logic, ad-

dress-generation logic, data-generation and

response-verification logic, and test-trig-

ger logic. Figure 6 (based on Ohsawa et

1 Address
buffers

I I
,

I I - - - l r - - - - - l I

v
Error flag CAS -Column aarsss strobe

WE- Write enable

Figure 6. A generic block diagram of random-logic-based BIST logic for RAMS

(based on Ohsawa et al.’).

aL7) shows a generic BIST organization

for testing RAMs. We have modified the

figure to show the main parts of the BIST

logic clearly.

Control logic. The control logic initiates

and stops testing and supervises the control

flow of the test algorithm. It can be imple-

mented using random logic or microcode.

Random logic offers higher speed and has

traditionally been used for designing the

control logic; nevertheless, recent designs

seem to prefer microcode-based control.

For large memories (4megabits andmore),

microcode-based BIST design has been

shown to have an area overhead which

does not exceed that of random-logic-based

 design^.^ Therefore, the flexibility and

implementational ease offered by micro-

code makes it superior to random logic for

large RAMs.

Microcode fits well with RAM technol-

ogy because of its regular structure. For

BIST RAMs, it may be even more area

efficient than random logic, because the

aggressive design rules used for RAM cells

can also be used for the microcode array.

Furthermore, the designer can use such

microcode-optimization techniques as

microprocedures, microstacks, and encod-

ing by grouping of microinstruction fields,

developed for microcode-based comput-

ers.

Address-generation logic. Almost all

test algorithms require the addresses to be

generated in a fairly uniform manner. The

control logic can be designed to generate

the addresses, but leaving this task to a

separate unit is better. For most algorithms,

address generation can be achieved by lin-

ear-feedback shift registers, registers, or

counters, with occasional intervention from

the control logic. With the MASB and

MAMB architectures, a single address-

generation unit can be used for testing

multiple arrays.

Data-generation and response-verifi-

cation logic. The data-generation unit

produces the test pattern(s) to be written in

the cells. Given a test architecture, differ-

October 1990 51

ent strategies can be used for data genera-

tion as well as response verification. Lin-

ear-feedback shift registers or counters as-

sisted by the control logic can generate

data. In an SASB architecture, the correct-

ness of the read values can be verified

either by comparing them against the ex-

pected values or by signature analysis.

Direct comparison is superior, because it

can locate single stuck-at faults. Further-

more, with signature analysis, some faults

may go undetected because of aliasing er-

Tors. For the SAMB, MASB, and MAMB

architectures, other fault-detection meth-

ods - in addition to comparison against

expected values -are comparison of val-

ues read from multiple bits, AND reading,

and OR reading.

In the MASB and MAMB architectures

another convenient verification method is

comparing the outputs of symmetrically

Then they developed procedures to apply
these patterns using optimal test length
sequences. The grouping of the patterns

microcode-based

using signature analyz-

52

the end of the test. In the write mode, the
value stored in the analyzer is written to a
number of bit lines in parallel. Finally, in
the signature mode, the contents of the
memory cells written earlier are read, and

ture is generated. This
ines whether an error

Ily BlST scheme, be-

cause lt requires the scanning in of data
from outside the chip. The scheme uses
the marching-test algorithm, modified to

testing. It can be categorized
approach, as the parallel sig-

nature analyzer can access multiple bits
from multiple arrays simultaneously. The
MAMB architecture results in very fast
testing.

A potential problem with the scheme is
that it requires an externat tester to scan
in the data. Another problem is the low
fault coverage offered by the marching
test. If a wide enough parallel signature
analyzer is used, then the probability for
aliasing errors will be very low. The error-
detection capability can be significantly
enhanced by monitoring the quotient bit of
the analyzer, in addition to verifying the

2.2 percent; for a 64-kilobit static RAM,
1.8 to 2.9 percent.

