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Genuinely non-Hermitian topological phases can be realized in open systems with sufficiently strong
gain and loss; in such phases, the Hamiltonian cannot be deformed into a gapped Hermitian Hamiltonian
without energy bands touching each other. Comparing Green functions for periodic and open boundary
conditions we find that, in general, there is no correspondence between topological invariants computed for
periodic boundary conditions, and boundary eigenstates observed for open boundary conditions. Instead,
we find that the non-Hermitian winding number in one dimension signals a topological phase transition in
the bulk: It implies spatial growth of the bulk Green function.
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Topology has made a profound impact on the description
and design of wavelike systems such as quantum mechani-
cal electrons [1–5] or light interacting with matter [6–11].
The key idea is to group physical systems, each described
by a gapped (insulating) Hamiltonian, into the same
topological class if their Hamiltonians can be continuously
deformed into each other without closing the energy gap.
For Hermitian Hamiltonians, the bulk-boundary correspon-
dence states that topological invariants for periodic boun-
dary conditions predict the presence of boundary states for
open boundary conditions [1,12–16].
Recently, non-Hermitian Hamiltonians [17–21] have

attracted much attention; they describe open systems with
loss (dissipation) and gain (e.g., coherent amplification in a
laser) [22,23]. Extending topological methods to these
systems may be particularly beneficial for the design of
topological protected laser modes [24–26].Moreover, genu-
inely non-Hermitian Hamiltonians, i.e., Hamiltonians that
cannot be deformed to a Hermitian Hamiltonian without
energybands touching,havenovel topologicalpropertiesnot
found in Hermitian systems. They can be characterized by
topological invariants different from those of Hermitian
systems [27–38], but the extent of a bulk-boundary corre-
spondence is, surprisingly, much less clear [39–50].
We consider systems in one dimensions, which are

particularly interesting because not only the eigenvectors
but also the eigenenergies can have a nontrivial winding
number. In the case of a two-band model with chiral
symmetry, the Bloch Hamiltonian is off-diagonal

HðkÞ ¼
�

0 qþðkÞ
q−ðkÞ 0

�
: ð1Þ

In a lattice model, the lattice spacing forces the momentum
k to be periodic, and the q�ðkÞ describe closed paths in the

complex plane. For example, a non-Hermitian Su-
Schrieffer-Heeger (SSH) model is given by q�ðkÞ ¼
ðm − 1Þ þ e�ðγ−ikÞ, and the paths are circles with different
radii centered on the real axis [51]. The eigenvalues of the
matrix HðkÞ are distinct if neither path passes through the
origin; in this case, we can assign to each path a winding
number around the origin. These form the Z × Z topo-
logical invariant of a non-Hermitian Hamiltonian in sym-
metry class AIII [28]. Hermitian Hamiltonians are
characterized by qþðkÞ ¼ q−ðkÞ�, which forces both wind-
ing numbers to be opposites of each other; a single Z
invariant remains [3,52,53]. Genuinely non-Hermitian
phases appear whenever the two winding numbers are
no longer opposites of each other [28,33]. In this case, the
non-Hermitian winding number, which is the winding
number of the determinant det½HðkÞ�, is nonzero.
Is there a bulk-boundary correspondence for the non-

Hermitian winding number? To answer this, we focus on
response (Green) functions, which describe experimental
observables in a scattering setup. We find that the bulk-
boundary correspondence breaks down once the non-
Hermitian winding number takes a nontrivial value:
When the winding number changes from zero, the bulk
response starts exhibiting exponential growth in space, and
since periodic systems cannot accommodate such spatial
growth, they do not reflect the properties of systems with
open boundaries. In this Letter, we focus on the specific
example of non-Hermitian Dirac fermions to discuss the
above physics, while a general proof is contained in the
companion paper, Ref. [54]. Green functions are more
robust objects than eigenstates, because the latter are very
sensitive to boundary conditions: wave functions can
become localized in the presence of an open boundary, a
phenomenon referred to as non-Hermitian skin effect
[39,41,55–64]. This skin effect can be observable already
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for arbitrarily small non-Hermiticity, whereas an exponen-
tial growth of the bulk Green function occurs only above a
critical strength of non-Hermiticity. In a semi-infinite
system with only one boundary on the other hand, right
eigenfunctions can be localized at the boundary, whereas
there exist no corresponding normalizable left eigenfunc-
tions, such that the Green function cannot be expressed in
terms of eigenfunctions.
Example: Dirac fermions with non-Hermitian terms.—