Self-te?btlng dynamic RAM. You and
Hayes proposed another type of parallel

figuring the cells of an array
shift register and using a

built-in test generator to test multiple bits
~oncurrently.~ The dynamic RAM is orga-
nized as two identical arrays, and the ar-
rays are tested in parallel to reduce the

each array to act as a circular shift regis-
ter during testing. When a row (that is, a
word line) within an array is activated, the
contents of the n cells of the row are
transferred to n bit lines, sensed by n
sense amplifiers, and then written to the

he same row. Each n-
as an n-bit shift register.

ut from the right-most

is stored in the left-most cell of the next
row in the next shift cycle.

ier IS saved in a flip-flop and

Thus, all m rows of an array effectively
form an mn-bit shift register. By saving
the initial contents of the right-most cell of
the last row, the array realizes an mn-bit
circular shift register. The standard sense
amplifier circuits are modified so that
when a bit value is read from one cell, it
can be written into the adjacent cell in the
same row. This is accomplished by intro-

ducing pass transistors between the phys-
ically adjacent bit lines and may adversely

es of the sense ampli-
fiers and the RAM access time in the nor-
mal operation mode.

An on-chip comparison circuit consist-
ing of exclusive-OR gates detects faults
by comparing the outputs of symmetrically
placed cells of the two arrays. The self-
testing dynamic RAM implementation can
be categorized as a MAMB test architec-
ture, since two arrays are tested in paral-
lel and multiple bits of an array (all the
bits of a row) are accessed simultaneous-
ly. This scheme detects bit-line imbalance
faults and restricted types of pattern-sen-
sitive faults in which a write operation be-
comes faulty in the presence of a few
specific patterns in the cell's adjacent
cells. It does not detect faults caused by
transitions in the neighborhood. The area
overhead for a 4-kilobit dynamic RAM is
about 12 percent, and the estimated over-
head for a 1 -megabit dynamic RAM is
about 5 percent.

Paraliel testing for VLSl memories.
lnoue et al. proposed the line-mode test,
a special case of SAMB te~t ing .~ In the
line-mode test, all cells connected to a
word line are tested simultaneously. The
on-chip test circuit can perform parallel
write and parallel compare. The parallel
write circuit writes data into all cells con-
nected to a word line, and the parallel
compare circuit compares the data in par-
allel with the expected data. Apart from
the memory cell arrays, separate tests
check the decoders, the test logic, and
the I/O circuits. The memory cells are
tested with the marching-test algorithm.

The test circuit occupies less than 1

percent of the chip area for a 2-megabit
dynamic RAM. The parallel write opera-
tion allows only certain patterns to be ap-
plied to the cells; therefore, the technique

COMPUTER

placed bits in the tested arrays. An advan-

tage of the parallel comparison methods is

that the expected values need not be gener-

ated. A basic assumption is that all bits

would not simultaneously have erroneous

values. In large dynamic RAMS, memory

cell pitches are very small. Thus, the addi-

tional area of parallel write and parallel

compare circuits should be small enough

to be arranged in the small pitch.

inactive and one or more test modes in

which the BIST logic is active. The test

modes can be entered using overvoltages,

extra package pins, or unique timing se-

quences with such inputs as Chip Enable,

Write Enable, Row Address Strobe, and
Test trigger logic. All BISTRAMs have

a normal mode in which the BIST logic is

cannot clearly identify interference be-
tween memory cells.

Parallel testing for pattern-sensitive
faults. Mazumder and Patel proposed a
BlST parallel testing scheme in which a
number of cells on the same word line are
accessed simultane~usly.~ The decoder is
modified so that in the test mode multiple
bit lines are selected, allowing the same
data to be simultaneously written to multi-
ple cells of the same word line. In the
read mode, a multibit comparator concur-
rently compares the outputs of the bit
lines. The additional hardware is designed
to fit within the intercell pitch. The algo-
rithm detects both static- and dynamic-
pattern-sensitive faults over the nine-cell
neighborhood of every cell. Mazumder
and Patel estimate the area overhead for
a 256-kilobit RAM to be about 0.4 per-
cent.