We consider a continuum model that corresponds to the
long distance limit of the non-Hermitian SSH model
[32,41,65,66]. It concerns wave functions with two com-
ponents ψðxÞ ¼ ½ψ1ðxÞ;ψ2ðxÞ�T subject to a Hermitian
Dirac Hamiltonian H0 ¼ mσx þ ð−i∂xÞσy, where σx, σy
are Pauli matrices, m is a real mass parameter (band gap).
Let us introduce non-Hermiticity by adding constant anti-
Hermitian terms:

Ĥ ¼ Ĥ0 þ iγσy; ð2Þ

where γ is real. There are three more terms that we could
add: iγxσx, iγzσz, and −iΓ1, where 1 is the identity matrix.
The first can be absorbed by analytic continuation of the
mass m. The second and third vanish if we also impose a
chiral symmetry fĤ; σzg ¼ 0, necessary for discussing zero
energy boundary eigenstates in one dimension. Thus, the
symmetry class is AIII [1] for complex m. For real mass m,
Ĥ is additionally invariant under complex conjugation,
placing it in symmetry class BDI, which also implies that
eigenvalues occur in complex conjugate pairs.
In the continuum model (2), we have q�ðkÞ ¼

m� ðγ − ikÞ, and the paths described by q�ðkÞ in the
complex plane are no longer closed. Still, one can assign a
half-integer winding number ν� [33] that changes when-
ever a path crosses the origin. Such crossings happen at
γ ¼ �m and we find the topological phase diagram in
Fig. 1(a).
Open boundary conditions.—We now consider a system

of length L with open boundary conditions

ψ2ð0Þ ¼ 0; ψ1ðLÞ ¼ 0 ð3Þ

corresponding to a particular boundary termination of the
lattice model. For open boundary conditions, the non-
Hermitian terms in both the Dirac-Hamiltonian Eq. (2) and
the non-Hermitian SSHmodel defined below Eq. (1) can be
eliminated by a similarity transformation: if ψ0ðxÞ is an
eigenfunction of the Hamiltonian Ĥ0, then ψðxÞ ¼
eγxψ0ðxÞ is an eigenfunction of the Hamiltonian Ĥ.
From this we see that all eigenfunctions are exponentially
localized, when γ ≠ 0. This is the non-Hermitian skin effect
[39,41,55–64].
Bulk and boundary Green function.—To clearly distin-

guish bulk and boundary, we now focus on Green func-
tions, which are matrix-valued solutions to the equation

ðE − ĤÞGðE; x; yÞ ¼ 1δðx − yÞ: ð4Þ

The bulk Green function Gbulk is defined as the response of
an infinite system [54], whereas the Green function Gopen

for open boundary conditions is defined as the solution that
satisfies the conditions (3). When we probe the system far
away from the boundary, 0 ≪ x; y ≪ L, then only the bulk
of the system responds, and we expect that both Green
functions give the same result. However, when the source is
close to the boundary, y ≈ 0 or y ≈ L, we expect that
reflection at the boundary is important, which is captured in
the boundary Green function

GboundðE; x; yÞ ≔ GopenðE; x; yÞ −GbulkðE; x − yÞ: ð5Þ

It solves the homogeneous equation ðE − ĤÞ
GboundðE; x; yÞ ¼ 0. We have used that for a translationally
invariant Hamiltonian, the bulk response only depends on
the difference x − y. If G0 denotes a Green function of Ĥ0

for open boundaries, then the corresponding retarded Green
function for Ĥ reads

GðE; x; yÞ ¼ G0ðEþ iη; x; yÞeγðx−yÞ; ð6Þ

with η ¼ 0þ. We now focus on zero energy, E ¼ 0. Then,
we find

G0;bulkðiη; x; yÞ ¼ ½θð−x̃ÞGL þ θðx̃ÞGR�e−
ffiffiffiffiffiffiffiffiffiffi
m2þη2

p
jx̃j; ð7Þ

where x̃ ¼ x − y, and GL and GR are matrices

(a) (b)

FIG. 1. Topological phase diagram of one-dimensional non-
Hermitian Dirac fermions with particle-hole symmetry and chiral
symmetry. (a) Periodic boundary conditions. A pair of half-
integer winding numbers ðνþ; ν−Þ distinguishes four phases: Two
Hermitian (red and blue) and two genuinely non-Hermitian
phases (gray), separated by lines γ ¼ �m. (b) Open boundary
conditions. The line m ¼ 0 separates phases with a different
number of zero energy boundary eigenstates. For the boundary
conditions (3), a positive mass implies the existence of a
boundary state at each end (red), which are absent for a negative
mass (blue). The lines γ ¼ �m now indicate that the bulk (and
boundary) Green function change from exponential decay to
exponential growth.
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Gs ¼ N
�

iη mþ νs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ η2

p
m − νs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ η2

p
iη

�
; ð8Þ

with s ¼ L, R, νR=L ¼ �1, and N ¼ 1=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ η2

p
Þ.

Thus, we obtain one of our main results: in the phases
where the non-Hermitian winding number is nonzero,
jγj > jmj, the bulk Green function Gbulk grows exponen-
tially as x → �∞ while keeping y fixed. For G0;bound near
the left boundary, we find

G0;boundðiη; x; yÞ ¼ GBe−
ffiffiffiffiffiffiffiffiffiffi
m2þη2

p
ðxþyÞ; for x; y ≪ L: ð9Þ

Here, GB is the matrix

GB ¼ −GR

� mþ
ffiffiffiffiffiffiffiffiffiffi
m2þη2

p
m−

ffiffiffiffiffiffiffiffiffiffi
m2þη2

p 0

0 1

�
: ð10Þ

Taken together, this yields the decomposition (5).
Boundary eigenstates.—The Green function can be

expressed as a sum over eigenstates

GðE; x; yÞ ¼
X
n

ðE − EnÞ−1hxjψn
Rihψn

Ljyi: ð11Þ

Here, jψn
Ri are the so-called right and jψn

Li the left
eigenstates of the non-Hermitian Hamiltonian, i.e.,
Hjψn

Ri ¼ Enjψn
Ri and H†jψn

Li ¼ E�
njψn

Li, with hψn
Ljψm

R i ¼
δnm [67]. The contribution hxjψn

Rihψn
Ljyi of an individual

eigenstate to the Green function can be extracted as the
residue of the pole at E ¼ En [68,69]. For identical
positions x ¼ y, this residue yields the biorthogonal polari-
zation discussed in Ref. [40]. We now define a boundary
eigenstate to be the residue of a pole of the boundary Green
function, and focus on states at zero energy, E ¼ 0. For
open boundary conditions, our model has only real eigen-
values due to the relation Eq. (6), and we can obtain the
residue from the imaginary part of the Green function since
ImGðEþ i0þ; x; yÞ ¼ −

P
nhxjψRihψLjyiδðE − EnÞ for

real E. We find that

− ImG11
boundð0; x; yÞ ¼ Aeðγ−mÞxeð−γ−mÞy;

where A ¼ θðmÞ2m=η with η ¼ 0þ: ð12Þ

Thus, for m > 0, the boundary Green function has an
isolated pole at zero energy, whose associated eigenstate is
hxjψ0

Ri ¼ eðγ−mÞx and hψ0
Ljyi ¼ eð−γ−mÞy. The spatial shape

changes dramatically from exponentially localized to
exponentially growing and vice versa whenever γ ¼ �m.
In contrast, for m < 0, no boundary eigenstate is found.
Thus, the number of zero energy boundary eigenstates
does not change during the topological phase transition at
γ ¼ �jmj for periodic boundary conditions [Fig. 1(b)], and
the bulk-boundary correspondence breaks down.

Bulk-periodic correspondence.—The traditional view on
the bulk-boundary correspondence actually comprises two
separate logical steps: it relates (i) the bulk to the boundary
Green function, and (ii) the Green function Gperiod for
periodic boundary conditions to that for the bulk of an
infinite system: in the limit of large system size, both agree
if the bulk Green function decays spatially [Fig. 2(a)]; this
allows us to use topological invariants of the Bloch
Hamiltonian (1) to characterize an infinite bulk. In non-
Hermitian systems, step (i) is unproblematic, but step
(ii) may fail. To better distinguish them, we propose to
narrow the name bulk-boundary correspondence to refer
only to the first step, and to call the second step the bulk-
periodic correspondence.
Indeed, for our model in the regime jγj > jmj, the bulk-

periodic correspondence breaks down, because the periodic
Green function decays, while the bulk Green function
grows exponentially [Fig. 2(b)]. This growth also explains
the exponential sensitivity to small perturbations seen in
Ref. [44]. For periodic boundary conditions ψð−L=2Þ ¼
ψðþL=2Þ, and using the results Eqs. (6) and (7) for the bulk
Green function, we find