Built-in processor for self-test. Ritter
and Muller have reported a BlST scheme
in which a built-in processor tests and re-
pairs large RAMS.^ Repair requires fault
localization and computation of a repair
plan, calling for an intelligent self-test
concept. This and the demand for high
flexibility necessitated a test processor.
The test processor also allows for easier
and faster adaptation to various types of
memory technology and organization.
Furthermore, complex algorithms can be
incorporated later, when new memory
technologies are developed or new types
of faults and fault models (not yet consid-
ered) are introduced during product life.
The test function can be applied not only
at manufacturing time, but also during in-
coming inspection and system-mainte-
nance service. The main components of
the test processor are RAM cells, ROM
cells, and decoders. The size of the ROM
holding the test program is 512 x 14 bits.
The area overhead for a 1-megabit RAM
is about 5 percent, and the test architec-
ture can be classified as an SAMB archi-
tecture.

CMOS dynamic RAM with BlST func-
tion. Perhaps the first fully BlST imple-
mentation in the industry was the one re-
ported by Ohsawa et al. for a 4-megabit

October 1990

r-l Clock generator

Microcode

Next
address ' I

Call

Return
~

Conditional branch ~ -

I ' '-
I I I I I

.
Error flag

strobe

CAS -Column address strobe

pPC - Microprogram counter

Block diagram of microcode-based BET logic for the rowlcolumn weight-
sensitive fault test.

RAM7 Their scheme implements a check-
erboard test pattern and its complement,
and their test architecture falls under the
MAMB category. The RAM is divided into
eight arrays, two of which are activated in
a read/write cycle. From each of the test-
ed arrays, eight bits are accessed simul-
taneously. A data comparator compares
the read pattern with the expected pat-
tern. The control logic is implemented by
random logic. The BlST mode is entered
through a unique timing sequence. Figure
6 in the main text shows a block diagram
of this scheme. The area overhead for the
BlST logic is less than 1 percent. A poten-
tial problem is the low fault coverage of
the checkerboard test.

Rowkolumn pattern-sensitive fault
test implementation. The row/column
weight-sensitive fault test algorithm has
been implemented using both random-
logic-based and microcode-based de-
signs.e Both schemes use the SASB ar-
chitecture. We shall briefly describe the
microcode-based implementation to pro-
vide more insight into the workings of mi-
crocode-based BIST. The figure above

53

Column Address Strobe. Using unique

timing sequences is better than using over-

voltages and extra package pins, because

the latter methods may be incompatible

with existing systems. Also, the overvolt-

age method requires either an additional

power supply or the generation of an addi-

tional voltage signal. Voss et al. describe

an implementation of a 256-kilobit x 1-bit

static RAM with multiple test modes in

which the test modes are entered by a

unique timing sequence.8 They also de-

scribe how a particular test mode can be

selected using the normal address input

pins, ifthere are multiple test modes. Miyaji

et al. describe the design and implementa-

tion of a test trigger circuit for megabit

static RAMS that uses the Chip Enable and

Write Enable signals to generate a unique

timing sequence for entering the testmode.9

10-bit control store, which controls the ini-
tialization, sequencing, and completion of
testing. The control store is conceptually
divided into four microroutines. Control
passes from one microroutine to another
when the former issues a call signal to the
latter; control passes back to the former
when the latter issues a return signal. A
microstack stores the return addresses in
the proper order during nested calls. A 4-
bit microprogram counter points to the mi-
croinstruction currently being executed.

The address-generation logic consists
of a register file and some combinational

logic (glue logic). The registers hold the
row and column addresses of the cell be-
ing tested and the cell being read or writ-
ten. The width of the registers depends on
the memory organization and the size of
the cell array. The microcode initializes
and updates the register file.

A major innovation of this scheme is the
implementation of a moderately complex
algorithm with a small control store, using
microcode-optimizing techniques such as
microprocedures and microstacks. The
row/column weight-sensitive fault test has
higher fault coverage than the other algo-

rithms (see table below). A potential prob-
lem with the SASB implementation is that
the test time is comparatively long. How-
ever, the test time can be reduced by us-
ing the MASB or MAMB test architectures.
The area overhead of the random logic
design for a 4-megabit RAM is less than
0.8 percent.

Serial interfacing for embedded-
memory testing. Nadeau-Dostie, Silburt,
and Agarwal proposed a serial interfacing
scheme for testing embedded RAMS.^
Embedded RAMs are on-chip RAMs

Summary of different implementations. (Fault coverage for each implementation can be inferred from Table 2 in the main
text, which shows the coverage for each type of algorithm.)

Implementation Algorithm Test Architecture Control Logic Type of RAM

On-chip compact test scheme SPSF test SASB

Parallel test using signature analyzer Marching test MAMB

Self-testing DRAM Restricted PSF test MAMB

Parallel test for VLSl memories Marching test SAMB

Parallel test for PSFs PSF test SAMB

Built-in processor for self-test Not specified SAMB

CMOS DRAM with BET Checkerboard test MAMB

Row/column test implementation Row/column test SASB

Embedded-memory testing Marching test MAMB

Galpat

Walk

16-Mbit CMOS DRAM Marching test SAMB

Mscan test

Random logic

microcode

Random logic

Random logic

Random logic

Random logic

Processor

Random logic

Random logic

microcode

Random logic

Microcode

SRAM

SRAM, DRAM

DRAM

DRAM

DRAM

DRAM

SRAM

SRAM

DRAM

MAMB - multiple-array multiple-bit
SAMB - single-array multiple-bit
SASB - single-array single-bit
SPSF - static-pattern-sensitive fault
PSF - pattern-sensitive fault

54 COMPUTER

Future trends describe how these areas are likely to be

affected.

BIST technology combines several dif-

ferent areas: fault models, test algorithms,

test implementation, and fault diagnosis.

Changes can be expected in each of these

areas as technology progresses. Below, we

Fault models. State-of-the-art memory

chips are designed with spare rows and

columns meant for reconfiguration. Dur-

ing manufacture, the memory is tested and

whose address, data, and read/write
controls cannot be directly controlled or
observed through the chip’s I/O pins,
making them good targets for BlST ap-
piications. The implemented scheme in-
volves shifting data from one memory
cell to another, similar to the self-testing
dynamic RAM method described eqrlier.
Although both schemes use the MAMB
architecture, there are Some differences.
While the self-testing dynamic RAM ’
scheme shifted data only within an array
and independently tested two arrays in
parallel, the new scheme shifts data
within an array as well as across arrays,
by shifting the data at the end of one ar-
ray to the beginning bf next array in a
daisy-chained fashion. This makes shar-
ing the BlST logic among multiple arrays

easier, because fewer interconnection
lines need to be routed between the
BlST logic and the RAM blocks. Further-
more, in the serial interfacing scheme,
multiplexers implement the shifting
along the I/O data path. Therefore, no
modification is required in the RAM. The
implemented algorithms are adaptations
of the marching test, Galpat (galloping
patterns), and walk algorithms.

16-Mbit CMOS DRAM with BIST
function. Using microcode-based con-
trol logic, Takeshima et al. have imple-
mented the marching test ahd a scan
read/write test with a checkerboard pat-
tern for a %-megabit dynamic RAM.’O
The size of the control store is 18 x 10
bits. Perhaps theirs is the first industrial
BlST RAM implementation using micro-
code. The dynamic RAM enters the test
mode through a unique timing se-
quence.

References

1. K.K. Saluja, S.H. Sng, and K. Kinoshita,
“Built-In Self-Testing RAM: A Practical Al-

ternative,” l€€€ Design & Test of
Computers, Vol4, No. 1, Feb. 1987,
pp. 42-51.

2. T. Sridhag ‘New Parallel Test Ap-
proach for Large Memories,” Pmc.
lnt’l Test Conf.. Computer Society
Press, Los Alamitos, Calif., Order
No. 641 (microfiche only), 1985, pp.

3. Y. You and J.P. Hayes, “A Self-Test-
ing Dynamic RAM Chip,” /E€€ J.
Solid-state Circuits, Vol. 20, No. 1,
Feb. 1985, pp. 428-435.

Technology for VLSl Memories,”
Proc. lnt7 Test Conf., Computer So-
ciety Press, Los Alamitos, Calif., Or-
der No. 798 (microfiche only), t987,

462-470.

4. J. lnoue et al., “Parallel Testing

pp. 1,066-1,071.

5. P. Mazumder and J.H. Patel, “Paral-
lel Testing for Pattern-Sensitiwe
Faults in Semiconductor Random-
Access Memories,“ /€€€ Trans.
Computers, Vol. 38, No. 3, Mar.