Gperiodð0; x; 0Þ ¼ Gbulkð0; x; 0Þ þ GL
eκLx

eκLL − 1

þ GR
eκRx

e−κRL − 1
; ð13Þ

with κL=R ¼ γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ η2

p
. In the limit of large system

size L ≫ jxj, the two additional terms vanish if only if the

(a)

(b)

FIG. 2. Breakdown of the bulk-periodic correspondence. (a) If
the bulk Green function decays spatially, then both bulk and
periodic Green function agree. (b) If the bulk Green function
grows spatially, then the periodic Green function has to change
drastically in order to accommodate periodic boundary condi-
tions.
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exponents satisfy κL > 0 and κR < 0, i.e., if the bulk Green
function decays spatially [Fig. 2].
If we focus on bulk growth and disregard boundary

eigenstates, we no longer require symmetry class AIII.
Then, we find our main result, which holds both with and
without symmetry (class A): if the non-Hermitian winding
number is nonzero, then the bulk Green function at zero
energy grows spatially. For example, consider a general
Dirac model Ĥ ¼ ð−i∂xÞτ1 þm1τ1 þm2τ2 þ � � � þ
mnτn − iΓ1 where the τj are Hermitian gamma matrices
fτi; τjg ¼ 2δij, the masses mj are complex and Γ ≥ 0.
Then, since ðĤ þ iΓÞ2 is proportional to the identity
matrix, the corresponding bulk Green function has form
Gbulkð0; x; 0Þ ¼ GLθð−xÞeκLx þGRθðxÞeκRx with κL;R ¼
−im1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ � � � þm2
n þ Γ2

p
and appropriate GL;R.

Here, the branch of the complex square root is the one
with positive real part; we choose it by demanding that we
remain in the same branch when Γ → ∞ [54]. Thus, the
Green function grows in space if and only if the imaginary
part of m1 exceeds the real part of the root. Imposing
symmetries will only constrain the parameters, but not
affect this conclusion. In general, the Green function is a
sum of exponentials expðiksxÞ where the complex
momenta ks are the zeros of det½HðkÞ�; the subscript s
refers to a side L, R, and an index. For local continuum
models like the Dirac model, this determinant is a poly-
nomial in momentum k. Thus, the non-Hermitian winding
number νðHÞ ¼ ð2πÞ−1 R∞

−∞ dk∂k arg det½HðkÞ� is the sum
ofþ1=2 for each zero above the real axis and −1=2 for each
zero below. But this number changes precisely when one of
the zeros crosses the real axis, which means that the
exponential changes from spatial decay to spatial growth.
We extend this sketch to a full proof for lattice models in
Ref. [54]. While for the above Dirac models, exponential
growth only occurs in the genuinely non-Hermitian phases,
for other models, it may arise even when the Hamiltonian
can be deformed to a Hermitian one; see [51] for an
example. Thus, the growth of the bulk Green function is
not, by itself, topologically invariant.
Our work still leaves open the exciting question of the

bulk-boundary correspondence in the narrow sense: are
there topological invariants of the bulk Green function that
imply the presence of boundary eigenstates? For Dirac
fermions, the latter persist well into the genuinely non-
Hermitian phases. This is also true for lattice models
discussed in the literature [32,39–42,44]; see the
Supplemental Material [51] for details.
Experimental response: Scattering.—In a scattering

configuration [see Fig. 3(a)], an excitation of an outside
field ϕ is created, and the incoming amplitude ϕ− targets a
point x1 of the system. If the excitation is monochromatic
with frequency (energy) E, then the system will eventually
reach a stationary state ψ that, in turn, emits an outgoing
amplitude ϕþ at every position x2. The scattering matrix

SðEÞ records how incoming amplitudes are mapped to
outgoing amplitudes, ϕþ ¼ SðEÞϕ−, and is given by the
Mahaux-Weidenmüller formula [70]

SðEÞ ¼ 1 − 2iW† 1

E − Ĥ
W; Ĥ ¼ Ĥ0 − iWW†: ð14Þ

Here, the matrixW describes how the outside field couples
into the system. The Hamiltonian Ĥ0 describes the time
evolution of the system if the coupling was absent; it is
usually Hermitian, for it is the combination with the
dissipative term −iWW† that yields an effective non-
Hermitian Hamiltonian Ĥ. The scattering matrix differs
from unity by −2iW†GðEÞW where GðEÞ is the Green
function of this non-Hermitian Hamiltonian. To make this
Letter self-contained, in the Supplemental Material [51] we
include an elementary discussion of the Mahaux-
Weidenmüller formula [71,72], which is equivalent to
temporal coupled mode theory [73,74] in optics.
So far, we have shown how coupling to an environment

yields a non-Hermitian Hamiltonian. Conversely, we now
consider a Hamiltonian H and attempt to realize it in a
scattering setup. For this, we decompose it as Ĥ ¼ Ĥ0 þ iΓ̂
where Ĥ0 ¼ ½Ĥ þ Ĥ†�=2 and Γ̂ ¼ ði=2Þ½Ĥ† − Ĥ� are
Hermitian matrices. We define a Hamiltonian to be purely
dissipative if Γ̂ is negative semidefinite, Γ̂ ≤ 0, i.e., if it has
no positive eigenvalues. Any matrix of the form Γ̂ ¼
−WW† is negative semidefinite, and any semidefinite Γ̂
can be represented in the above form by choosing
W ¼ ð−Γ̂Þ1=2. This choice is unique up to a change of
basis for the outside field, W → WU, with U unitary, and
up to components that do not couple. Thus, any purely
dissipative Hamiltonian can be realized in a scattering setup
described by Eq. (14). But in order to realize a general non-
Hermitian Hamiltonian, we have to allow for positive
eigenvalues in the anti-Hermitian part, which corresponds
to (linear) gain, i.e., coherent amplification. In fact, gain is
a key requirement for the non-Hermitian winding number
to be nonzero, see Ref. [54].

(a) (b)

FIG. 3. (a) Scattering setup. (b) Scattering response of the one-
dimensional Dirac fermion with dissipation Γ ¼ jγj. The plot
shows the amplitude −iA of the boundary response at the left
boundary.
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In optical systems, gain can be realized by optical
pumping [75], and spatially uniform gain can be described
by the ansatz Ĥ ¼ Ĥ0 þ ig − iWW† with a positive con-
stant g in Eq. (14). Then, the anti-Hermitian part of Ĥ is
related to the coupling matrix via −WW† ¼ Γ̂ − g, and this
relation can be solved for W if the non-Hermitian
Hamiltonian Ĥ has bounded gain, i.e., if Γ̂ − g becomes
negative semidefinite by making g sufficiently large.
For example, the Dirac fermion, Eq. (2), can be described
by Ĥ ¼ Ĥ0 þ ig − iWW† with g ¼ jγj, W ¼ ffiffiffiffiffijγjp ½1;
−sgnðγÞi�T ; the coupling W is a 2 × 1 matrix when
modeling the outside field as a scalar.
Since a purely dissipative setup can be realized more

easily than one with gain, we ask whether signatures of the
zero energy boundary states of the Dirac fermion Eq. (2)
can still be found without gain. This corresponds to
allowing a constant dissipation, Ĥ ¼ Ĥ0 þ iγσy − iΓ1,
which does break chiral symmetry. We consider the special
case Γ ¼ jγj, which has the least amount of dissipation
while probing the phase transition region γ ¼ �jmj. At
zero energy, we can use Eq. (9) with η ¼ Γ and find

½W†GboundðE ¼ 0ÞW�ðx2; x1 ¼ 0Þ ¼ A exp ð−x2=ξLÞ;

A ¼ −i
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ γ2
p γ2

m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ γ2

p ; ð15Þ

where A denotes the amplitude and ξL ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ γ2

p
−

γÞ the localization length of the response. We see that the
amplitude can still distinguish the phase with boundary
eigenstate, m > 0, from the phase without, m < 0, though
the distinction is less sharp [Fig. 3(b)] than in the case with
gain and chiral symmetry.
Conclusion.—Using the example of non-Hermitian

Dirac fermions, we have discussed the topological phase
diagram via Green functions. The key idea was to decom-
pose the Green function for open boundary conditions into
a bulk and a boundary Green function, Eq. (5). We have
shown that a nonzero non-Hermitian winding number
means that the correspondence of the open system to a
periodic one breaks down due to an exponential growth of
the bulk Green function. We have also discussed how to
realize non-Hermitian Hamiltonian in a scattering setup and
indicated that observing a nonzero topological invariant
requires a system with gain.
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