6. H.C. flitter and B. Muller, “Built-In

1989, pp. 394-407.

Processor for Self-Testing Re-
ble ries,”
lnt so-

ciety Pre , or-
der No. 798 (microfiche only), 1987,
pp. 1,07&1,084.

stie, A. Silburt, and
“Serial Interfacing for
mory Testing,” IEEE

Design 8 Test of Computers, Vol. 7,
No. 2, Apr. 1990, pp. 52-63.

10. T. Takeshima et al., “A 55-11s 16-Mb
DRAM with Built-in Self-Test Func-

October 1990

repaired (if necessary) by bringing in the

spare rows and columns. With such new

fault-tolerance techniques as dynamic re-

configuration, fault models based on logi-

cal adjacency become irrelevant, whereas

those based on physical adjacency and

electrical connectivity become more rele-

vant. Future fault models must consider

the effects of such reconfiguration within

memory chips. With the new high-speed

RAM realizations, such as gallium arsenide

RAMs, future models must also consider

delay faults.

Test algorithms. When a memory chip

is reconfigured, physically adjacent cells

may no longer have consecutive addresses.

Test algorithms for the detection of physi-

cal neighborhood pattern-sensitive faults

have to account for this fact. Furthermore,

we believe that there will be a trend to find

optimal or near-optimal, yet simple, test

algorithms. These will save testing time as

memory size continues to grow, and BIST

logic will be used for maintenance testing

of RAMs embedded in a system.

Test implementation. When a memory

chip is being used in a system (that is, when

the chip contains valid data), it cannot be

tested on line because the test procedure

might destroy the memory contents. Fu-

ture systems may implement BIST algo-

rithms that have on-line test capabilities.

Further research is required not only to

develop such algorithms, but also to deter-

mine the merits and demerits of such an

approach, especially since most memory

systems use error-correction code at some

level.

Fault diagnosis and self-reconfigura-

tion. In general, current BIST implemen-

tations cannot diagnose faults. In the fu-

ture, BIST will potentially be used in field

diagnosis. Such diagnosis will help in re-

configuration of memory chips and repair

of multichip memory modules (silicon mass

storages).

T
he separation of test algorithm and

test architecture clearly shows the

range of possible implementations

for a given test algorithm. The test archi-

tecture-based approach is more versatile

than the ad hoc design approach for BIST

logic design, especially with various de-

sign constraints. It also facilitates the inte-

gration of a number of test algorithms within

the same chip.

Our taxonomy for classifying BIST ar-

55

chitectures provides a framework to de-

scribe widely differing implementations at

a level of abstraction that eliminates many

algorithm-related details, while preserv-

ing the important implementation charac-

teristics. We expect that most future imple-

mentations in large RAMS will use the

test-architecture-based approach, since

it can easily adapt to changes in tech-

nology.

Acknowledgments

This work was supported by the University of
Wisconsin Graduate Research Committee, an
IBM graduate fellowship, and the National Sci-
ence Foundation under contract MIP 8509194.
We thank the referees for their comments and
suggestions, which greatly enhanced the quality
of presentation of this work.

References

1. A.J. van de Goor and C.A. Verruijt, “An
Overview of Deterministic Functional RAM
Chip Testing,” ACM Computing Sur\,eys,
Vol. 22, No. I , Mar. 1990, pp. 5-33.

2. M. Franklin, K.K. Saluja, and K. Kinoshita
“Built-In Self-Test Algorithm for RowKol-

umn Pattern Sensitive Faults in RAMS,”
IEEEJ. Solid-Stare Circuits, Vol. 25, No. 2,
Apr. 1990, pp. 5 14-524.

3. K. Kinoshita and K.K. Saluja, “Built-In
Testing of Memory Using an On-Chip Com-
pact Testing Scheme,” IEEE Trans. Com-
puters, Vol. 35, No. 10, Oct. 1986, pp. 862-
870.

4. Y. Matsuda et al., “New Array Architecture
for Parallel Testing in VLSI Memories,”
Proc. Int’l Tesr Conf., Computer Society
Press, Los Alamitos, Calif., Order No. 1962,
1989, pp. 322-326.

5. T. Sridhar “New Parallel Test Approach for
Large Memories,” Proc. Inr‘l Test Conf.,

Computer Society Press, Los Alamitos, Ca-
lif., Order No. 641 (microfiche only). 1985,
pp. 462-470.

6. M.M. Breuer and A.D. Friedman, Diagnosis
and Reliable Design of Digital Systems,
Computer Science Press, Potomac, Md.,
1976.

7. T. Ohsawa et al., “A 60-11s 4-Mbit CMOS
DRAM with Built-In Self-Test Function,”
IEEE J . Solid-State Circuits, Vol. 22, No. 5 ,
Oct. 1987, pp. 663-668.

8. P.H. Voss et al., “A 14-11s 256K x 1 CMOS
SRAM with Multiple Test Modes,”

IEEE EDUCATIONAL ACTIVITIES
INTRODUCES

I ”

ICASSP/SO
The following four video tutorials were
recorded April 1990 in Albuquerque, New
Mexico at ICASSPEKI.

T h e Structure of FFT and
Convolution Algorithms, presented
by James W. Cooley, IBM T.J.
Watson Research Labs

High-Resolution and Higher-Order
Spectral Analysis, presented by
Larry Marple, Chief Scientist,
ORINCON Inc.

Synthetic Aperture Radar: A Signal
Processing Viewpoint, presented by
David C. Munson, Jr., University of
Illinois

presented by Edward A. Lee, UC
Berkeley and K. Wojtek Pnytula,
Hughes Research Laboratories

ICASSPEKI Package (AI1 Four Programs)
IEEE member price, $225.95, list $129.50.
Plus shipping and handling.

VLSI For Signal Processing,

Individual tutorials I E E E member price,
$65.95, list $135.95. Plus shipping and han-
dling. PAL video standard available upon
request.

VLSI
Design Principles and

Practices
This Self-study Course provides practical
application of comprehensive information
o n circuit and logic design offering a n op
portunity t o become a valuable interface
for VLSI selection.

Program includes a study guide, answer
book, applications workbook, diskette,
and a textbook, VLSI Handbook by
Joseph DiGiacomo, McGraw Hill, 1989.

VLSI is I E E E member price, $249, list
$498. Plus shipping and handling.

I
For a full description of these programs and complete ordering information, call I E E E a t
1-800478-IEEE, FAX# 201-981-1686, or Telex: 0833233. For shipments t o CA, DE, NJ,
and NY add appropriate sales tax. Please call for appropriate overseas Air Mail Charges.

IEEE J . Solid-State Circuzts,Vol. 24, No. 4,
Aug. 1989, pp. 874-880.

9. F. Miyaji et al., “Multibit Test Trigger Cir-
cuit for Megabit SRAMs,” lEEE J . Solid-
Sture Circuits, Vol. 25, No. 1, Feb. 1990, pp.
68-7 1.

Manoj Franklin is a PhD student in computer
science at the University of Wisconsin--Madison.
He has been awarded an IBM graduate fellow-
ship. Recently he was a summer intern at Cray
Research. His research interests include high-
performance computing, memory testing, built-
in self-test, and design for testability. Before
graduate studies, he was an engineer at BHEL,
Bangalore, India.

Franklin received his BSc (engineering) in
electronics and communications from the Uni-
versity of Kerala, Trivandrum, India, in 1984.

Kewal K. Saluja is an associate professor in the
Department of Electrical and Computer Engi-
neering at the University of Wisconsin-Madi-
son, where he teaches logic design, computer
architecture, microprocessor-based systems,
VLSI design, and testing. Previously, he was at
the University of Newcastle, Australia. He has
also heldvisiting and consulting positions at the
University of Southern California, University of
Iowa, State University of New York, and Hiro-
shima University. His research interests include
design for testability, fault-tolerant computing,
VLSI design, and ccmputer architecture.

Saluja received his BE in electrical engineer-
ing from the University of Roorkee, India, in
1967, and his MS and PhD from the University
of Iowa in 1972 and 1973.

Saluja can be contacted at the Department of

Electrical and Computer Engineering, Universi-
ty of Wisconsin, 141.5 Johnson Dr., Madison,
WI 53706.

COMPUTER

